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Abstract: It is generally very difficult to make effective obstacle avoidance for mobile robots, especially in uncertain 
environments. This article models the obstacle avoidance problem as a nonlinear sliding mode, using the self-learning method 
of non-linear system. First, a sliding mode algorithm is proposed for state dependent layers of the mobile robots, in which two 
kinds of boundary layers are included in, namely a sector-shaped layer and a constant layer. Second, a multi-input algorithm 
based on sliding-mode for self-learning of mobile robots is discussed. Some control rules are built for the self-learning and 
obstacle avoidance of mobile robots, and the solving steps are also presented. Last, an experiment is designed to verify the 
proposed model and calculate the sliding- mode control for mobile robots. Some interesting conclusions and future work are 
indicated at the end of the paper. 
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1. Introduction 

The obstacle avoidance of mobile robots is often dynamic 
and uncertain, involving many nonlinear factors. Alessandro 
(2016) introduced dynamic stiffness model of spherical 
parallel robots [1]. Christopher (2016) talked about 
human-robot interaction in assisted personal services and 
factors influencing distances that humans will accept between 
themselves and an approaching service robot [2]. Rob (2016) 
indicated risk analysis for smart homes and domestic robots 
using robust shape and physics descriptors, and complex 
boosting techniques [3]. Villarreal (2016) extended off-line 
PID control tuning for a planar parallel robot using DE 
variants [4]. Rasheed (2016) described theoretical accounts to 
practical models with grounding phenomenon for abstract 
words in cognitive robots [5]. Guanglong (2016) made a 
model of an online method for serial robot self-calibration 
with CMAC and UKF [6]. Montano (2016) discussed the 
coordination of several robots based on temporal 
synchronization [7]. Yuanfan (2016) put forward a positional 
error similarity analysis for error compensation of industrial 

robots [8]. Rahmani (2016) developed a hybrid neural 
network fraction with integral terminal sliding mode control 
of an Inchworm robot manipulator [9]. Tjahjowidodo (2016) 
evaluated multi-source micro-friction identification for a class 
of cable-driven robots with passive backbone [10]. Hachmon 
(2016) built a non-Newtonian fluid robot [11]. 

Therefore, many nonlinear control methods have been 
applied in robot avoidance. Grubman (2016) studied 
partitioning de Bruijn graphs into fixed-length cycles for robot 
identification and tracking [12]. Duguleana (2016) illustrated 
neural networks based reinforcement learning for mobile 
robots obstacle avoidance [13]. Gundeti (2016) made a 
research on robot-assisted laparoscopic extravesical ureteral 
reimplantation and technique modifications contributing to 
optimized outcomes [14]. Leow (2016) extended 
robot-assisted versus open radical prostatectomy by a 
contemporary analysis of an all-payer discharge database [15]. 
Weichao (2016) implied two time-Scales tracking control of 
nonholon studied omic wheeled mobile robots [16]. 

The way of the robot's movement is different, and the 
principle is different. Tanaka (2016) gave singularity analysis 
of a snake robot and an articulated mobile robot with 
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unconstrained links [17]. Jingjing (2016) shared a control for 
the kinematic and dynamic models of a mobile robot [18]. 
Most experts supported the formation control of mobile robots. 
Zhe (2016) considered formation control of mobile robots 
using distributed controller with sampled-data and 
communication delays [19]. Ostafew (2016) presented robust 
constrained learning-based NMPC enabling reliable mobile 
robot path tracking [20]. Zijian (2016) offered a 
Force-Amplifying N-robot Transport System (Force-ANTS) 
for cooperative planar manipulation without communication 
[21]. 

People often applied self-learning in mobile robots to 
improve the performance obstacle avoidance. JianHua (2016) 
reviewed prospects of robot-assisted mandibular 
reconstruction with fibula flap, and made comparisons with a 
computer-assisted navigation system and freehand technique 
[22]. Haibo (2016) proposed a real-time, high fidelity dynamic 
simulation platform for hexapod robots on soft terrain [23]. 
Hsu (2016) indicated a particle filter design for mobile robot 
localization based on received signal strength indicator [24]. 
Mathis (2016) concerned an apex height control of a two-mass 
robot hopping on a rigid foundation [25]. 

It is generally very difficult to make effective obstacle 
avoidance for mobile robots, especially in uncertain 
environments. This article models the obstacle avoidance as a 
nonlinear sliding mode, using the self-learning method of 
non-linear system. First, a sliding mode algorithm is 

proposed for state dependent layers of the mobile robots, in 
which two kinds of boundary layers are included in, namely a 
sector-shaped layer and a constant layer. Second, a 
sliding-mode based algorithm of multi-input for self-learning 
of mobile robots is discussed. Some control rules are built for 
the self-learning and obstacle avoidance of mobile robots, 
and the solving steps are also presented. Last, an experiment 
is designed to verify the proposed model and calculate the 
sliding- mode control for mobile robots. Some interesting 
conclusions and future work are indicated at the end of the 
paper. 

2. Self-Learning and Obstacle Avoidance 

for Mobile Robots 

2.1. Self Learning for Mobile Robots 

The term self-learning or self-teaching was used in the 
education without the guidance of masters, such as teachers 
and professors or institutions. It is general that an autodidact 
or an individual can choose the subject they want to study, the 
studying materials, studying rhythm, timetable, and so on. 
Similarly, the self-learning can also be used in mobile agents 
as robots. The mobile robot completes the autonomous 
movement through the cooperation of various modules. A 
self-learning model for mobile robots is shown in Figure 1. 

 
Figure 1. A self-learning model for mobile robots. 

It indicates the control law of the ultimate bound. Yet, 
exponential stability of the origin is also allowed to be shown 
by an adjustment of the assumptions for the control and the 
system uncertainty. There is only parametric and uncertainty 
of input is supposed. Therefore, it is possible to modify the 

control, especially the nonlinear control model as: 

Assuming Lu  is the linear control element and c
NLu  is 

the nonlinear one, the coefficients 

1 2 3 1 3 Rδ δ δ γ γ γ +′ ∈， ， ， ， ， , then the nonlinear control 

element is 
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( ) ( )( ) ( ) 1
11 2 2 2 1 1 2

1

1

0,
,

0, 0

T
T T

NL T
T T

SS B H H S
u S x x def

S

ϕρ ϕ ϕ ϕ δ δ ϕ
ϕ

ϕ

−   ≠−  + +    
 
   =  

                    (1) 

( ) ( )* ' '
1 1 1 1 1 1 2 1 2, , 0def Q Q a Q Rγ γ γ γ δ δ++ − + ∈ ≤  (2) 

It is still effective for all other constraints and equations in 
the third and second sections. The modified control rule ω of 
sliding mode is worldwide Lipschitz and gradually stable. 

( ) ( )2 1 2
1 22 2n d n d ddef Hω ω ω ω ω δ λ ω

−
− + +     (3) 

( ) ( )( ) ( )
2

1 2 1 2 '
1 21 2 1d def s H Hω λ λ γ δ

− −

 
− − 

 
       (4) 

( ) ( )( ) ( ) ( )
2

1 2 1 2 1 2'
1 2 11 2 21n def H H a Hω λ λ γ δ λ δ

− − −

 
− − − 

 
   (5) 

It is conditional on 

( ) ( )
2

1 2 '
2 11 1Hλ δ γ  > −

  -
          (6) 

Specially, the state will enter the borderline layer at finite 
time for the positive, but the aleatoric value of the continuous 
control law is proposed to have two parts, 

( ) ( ) ( )( ) ( ) ( )( )xxSuxxS C
NLL ϕϕ ,,uxu 11 +=    (7) 

where Lu  is the linear control element and c
NLu  is the 

nonlinear one. The nonlinear control element is 

( ) ( )
cSH

HB
SdefSC

NL
32112

2
1

2
11 ,,u

δϕδδϕ
ϕϕρϕ

+++
−

−

  (8) 

and the coefficients 1 3, ,c Rδ δ +∈ , 2 0δ ≥ , 2
m mP R ×∈ , the 

robustness is achieved by offsetting the coordinated 
uncertainties. The linear control element is 

( ) ( )( ) ( ) ( ) ( )( )1 *
1 2 1, ,Lu S x x def B x S xϕ ϕ−− Ω − Ω + Θ   (9) 

In a Hurwitz stable matrix and positive matrix P2 meet the 
design 

* *
2 2 .T

mH H IΩ + Ω = −            (10) 

A Lyapunov function ( )( )2V tφ  for the analysis of space 

dynamic range (9) of a Lyapunov function ( )( )1 1V z t  in the 

zero dynamic space (10) is given through Q1, in which the 

positive definite array ( ) ( )
1

n m n mP R − × −∈  fulfills 

1 1

T

n mH H I −+ = −∑ ∑         (11) 

and an additional implicit uncertainty bound is forced which 
uses the largest Eigen value λ  of a real symmetric array, 

~

1 1 0,
T

H Hλ
 
 + <
 
 
∑ ∑         (12) 

in order to ensure the solidity of the sliding mode (12). This 
occupation ρ(z1, φ) is defined as 

( ) ( ) [
*
1 1 2

1 1 2

,
,

Q Q
z def H

γ
ρ ϕ η ϕ

σ
 
 
  

 

( ) ( )2 3 1 4 5 1 5, , , , , , 0.zη η η η η η+ + + + ≥   (13) 

A real, symmetric array is used to define the worth of the 

smallest Eigen value λ  

1

1 1
1 2 2 1inf ( ( ( 2) ( ) ( 2) 0.T T

m
G

def I F B B Fσ λ − −

−
+ + >    (14) 

A scalar constant σ is as everyone knows from references, 
which has been told to deal with the uncertainty of input 
distribution matrix G1 by wanting σ> 0 for G1. The nonlinear 
controller part of multiplication γ ∗ 1 > 1 has been formerly 
measured to be a constant, therefore, 

'
1 1 1* ' '

1 1 1 11

2
1 2 2

( )
, 1,

( ) 2

Q
def

Q a Q c Q

γ γ
γ γ γ γ

λ
−

−
+ ≥ >
 
 + +
  

  (15) 

In which it is positive scalar for γ. As a result, a control 
constant ω of the definition of the sliding layer for the state is 
necessary and can be defined as 

1 22
1 22 ( 2 ) ( ) ,n d n d ddef Hω ω ω ω ω δ λ ω

−
− + +   (16) 

where 

( )( ) ( ) ( )
2

1 2 1 2 '
1 2 31 22 ( ) 1 ,d def a H Hω λ λ γ δ δ

− −

 
− − + 

 
 

( ) ( )( ) ( ) ( ) ( )
2

1 2 1 2 1 2
1 2 3 11 2 21 2n def H H s Hω λ γ δ δ λ δ

− −

 
− − + − 

 
 

From these words, the symmetric positive definite matrix 
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is the definition of P1/2. And such that a symmetric positive 
definite matrix P is the definition of P = P1/2. Assuming 
that it is always possible for the factorization, the constant 
ω  has to be positive, which can be assured by the 

constraint 

( )( ) ( ) ( )
2

1 2 '
2 3 12 1 .Hλ δ δ γ> + −

-
       (17) 

In this case, designing small enough ω is possible. So as to,

0ϑ > ， 

1 2 1 2 1 21 2
1 1 10 TH H H Hϑ λ −− < < − + 

 ∑ ∑    (18) 

and a minimal value is existed 

( )
12,

inf 0
A

ξ ξ= ≥∑ ∑12

min

A，           (19) 

meeting the array unfairness 

( ) 0M ξ ≤ ，                 (20) 

Being paid attention to, it is always feasible to find 
parameters with the assumption that (19) and (20) hold 

0ω > , 0ϑ > ,
12

min
,

0;
A

ξ ≥∑          (21) 

2.2. Obstacle Avoidance for Mobile Robots 

Normally obstacle avoidance of mobile robots is taken into 
account to be different from path planning because the latter is 
usually implemented by a reactive control law. While the 
obstacle avoidance involves the pre-computation of an 
obstacle and based on which the path controller can then direct 
a robot around the obstacle. It will regard linear and uncertain 
systems as the form 

( ) ( ), , , ,y G x y u u F x y Ay Bu= + + +ɺ     (22) 

In which controlled parameters are ,n mx R u R∈ ∈ , and 

the (A, B), which is a known matrix pair, and is assumed to be 
controlled by the full rank of B. Unknown functions F and G 
are expressed in systems with disturbances, uncertainties, and 

nonlinearities, in which function ( ),G t x  can be decomposed 

into 

( ) ( ) ( )1 2, , ,G x y G x y G x y= +      (23) 

( )yxG ,  represents matched actuator uncertainty: 

( )n mR R R I B× × → , in which I(B) is the range space of input 

array B
’
s. Besides, matched and unmatched parametric 

uncertainty is defined by  

F1(·,·):R×R×R n → R n×n .  
Although, it is a continual bounded disturbance for  

2 (.,.) : n
nF R R R× → .  

The bounds of the uncertainty are known to KF1, KF2, KG. 
And there are 

( ) ( ) ( )
1 21 2, , , , , , .F G GF x y u K G x y K G x y K< < < (24) 

Ensuring existence of solution makes the usual 
Caratheodory condition for  

F(t, x) + G(t, x, u)u.  
From reference 3,9 and 13, it indicates that there is always a 

linear transformation Tɶ  to design the sliding-mode 
dynamics. 

1 ,
S

S Ty
ϕ
 

= =  
 

              (25) 

where 

( ) ( ) ( )1 2 12
1

,S G A x S xϕ= + +∑xɺ  

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 ,x B F u F x S xϕ ϕ= + + + Ω + ∆Ω + Θ + ∆Θ  

12 12 12, ,def A def A A+∆ + ∆∑ ∑ ∑  

The sliding surface is embedded in the selected features of T 

and matrix, which can be arbitrarily designated. The set 

defines the ideal sliding mode 

{ 1 : 0 .
T

T T nS S Rϕ ϕ  = ∈ =   
       (26) 

The arrays 
( ) , ,

m n m m mR R
× − ×∆Θ ∈ ∆Ω ∈ ∆Σ  and 

12A∆ are obtained from the transformation Tɶ F1 Tɶ −1. 

Uncertainty of parameter matching of the system matrix A is 
expressed, and A12 is defined as the uncertainty of parameter 
unlatching of the system matrix. The matched uncertainty 

1
m mG R ×∈  is the uncertainty or nonlinearity in the input 

matrix. The input matrix follows from the transformation TG. 
Matched and non-matched uncertainties of G2 and F2 are 
TF2's interference or constant constraints and the result of 
uncertainty. 

As for a sliding mode controller which is discontinuous 
control, the sliding surface can be reached in a finite time. In 
practice, however, the discontinuous controller can lead to 
control signal chattering. To this end, a continuous controller 
is introduced to guarantee that a small state is reached in a 
finite time and the state depends on the boundary layer of the 
sliding mode. 

The continual arrays A12, j = 1, 2,..., kA12, and i = 1, 2..., k, 
are the identical size with A12 and the scalar functions 

12 , (.,. , (.,.) :A j iλ λΣ）  
R × Rn → R+ U{0}. 
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3. Sliding - Mode Control for Mobile 

Robots 

3.1. The Control Rules of Sliding Mode 

The selection of the controller parameters and the 
guidelines should follow the following formulation. By 
considering (4)-(7) and the control law (9) of closed loop 

system structure, on the condition of ϑ > 0, the choice set of 
controller parameter η1....., η5 ≥ 0 is quite large, and then there 
is the following result: 

(I) After a limited period of time, the function 

( ) ( )( ) ( )( )2
1 2 2 1 1,g Q Q Q x Q S xϕ ω= −       (27) 

will be less cost than c2 λ (P2)/2 after a limited duration of 
time, will also remain less than this constant. The performance 
of proposed sliding mode is a state dependent sliding mode 
demarcation layer, 

( )( ) ( )( ) ( ){ }2 2
1 2 1 1 2: 2 ,

x

T
T T n

Ba S S R Q x Q S x c Hϕ ϕ ω λ = = ∈ − ≤   (28) 

with the final input and the time required to be limited above  

( ) ( )
1 2

2
, 0 2 2 :Q Qg x c Hλ∀ >  

( )( ) ( ) ( ) ( )( )( )1 2 1 2

2
, 0 2 3 , 0 2log 2Q Q e Q QT g x H g x c Hλ γ λ =  

 (29) 

(II) This system is in a large, eventually bounded set 

( ) 0εℜ >
⌣

, 0ε > , 

( ) ( ) ( ){ }2 2
1 2 2: , 2 ,def S Q Q c Hε ν ε λ ω ν εℜ ≤ + ≤ + +

⌣
 (30) 

This is similar to the decoupling part of the matching 
system component which does not match the subsystem, and it 
is also beneficial to prove that it has an advantage that, it can 
be shown as the state achieving near the sliding surface. In 

order to achieve this goal, the function 
2,Q1Qg  will be of 

particular concern. But, in fact it will show that 
2,Q1Qg

 
has 

become smaller than c2 λ (H2)/2 eventually. An high limited 
estimation of Q1(S1(x )) will be used for decoupling and 
surveying of incomparable subsystem. In the case of the entire 
the first part, there is 

( )
1 2

2
, 2 2Q Qg c Hλ>             (31) 

Therefore, they confirm the robustness, compared to 
matching uncertainties and disturbances, in particular, now 
they are selected as 

{ } }
1

1 1
1 2 2

,

max sup 1 2 ,0 ,T

G

def H Hη λ ψ ψ− −

∆Ω

  +  
  (32) 

( )
1

1
2 1 2

,

sup ,
G

def F Bη −

∆Θ
∆Θ − Θ            (33) 

( )
2

4 2sup .
G

def Fη              (34) 

If this is the external state dependent sliding mode layer, the 
η3 and η5 of the proceeds must ensure that the Lyapunov 
function V2(φ(x)) is decreasing. What a proper choice is 

1 2 1 2
3 1 1 1inf 2 2Tdef H H H Hη ω λ − −

∆
   − + Σ      ∑ ∑  

12

2 1
1 12 2sup ,

A

H A Hω −

∆

 +
        (35) 

2

1 2 1 2
5 21 2sup .

F

def H F Hη ω − 
        (36) 

The gains η3 and η5 rely on ω2 and V˙1. Outside the 
state-dependent layer, Q2(x) − ω2Q˙1(x) is negative. By 
applying the equations (32)–(36) and (15) to inequality (31), 

the upper estimate of 
1 2,Q Qgɺ  can be derived by (31), for 

nearly all x, 

( ) ( ) ( ) ( )( )
1 2

2

, 3 12 , ,Q Qg x S x xγ ϕ σρψ ϕ< − −ɺ   (37) 

here (37) was followed by it, and if 

( ) ( )
( )

( ) ( )
( )

2 3 1 1
2 * *

1 1 2 1 1 2

,
, 1 , 1

c x z x
H x x

Q Q Q Q

δ δ ϕ δ
ϕ ϕ

γ γ
+

− ≥
− −

 (38) 

the term (s1(x ), φ(x )) from equation (37) is positive in value. 
From (38) and using 

( ) ( )( ) ( ) ( )( )1 2 1 2
2 1 12 12 .... .... ,H x Q x and H x Q S xϕ ϕ= =  (39) 

Where 

( )
( ) ( )

2 3 2 3
2 2* *

1 1 2 1 1 2

,
, 1 , 1

c
H H

Q Q Q Q

δ δ ϕ δ δϕ ϕ ϕ ϕ
γ γ

+ +
− ≥ − ≥ Π

− −
 

( ) ( ) ( )( )
1 2 2 3

22 1 2 *
1 1 22

2
, 1

def H Q
H Q Q

δ δλ
λ γ−
−

 
+ Π −

 −  

 

( ) ( )( ) ( )( )( )* ,
1 1 1 1 1 2, 1 ,S x Q S x Q xδ γ ϕ − ≤ Π   

It can be acquired by combining the right sides of (38), (39). 

So as to Π ≥ Π ‘  Since 1γ γ ′>*
, (38) and (39) hold, inequality 

(39) is true, which means that under the supposition of (26), 
(37), different (39) implies that (z1(x), φ(x)) is nonnegative. 
The constraint (39) can be substituted by a more conservative 
condition, which is under the supposition (39). From (39), the 
fact is that 

( ) ( )( )1 2
21 2 ,H x Q xϕ ϕ=            (40) 

It can show that 
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( ) ( )1 2
2 1 21 2 2 1 2 2 .c H Q Q c Qλ ϕ

−
+ ≤ + ≤   (41) 

Later, 

( ) ( ) ( ) 11 2 1 1 1 1 22 .Q Q Q Q s Q γγ γ γ ′′≥ + +* -，  (42) 

And (42) hold assuming Q1 = 0 in this case Q1 = 0 is trivial, 

(41), (42), and 2 1 ,Y Q Q=  equation (42) can be 

rearranged, by using (36) and (37) to obtain 

( ) ( )21 2
1 22 2 .n d nY d H dω ω δ λ ω ω ω ω

−
≥ − + + =  (43) 

From supposition (43), it is easy to see that 

( )
1 2

2
, 2 2,Q Qg c Hλ>           (44) 

and it has inequalities.  
Additionally, the coefficients can be described as

1 2 3 1 3 Rδ δ δ γ γ γ +′ ∈， ， ， ， ， . 

3.2. Solving Steps 

To provide a variety of control methods of insight function, 
it helps the designer to select the parameters because the 
various control components will check the linear and stable 
control of UL in this section, and u(z1(x), φ(x)) in (9) to 
improve the accessibility of the sliding layer. The 
disappearance of interference or uncertainty [G= 0, F = 0 in 

(1)] and φ(0) = 0, a controller ( ) ( )( )1
2 1u B S x tϕ−= − Θ + Ω  

would retain the closed-loop control system still on the sliding 
plane (40). 

Then the additional linear term ( )1
2B xϕΩ- *  by using a 

stable Hurwitz matrix *Ω , it can be ensured that φ(x) 
reductions exponentially fast in the case φ(0) = 0 and G = 0,F 

= 0. To match uncertain disturbances, the nonlinear control 
element null (s1(x), φ(x)) is employed to ensure the robustness 
and reach the sliding demarcation layer in the limited time.  

Therefore, approximating the original continuous control in 
the variable structure controller will use nonlinear control 
elements, which should be limited to prevent the control law, 
and has initially established a discrete judgment for the single 
control without stopping input. 

The function 
1 2,Q Qgɺ  which can be confirmed easily will 

always become in limited time equivalent or smaller than c2

λ (P2)/2. The differential inequality can be solved by 

integration. 

( )( )
1 2 1 2, 3 2 ,Q Q Q Qg H gγ λ< −ɺ         (45) 

Henceforth, being smaller than or equivalent to c2 λ (P2)/2, 

the time which is required for the function 
1 2,Q Qgɺ  will have 

an upper restriction given by (40). And then the final results 
allow for the incomparable. The first subsystem (43) is 
disconnected with the fact that the Q1 is used by the Lyapunov 

function. The fact is  

( )2 2
2 1 2 2Q Q c Hω λ − ≤   .         (46) 

By using (4), (30), the constant ¯ϑ from (39) indicates that 
for almost all x, there is 

( ) ( )
12

1 2 1 2
1 11 1min

1 ,1 2 1 2
2 2

1 2

T

A

H S H S
Q M

H H
ξ

ϕ ω ϕ ωΣ

   
=    

      
ɺ

ɺ  

( )( )( ) ( )( ) ( )
12

min 2
1 2 1 1 1 1 2, 1 .T

A
Q Q x Q S x S x H Gϑ ξ ϕ ωΣ

 − + − +
 ɺ

ɺ  (47) 

Now, in terms of the matrix M in (40), the results of the 
S-procedure can be applied, as it is assumed that the states will 
eventually enter the sliding layer. 

( )2 2
2 1 2 2,Q Q c Hω λ − ≤              (48) 

For almost all x, there have the following  

( )
12

1 2min 2 2
1 1 2 1 21,

2 2
A

Q Q c H Q H Gϑ ξ λ ωΣ≤ − + +ɺ
ɺ   (49) 

Therefore, in the limited time, the system will finally enter 
the bounded set R(ε). 

If the polytypic sets for 12Aɶ
 
and Σɶ , the definition of a 

multi - type header is known. At that moment, the value of 

12

min
A

ξΣ ɶɶ，
 
can be substituted  

[ ] [ ] ( )( )
12 1212

, 1...... 1...... ,
max inf ji

Ai j k k A A
ξ

Σ  ∈ × Σ=Σ = 
ɺ

     (50) 

by which ξ is the maximum values of the minimal, and ξ 

solves the matrix inequality (50) for 

12 12 .ji const and A A constΣ = Σ = = =      (51) 

From observing equations (50), (51), the problem of 

making a decision
12

min
A

ξΣ ɶɶ，
can be reduced to a 

12AK KΣ ×  

inequality matrix. 
Respecting the uncertainty of the parameters and some 

components of the uncertainty, the input distribution matrix 

uncertainty 1Gɶ  is also feasible that the potentially low 

gain and linear control term could be used to achieve partial 
robustness. This is a compromise between the linear and 
nonlinear control unit (47)–(49), which can be obtained by 
adjusting the parameters of γ3, 1 ≥ γ3 > 0, in (47) and (49) 
respectively. And the linear control element will not be 
used to achieve robustness when γ3 = 1 which is not a linear 
control. The gain η1 in (49) must be large enough to match 
dealing with the uncertainty. Nevertheless, achieving the 
sliding layer phase will extend the time, the smaller γ3, 
linear control to ensure more robustness and reduce the gain 
η1 when choosing γ3 < 1. Although control signal Jitter may 
be reduced in this way, reachability can’t be shown for γ3 → 
0. 
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In order to overcome the discontinuity in the nonlinear 
control term and to reduce the nonlinear high gains, the 

expression 1 1 2 3cδ δ ϕ δ+ +s  has been presented to the 

denominator of (18) in the nonlinear control law. Therefore, 
around the sliding-mode plane, the value of the nonlinear 
control cannot change rapidly. A suitable selection of the 
controller parameters can also be prevented by a discrete 
implementation. In particular, δ1 and δ3 are supposed to be 
large enough to be chosen for quivering suppression, then 
this way of suppressing and quivering contrasts with the 
constant demarcation around the sliding mode. The 
smoothing component is not constant, but with reductions 
of S1(x ) and φ(x ). In a state-dependent sliding-mode layer, 
this results are defined by ω in (36), the Lyapunov matrices 
of H1 and H2, and the positive scalar c from (42). The 

dynamic gain 1γ *  has also an effect on the size of the 

sliding-mode demarcation layer (42). Before the 
state-dependent sliding mode layer (52) is reached, the 
main purpose for introducing this gain is to reduce the 
signal peaks of high initial control. The reaching time can 
involve high control effort, owing to the possibly high-gain 
nature of the nonlinear control component. By choosing a 

small value for 1γ * (Q1 (S1(x)), Q2 (φ(x))) away from the 

sliding-mode layer, the initial peak of the control signal can 
be easily reduced. 

( )( ) ( )( )2
2 1 1 .Q x Q Sϕ ω>> x          (52) 

Step by step increasing the value of 1γ *  (Q1 (z1(x)), Q2 

(φ(x))), the closer the situations come to the sliding plane (45) 
the more reaching of the sliding-mode layer can be assured for 
large γ1. By means of the scalar s > 0 and the smaller s, the rate 
of increase can be selected, the higher of which will be more 
the rate of increase. Nonetheless, with too small a value for s, 
too large a choice for γ1 combined, it may result in control 

signal quivering. This is certain in the case once 1γ *  is chosen 

too large. From (32) to (36), it is obvious that ω should be 
chosen as small as possible, which is to remain stable, giving a 
small portion of the ultimate boundedness. The quivering of 
the prevention should be of sufficient value to select an upper 
bound limit (37) for the nominal design of the sliding mode 
and the linear control element. Hence, the impact of the C on 
the ultimate bounded set size (39), provides an upper bound 
for the upper limit of the upper limit for the possible values for 
δ1, δ2, δ3. Thus, the parameter values of δ1, δ2, δ3, s, γ1 and γ1 

defining ω have to be chosen carefully and the initial selection 
may be 

'
1 2 3 1 1 30, 1, 0, 1aδ δ δ γ γ γ= = > = > > =      (53) 

It is to achieve an academically feasible and practically 
rational design. Also it is possible for us to modify the 
parameters to find a better cooperation, which is between the 
Jitter, the control effort, and the time to reach the sliding mode 
layer and achieve the control performance. 

4. Experimental Analysis 

4.1. Problem Description 

A model of a cart pendulum system is considered here. 
Derived easily from (52), the linear model (53) can be 
employed to compute the nonlinearities together with the 
linear, and an explicit nonlinear model can be and the explicit 
model for the parameter set M = 0.235kg, m = 0.134kg, l = 

0.281m, g = 9.81m/s2. Owing to the centripetal force and the 
term ˙ θ2 in (52), the nonlinearities of the explicit model aren’t 
sector bounded. Therefore, the nonlinearities can be limited in 
the range |θ| < 10 rad/s. Furthermore, only for defined angular 
rod θ, the value of σ > 0 is assured to remain positive. 
Therefore, the value is σ = 0.234 for |θ| < π/4 rad. 

*0.6 0 3.4 3.4
,

0 0.6 4 4

− − −   
Σ = Ω =   − −   

 

While achieving fast reaching of the demarcation layer, 

Ω* has been optimized to reduce initial controller peaks. 
Hence, regarded as parametric uncertainty, the nonlinear 
variables are limited within the constraint for |θ| < π/4 rad 
system. For attention, a reduction of the value of δ3c would 
lead to quiver owing to the gain value η4 and the effectiveness 
of the 5 parameters are from the Matlab/Simulink example of 
the constraint system. As the control rules, there is 

( ) ( ) ( )( )2
1 1cos sinM m y ml u dθ θ θ θ+ + − = +ɺɺɺɺ

 

( ) ( )( ) 2 2cos sinm y l g u dθ θ θ+ − = +ɺɺɺɺ  

For continuous demarcation, the nonlinear control variable 
c
NLu

 
is 

1
2 2

2
2

7.375 0.601 3.051 0.139
0.235

c
NL

B H
u H y

H

ϕγ ϕ θ
ϕ δ

− −−=  + + +  +
 

Paying attention, the term 0.058 1S
 

from (35) is leaving 

out for c
NLu . Because it is to control the demarcation layer of 

specific and the state (33), the values of γ = 1.105 and δ = 
0.241 are adjusted to control the sliding mode where the 
demarcation layer state is dependent and dynamic 
comparable. 

The mean of the control task is to stabilize the system at [θ, 

x] = [0, 0]. Acting in both actuator channels, a matched 
disturbance is introduced, d1 = 0.3 sin (2x), d2 = 0.3 cos (θ) sin 
(2x).  

4.2. Experimental Results 

Nevertheless, when the demarcation layer and the state 
dependent control are to maintain control signals without 
quivering characteristics, the control output can be calculated 
(Figure 2). 

From figure 2, it can display the configuration [γ, δ] = 
[1.329, 0.129] to produce control signal quivering, but also for 
the other confirmed [γ, δ] = [1.205, 0.019], also the controller 
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displays the initial phase Jitter in the sliding regime, as shown 
in Figure 2. 

Without Jitter control, simulation results show that the 
controller keeps the system steady over a wide range of 
operation. While the simulation step was limited to 1/500 sec, 
the controller can be redesigned according to a sampling 
frequency of 200 Hz. By using the linear control rule for the 
partial nonlinear compensation, the value of γ3 has been set to 
0.1. It means the choice has been adjusted in the 
state-dependent demarcation layer. 

 
Figure 2. Output of sliding mode control. 

As a horizontally direction, this can be interpreted as 
oscillating wind, so the linearized model at [θ, θ, x, x˙] = [0, 0, 
0, 0] can be given by 

( ) ( ) 1

2

00 1 0 0 0

0 0 0 1

0 0 0 1 0 0

0 0 0 1 1

A B

N n nlN u df N n LN lN

u dy y

n f N N Ny y

θ θ
θ θ
      
       + ++ −        = +         + 
      − −          

ɺ ɺ

ɺɺ ɺɺ

ɺ ɺ

ɺɺ ɺɺ
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The self-learning process is shown in Figure 3. 

 
Figure 3. The self-learning process. 

Fig. 3. shows the time response of t(x), θ(x) and sliding 
control of inverted pendulum nonlinear function, [θ(0), θ(0), ˙ 
x(0), x(0)] = [0, π, 0, 9], dual controllers with state dependent 
constants and demarcation layer. 

Hence stable sliding-mode behavior is satisfied, 

( )*
1 1 2 2 1, 0. 7.375 0.601 3.051 0.066 0.139Q Q H y Sρ γ ϕ θ =  + + + +   235 

 

which is formed by a cart of mass M, and a light rod of length 
l. There is a heavy mass Mattached at the top, the end of the 
rod and the lever to rotate at the bottom, end fixed to the center 
of the cart. The cart slides in one direction, with no friction at 
the level of the surface. A force u1 in the horizontal direction 
of movement and a torque u2 of the cart are at the pivot of the 
rod, so two control signals can be availably used as actuators, 
respectively. 

And preventing any quivering of the controller is shown in 
Figure 4. 

 
Figure 4. Error curve. 

For the controller, sliding function with sedimentation value 
is close to 0, in less than 0.4 seconds (Figure 3). 

From 2Fɶ = 0.105, 2Gɶ = 0.215, η4 = 0.325 and η5 = 0.101. 

It has been employed to replace the term 2 1Sη  with using 

[ ]1
TS t θ= − . 

And the function 

( )( ) ( )( )
1 1

1 1
1 2 1 2

..1 ..2
sup sup

F F

F B x F B θ− −

∆Θ ∆Θ
∆Θ − + ∆Θ −  

is to reduce the controls u1 and u2, and for the computation of 
η1. Making the control of the sliding mode, the movement 
quickly reaches a mode with no shake. Sliding dynamics is 
especially obvious reaction to 0 (Figure 2) and the control of 
the state in dependent demarcation layer can cope with the 
matching of the interference ratio compared to the 
conventional nolinear control (Figure 5). Following the initial 
gain and the deviation, the control rule in demarcation is about 
15%–31% than for the sliding-mode controller with constant 
demarcation. 
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As can be seen form the Figure 5, for the nonlinear control 
of inverted pendulum, time response of t(x) and θ(x) in a 
system is based on demarcation layer in sliding mode 
controller using demarcation layer with dependent state and 
three controllers with constant.  

'
1 1 1

3 2

2.503, 2.212, 60.305, 0.024,

0.007, 1, 0.

s

c

γ γ δ
δ δ

= = = =
= = =

 

 
Figure 5. Obstacle avoidance. 

For comparison, the results of reference [13] is shown in 
Figure 6. 

 
Figure 6. Compared results in reference [13]. 

As shown in Figure 6, this is a horizontal and angular 
position of the x and the position θ, paying attention to that the 
different sliding-mode control rules (16) have been tested. 
Specially, in order to achieve as little error as possible, the 
value of γ = 1.329, δ = 0.129 small value is evaluated. 
Therefore, the proposed sliding mode control takes 
advantages over the reference [13], in that the proposed model 
combines a constant demarcation. The greater the designer has 
dislodged, the more successful will the controller will be, 

owing to the gains η1 and η2. 

Table 1. Compared experiment results. 

Group 
Proposed 

model 

Reference 

[6] 

Reference 

[9] 

Reference 

[13] 

Joint 

( mol Lµ • ) 
53.05 ± 3.25 44.34 ± 2.54 45.05 ± 3.23 35.50 ± 1.28 

Sliding Mode 

Lesion Score 
20.35 ± 2.05 23.76 ± 2.78 47.05 ± 1.25 36.04 ± 3.25 

Soft Lesion 

Score 
35.04 ± 2.25 34.73 ± 3.46 64.05 ± 0.25 46.02 ± 1.27 

Sliding Mode 

Content 

( mol Lµ • ) 

55.05 ± 1.25 35.35 ± 5.04 45.07 ± 3.28 29.08 ± 4.25 

Content 

( mol Lµ • ) 
43.27 ± 3.27 63.05 ± 3.95 53.43 ± 2.25 47.03 ± 1.23 

5. Conclusions 

A sliding-mode based and state-feedback is introduced 
and statistically analyzed control in the paper. The 
unit-vector control, which is used for sliding mode control, 
has been changed. As a result, a state control rule of the 
sliding-mode is combined with both a continuous boundary 
layer and sector one. Bounded disturbances, bounded input 
uncertainty, and parametric uncertainty, have been 
considered as the class of uncertainty. Parametric 
disturbances and uncertainties are provided, and then mode 
rules based on sliding mode control can be effectively offset 
by them, and no restrictions on the boundaries of those 
disturbances are provided. 

According to the change of the parameters of the controlled 
system, the self-learning control can identify, learn and adjust 
the control law in a timely manner, and achieve a certain 
performance index. The method does not need the information 
of the dynamic model of the controlled system, and the control 
gain can be adjusted according to the system performance. 
Moreover, the calculation is simple and the robustness is good. 
In this paper, the parameters of the dynamic model are 
estimated by the self-learning logic, which makes the control 
system has strong adaptability. 

In future work, the bounds for input-uncertainty and 
unmatched parametric uncertainty, which are controlled by the 
proposed dynamics, should be further studied and compared. 
The example here is simplified to verify the sliding pattern 
system and will be implemented in more complex 
environments to demonstrate the emergence of a discrete new 
MIMO control scheme. In addition, the controller with state 
boundary layer will also be further researched to withdraw 
better interference suppression characteristic than a traditional 
controller. 
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