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Abstract 

In this paper, a simple, generally valid stability proof for an anti-windup method for PI-state controlled systems is presented, with 

which it is possible to directly conclude the stability of the PI-state controlled system from a stable P-state controlled system with 

constraints in the manipulated variables, i.e. without having to perform a separate stability investigation of the anti-windup 

measures. The technique presented is based on the system description by means of state equations and Lyapunov's Direct Method 

using quadratic Lyapunov functions. Furthermore, the PI-state controller is designed in such a way that it provides the same 

command response as the P-state controller, for which a stability statement is already available. Both continuous-time and 

discrete-time systems are considered, which, apart from the saturation of the manipulated variables, show linear, time-invariant 

behavior. In addition, a general stability proof is given for discrete-time systems, which makes it possible to establish stable 

anti-windup methods for P- and PI-state controlled systems, which contain dead time elements in the path of the manipulated 

variables, without having to carry out separate stability investigations for them. For this purpose, the state controller design for 

the system with dead time elements in the manipulated variable paths is based on the principle that the same characteristics of the 

control behavior should be achieved as for the system without such dead time elements, but delayed by the dead time. The 

effectiveness of the presented methods is illustrated by an example from the field of electrical drives. 
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1. Introduction 

The dynamically high-quality response of a controller to 

the saturation of manipulated variables is an important task 

in controller design. Since such constraints represent 

non-linearities, the closed control loop is a non-linear system, 

even if the controlled system without actuator can be de-

scribed as a linear, time-invariant system, which is assumed 

below. In order to avoid stability problems caused by the 

limitations of the manipulated variables, numerous so-called 

anti-windup methods are already known [1-3]. For this pur-

pose, the Popov criterion, the circle criterion, the direct 

method of Lyapunov or the Kalman-Yakubovich-Popov 

equations [2-4] are often used for stability considerations. In 

more recent research studies, so-called linear matrix inequal-

ities (LMI) are also used as an alternative for stability studies. 
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However, they often only provide numerical results [5]. 

Other current research work is concerned with the applica-

tion of the basic principles of anti-windup measures to spe-

cial controllers such as PI-lead controllers [6] or with 

switching strategies between different anti-windup measures 

[7]. In addition, the use of an Additional Dynamic Element 

(ADE) is proposed, with which the stabilization in the limit-

ing case succeeds for any controller stabilizing the uncon-

strained system [1]. However, even there a controller must 

be effective at least at one instance for which the stability in 

the limiting case can be proven – e.g. with the help of one of 

the methods listed above. 

Stability analysis is especially challenging when the con-

troller contains integral-action components to ensure 

steady-state accuracy. This is because the controller inte-

gral-action components are usually assigned to the controlled 

system during modeling, which results in an unstable or 

critically stable system. For this purpose, no positive definite 

matrices can be found for this, as required or at least aimed 

for in the Lyapunov theory and in the Kal-

man-Yakubovich-Popov equations to ensure stability. In [1], 

this problem is overcome by completely avoiding controller 

integral-action components and instead attempting to ensure 

steady-state accuracy with the aid of disturbance observers. 

But this is not always possible when the system parameters 

are not exactly known. The method of reference variable 

correction in combination with a special PI-state controller 

design, as explained for example in [8, 9] for discrete-time 

systems, provides a help in this respect. However, the stabil-

ity proof described there has been greatly simplified in the 

meantime. Furthermore, by means of the above-mentioned 

procedure, it was also possible to perform the stability veri-

fication for such systems in a general way and thus greatly 

reduce the synthesis effort where the manipulated variables 

act on the system with dead time. 

Due to the significant progress in stability verification for 

control loops with saturation of the manipulated variables, 

these new findings are presented in this article. The controlled 

system and the controller are modeled in state space. In sec-

tion 2, as an introduction, the methodology of reference 

variable correction is first briefly explained for continu-

ous-time systems and then the transfer to discrete-time sys-

tems is shown. Subsequently, section 3 describes special 

controller synthesis equations that generate a PI-state con-

troller from an already known P-state controller in a simple 

way. In addition, both methods are combined in section 3 in 

order to establish the principles for a Lyapunov-based con-

troller design for systems with an integral-action controller 

component, taking manipulated variable constraints into 

account. Using Lyapunov functions, the proof of stability is 

then provided in section 4. The measures mentioned are 

carried out for both continuous-time and discrete-time sys-

tems. In section 5, the method presented is extended to dis-

crete-time systems with dead time behavior of the actuators. 

To illustrate the methods described, section 6 deals with an 

example from the field of electrical drives. A summary con-

cludes the article. 

2. Reference Variable Correction in Case 

of Manipulated Variable Saturation 

2.1. State Equations of the Controlled System 

The vectorial state differential equation of the controlled 

system, 

 ̇             ,                   (1) 

serves as the starting point for the following considerations [2, 

10]. Here   denotes the  -dimensional state vector,   the 

(   ) -dimensional manipulated variable vector,   the 

(   ) -dimensional dynamics matrix and   the (   )-di-

mensional control input matrix. Disturbance variables are not 

considered without any generality restriction. Eq. (1) is sup-

plemented by the output equation 

                               (2) 

using the  -dimensional vector   of the control quantities 

and the (   )-dimensional output matrix  . The possibility of 

the manipulated variables affecting directly the control quan-

tities is disregarded. 

The differential or difference equations of the controller 

integrators are also included in the system description. In this 

respect, it is assumed below that there are as many controller 

integrators as controlled variables and as many reference 

variables as controlled variables. If the output variables of the 

controller integrators are summarized in the vector    and the 

reference variables in the vector  , then the vectorial dif-

ferential equation of the controller integrators is as follows, 

provided they operate continuously in time, 

 ̇                   .         (3) 

If the controlled system is described in discrete time, the 

controller design is based on the controlled system state 

difference equation [9, 10] 

                               (4) 

instead of Eq. (1). The indices   and     (    ) indi-

cate the sampling time instants     respectively (   )    

of the state variables and the time instants at which the ma-

nipulated variables take effect.   is the (   ) -dimensional 

transition matrix for which 

                          (5) 
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applies [9, 10], while   is the discrete-time control input 

matrix with [9, 10] 

    ∫        
  
 

  .              (6) 

   is the sampling time. The output equation is in the dis-

crete-time case 

         .                 (7) 

The vectorial difference equation of the controller inte-

grators is as follows [9, 10] 

                                          .   (8) 

2.2. Calculating the Corrected Reference 

Variables 

The reference variable correction method for manipulated 

variable saturation [8, 9] is based on the assumption that a 

manipulated variable saturation becomes effective because 

the setpoint change is too large. If this is the case, the maxi-

mum value by which the reference variable may be changed 

without the manipulated variable constraints becoming ef-

fective is calculated. The vector of reference variables cor-

rected in this way is referred to below as      . To determine 

the value of       in the limiting case, the control law is 

specified firstly for the unlimited case and then again for the 

case of an active manipulated variable limitation. If the matrix 

of the feedback coefficients of the system state variables to the 

manipulated variable vector is denoted by   , the matrix of 

the feedback coefficients of the output variables of the con-

troller integral-action components to the manipulated variable 

vector by    and the matrix of the amplification factors for 

the reference variables, the so-called pre-filter matrix, by  , 

then the control law in the unlimited case is as follows 

 ( )       ( )        ( )         (  ).       (9) 

Thereby, the index   in brackets in Eq. (9) only applies to 

the discrete-time case. 

If a manipulated variable saturation now occurs, then in-

stead of the manipulated variable vector   requested by the 

controller, only a manipulated variable vector modified by the 

saturation can act on the system. If this is designated as     , 

the control law 

    (  )           (  )        ( )         (  )    (10) 

is obtained, which can be derived from Eq. (9), if the possibly 

constrained manipulated variable vector     (  )  is used 

instead of  ( )  and the corrected reference variable vector 

     (  ) is used instead of  ( ). The two relationships (9) 

and (10) can now be interpreted in such a way that they apply 

at the same time. Eq. (9) generates the manipulated variable 

vector requested by the controller, while Eq. (10) describes 

with which corrected reference variable vector the realizable 

manipulated variable vector     (  ) can be generated. If both 

equations are subtracted from each other and the resulting 

difference is solved for      (  ), the result is as follows 

     (  )     ( )     
   ( ( )       (  )).     (11) 

It specifies how  ( ) must be modified in order to obtain a 

realizable reference variable vector. The corrected reference 

variables are then fed to the setpoint inputs of the controller 

integrators. This means that instead of Eq. (3), the following 

applies for continuous-time control 

 ̇               ,                (12) 

whereas for discrete-time control, instead of Eq. (8), 

                                       (13) 

must be implemented. Thus, Eqs. (9), (11) and (12) or re-

spectively (13) describe the equations of the controller. The 

corresponding block diagram is shown in Figure 1 for the case 

of discrete-time control, including the discrete-time modeled 

controlled system. Finally, it should be noted that methods 

that also calculate corrected reference variables and use the 

difference between unlimited and limited manipulated varia-

bles are sometimes referred to as reverse-correction method 

[11] or back-calculation (and tracking) strategy [5, 6, 12]. 

3. Relationship Between the Controller 

Coefficients of a PI-state Controller 

and a P-state Controller 

In the study, it was shown how the coefficients of a dis-

crete-time PI-state controller can be determined in a very 

simple way from an already calculated discrete-time P-state 

controller, provided that the same command response is to 

apply in both cases [9, 13]. The corresponding relationships 

for continuous-time state controllers were presented in [14] – 

and for single-input single-output systems also in [15]. With 

the designation   for the already known P-state controller, 

the following results for continuous-time controllers 

              (     )
  

,        (14) 

         ,                  (15) 

     (  (     )
  
  )

  
,           (16) 

and for discrete-time systems 
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              (       )
  

,     (17) 

       (    ),              (18) 

     (  (       )
  
  )

  
.       (19) 

With continuous-time control,    describes a diagonal 

matrix in which the main diagonal contains those control 

eigenvalues that have been added to the eigenvalues which 

result from the controlled system without controller integra-

tors.    is the corresponding diagonal matrix for dis-

crete-time systems. It should be emphasized in both cases that 

the control eigenvalues generated by   of the 

non-actuator-saturated P-state-controlled system are not 

changed by applying Eqs. (9) and (14) to (16) or (17) to (19). 

It should also be noted that Eqs. (14) to (16) or (17) to (19) 

lead to   control eigenvalues that cannot be controlled via 

     (see section 4). Finally, it should be noted that the cal-

culation rules (16) and (19) for the pre-filter matrix   are the 

same as the corresponding calculation rules for pure P-state 

controllers. 

 
Figure 1. Block diagram of discrete-time PI-state control with reference variable correction in the case of manipulated variable saturation. 

If we now substitute Eq. (9) into Eq. (11) and the result for 

continuous-time control into Eq. (12), we obtain, taking into 

account Eq. (15), 

 ̇    ( 
       )              

       .    (20) 

If this relationship is combined with the controlled system 

state differential equation (1), but with      instead of  , to 

form an overall system, the following results 

 ̇                                   (21) 

with 

       *
 
  
+,              (22) 

       0
  

          
1,          (23) 

       [
 

   ].                  (24) 

In the case of discrete-time systems, by inserting Eq. (9) 

into Eq. (11) and inserting the resulting intermediate result 

into Eq. (13) and taking Eq. (18) into account, the following is 

obtained 

         ( 
       )             

          (25) 

The combination of this relationship with Eq. (4), again 

with      instead of  , to form an overall system, taking into 

account Eq. (22), gives the result 

                                              (26) 

with 

       0
  

          
1,             (27) 

       [
 

   ].                (28) 

It can now be seen that both the dynamic matrix      and 

the transition matrix      are lower block triangular matrices. 

Their eigenvalues are identical in their entirety with the ei-

genvalues of the matrix blocks on the main block diagonal. 

The eigenvalues of      are therefore composed of the ei-

genvalues of   and the control eigenvalues on the main 
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diagonal of    caused by the controller integrators. For 

discrete-time systems, the eigenvalues of the transition matrix 

     are composed of the eigenvalues of   and the elements 

on the main diagonal of   , i.e. the control eigenvalues caused 

by the discrete-time controller integrators. 

As the eigenvalues of    and    can be assumed to be 

stable, the dynamic matrix      and the transition matrix 

     each describe a stable system, provided the associated 

controlled system is stable. This is remarkable, especially as 

the controller integrators included in the model – considered 

on their own – show critically stable behavior. The reference 

variable correction according to Eq. (11), in conjunction with 

the controller equations (14) to (16) respectively (17) to (19), 

has thus succeeded in forming a stable system from a critically 

stable system – assuming a stable controlled system but an 

unknown controller matrix  . Exactly this is extremely 

advantageous for the applicability of Lyapunov's direct 

method in stability analysis and controller synthesis for linear 

systems with manipulated variable limits (see section 4). 

4. Controller Synthesis and Stability 

Verification 

The stability analysis of PI-state control with manipulated 

variable saturation described below is based both on control-

lability considerations and on Lyapunov's direct method. In 

combination, both methods are also suitable for controller 

synthesis. Initially, however, the considerations focus on the 

stability analysis. In a first step, the system description ac-

cording to Eq. (21) respectively (26) is transformed. The 

extended state vector      is mapped to the state vector  ̃    

for continuous-time control using the transformation rules 

 ̃                       (29) 

    0
  

  (     )
  

 
 1.         (30) 

Deriving Eq. (29) with respect to time, replacing  ̇    by 

the right-hand side of Eq. (21) and finally replacing      by 

Eq. (29) solved for      then leads to the transformed dif-

ferential state equation 

 ̇̃       ̃     ̃       ̃                (31) 

with 

 ̃              
    

 0
  

  (     )
  
               (     )

  
  
1  (32) 

and 

 ̃               0
 

  (     )
  
      

1.     (33) 

If in  ̃    and  ̃    the Eqs. (14) to (16) are taken into 

account, then after a few reforming steps the block diagonal 

matrix 

 ̃      [ 
  

   
]                (34) 

arises and for  ̃    the result 

 ̃      [ 
 

 
 ]                (35) 

is obtained. This shows that the lower   transformed state 

variables cannot be controlled from     , neither directly 

because of the zero matrix in  ̃   , nor indirectly via the upper 

    state variables because of the zero matrix in the lower 

block row of  ̃   . This means that the control eigenvalues 

contained in    cannot be controlled via     . As these ei-

genvalues can be considered to be stable, the subsystem 

described by the lower block row in  ̃    and  ̃    is both 

stable and not controllable and therefore does not need to be 

considered further in the stability investigations. 

If the control is discrete-time, comparable statements can 

be made. Thus, the application of the transformation 

 ̃            ,              (36) 

    0
  

  (       )
  

 
 1           (37) 

to Eq. (26), taking into account Eqs. (17) to (19), leads to the 

transformed state difference equation 

 ̃           ̃     ̃         ̃                    (38) 

with 

 ̃              
     [ 

  

     
],         (39) 

 ̃               [ 
 

 
 ].          (40) 

This also results in a subsystem that cannot be controlled 

via       , which has the eigenvalues contained in    that can 

be assumed as stable. Due to its stability and non-control-

lability, this subsystem can also be disregarded in the further 

stability investigations. 

The previous explanations have shown that in both con-

tinuous-time and discrete-time system description and control, 

only the transformed first subsystem needs to be considered 
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further for stability analysis after the state transformation has 

been carried out. However, this is precisely the controlled 

system with its manipulated variable vector      as the input 

variable. It is therefore sufficient to find a stabilizing control 

law for the controlled system using a P-state controller with 

the feedback matrix  . The stability of the resulting PI-state 

control by means of Eqs. (14) to (16) respectively (17) to (19) 

is then automatically ensured on the basis of the above ex-

planations. In order to achieve a comparable statement for 

discrete-time systems, a complex modal transformation of the 

extended controlled system was carried out in [8]. However, 

the above considerations have considerably simplified the 

proof. Comparable considerations have not yet been made for 

continuous-time systems. 

To find a P-state controller that also stabilizes with ma-

nipulated variable limits, the following Lyapunov function is 

used 

 ( )      ( )
      ( ).          (41) 

In this,   ( ) denotes the deviation of the state vector  ( ) 

from its stationary position, which is denoted below by   . 

The following therefore applies 

  ( )     ( )      .           (42) 

Furthermore, the (   )-dimensional matrix   contained in 

Eq. (41) must be a positive definite matrix yet to be deter-

mined. This means that  ( )    holds for   ( )    and 

 ( )    only for   ( )   . If it is now possible to ensure 

that  ( ) constantly decreases for   ( )    and approaches 

the steady state, i.e.      , for     then the stability 

of the system under consideration is proven [2-4]. 

In order to be able to evaluate whether   decreases with a 

continuous-time system description,   is derived with respect 

to time and then the sign of  ̇ is examined. This results in 

 ̇      ̇                 ̇.          (43) 

  ̇ itself is obtained from the controlled system state dif-

ferential equation (1) with      instead of  . Here,      is 

also divided into a stationary component        and the 

deviation 

                                 (44) 

of it. With further consideration of   ̇   , the following 

follows from the controlled system state differential equation 

  ̇     ̇                  

    (     )      (            )  

                                  . 

However, since  ̇ must be the zero vector in the steady 

state and  ̇  according to Eq. (1) is identical with      

         in the steady state,                 holds. 

Overall, this gives the state differential equation 

  ̇                             (45) 

for the deviation of the controlled system state vector from its 

stationary position. This used in Eq. (43) then leads to 

 ̇        (        )                     .  (46) 

For   to decrease for   ( )   ,  ̇ must be negative. To 

ensure this even with saturated manipulated variables, the 

expression     (        )    is considered separately 

from the expression                . Because the former 

expression depends quadratically on   , it is generally to be 

expected that    reaches values which, due to the limitation of 

     , lead to such a large amount of     (        )    

that this term determines the sign of  ̇ . The matrix term 

         is therefore assigned a positive definite or at most 

a positive semi-definite matrix      respectively   by 

                             (47) 

or 

               .            (48) 

It holds that if the matrix product      respectively   is 

positive definite, the matrix   is also positive definite if the 

controlled system is stable, i.e. if   only has eigenvalues with 

a negative real part [2, 4]. Due to the special choice of the 

right-hand side of Eq. (47),   can be any  -column matrix 

without violating the positive semi-definiteness of     . 

Only if      is to be positive definite, the number of rows of 

  must be at least as large as the number of columns of   

and, in addition,     , -    must apply [16]. Furthermore, 

it should be noted that Eqs. (47) and (48) are Lyapunov 

equations. How they can be solved in principle can be read, 

for example, in [4]. 

If there is a solution for   in Eq. (47) or (48), then it can be 

enforced that the right-hand side of Eq. (46) does not become 

positive, provided the controlled system is asymptotically 

stable or critically stable. To do this,       is set in the way 

          
   (         )        (49) 

where   is a positive definite (   ) -dimensional diagonal 

matrix with otherwise arbitrary diagonal elements and   is 

an arbitrary matrix of suitable dimension, provided that Eq. 
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(47) is used as the basis for  . When using Eq. (48),     

must be selected. The chosen approach based on Eq. (47) is 

oriented towards the so-called Kalman-Yakubovich-Popov 

equations [2-4], which generally results in more degrees of 

freedom than the more classical approach based on Eq. (48) 

with    . However, it is often sufficient to work with 

    and the somewhat more simply structured formulas, 

using either Eq. (47) or Eq. (48) as a basis. 

Eq. (49) implies the controller matrix 

       (         ).          (50) 

With this and Eqs. (46), (47) and (49) we obtain 

 ̇         (              (         ))    

      (      (             )        )      

       (                      )    

       (                     

                             )    

      ((     )
 

(     )     (        )  )  .(51) 

If   is now chosen so that          is positive definite 

– for which the diagonal elements of   only have to be chosen 

sufficiently large – then    (        )   is a positive 

semi-definite matrix term [16] due to    . Furthermore, 

(     )
 

(     ) is also at least positive semi-definite. 

This ensures that  ̇ does not become positive. With    , 

  quadratic and positive definite and   positive definite in 

any case,  ̇ is then always negative for      and zero for 

     itself.  ̇ is negative definite in this case, while   is 

positive definite. Since these properties apply to the entire state 

space, the stability condition of Lyapunov's direct method is 

fulfilled and thus the system under consideration is stable [2-4]. 

The same applies if the considerations are based on Eq. (48), 

which with     results in 

 ̇        (            )   .  (52) 

Both, Eqs. (51) and (52), also apply in particular when 

manipulated variable constraints take effect. In this case, the 

limitation causes the amount of a certain element of       to 

be smaller than specified by the controller. However, this can 

be modeled according to Eq. (49) by a corresponding increase 

in the relevant diagonal element of  . However, since the 

diagonal elements of   can be chosen to be arbitrarily large 

as long as they are only positive and fulfill the condition 

          , this has no negative influence on the 

definiteness of  ̇ and thus on the stability conclusion. 

It is particularly worth mentioning in this context that for the 

proof of stability described above, both matrices   and   

must be positive definite if   is positive definite and  ̇  is 

negative definite. This is possible if the controlled system is 

stable. However, if the controller integrators had been included 

in the system model without splitting off the uncontrollable, 

stable subsystem as described above, then the simultaneous 

specification of   and   as positive definite matrices would 

not have been possible due to the then critically stable system. 

If the description of the controlled system is available in 

discrete-time form, the difference 

                              (53) 

is formed. If it is negative definite,    decreases at each 

sampling step as long as     is not a zero vector. The aim is 

therefore to ensure that     is negative definite in the entire 

state space. For this purpose,      and    are replaced in Eq. 

(53) according to the right-hand side of Eq. (41), from which 

           
               

               (54) 

follows. Furthermore, for       according to Eqs. (4) and 

(42), but with        instead of   , we obtain 

                                        

   (      )      (          )               

                                     (55) 

In addition, Eq. (4) leads to the following relationship for 

the steady state due to                        and 

               : 

                  

From Eq. (55) therefore arises 

                         .      (56) 

If we now insert Eq. (56) into Eq. (54), we finally receive 

         
  (        )          

                 

        
                             (57) 

If we proceed according to Lyapunov's direct method, we 

must first ensure that the first summand    
  (       

 )     is negative definite or at least negative semi-definite. 

This is ensured by 

                             (58) 

respectively 

http://www.sciencepg.com/journal/acis


Automation, Control and Intelligent Systems http://www.sciencepg.com/journal/acis 

 

8 

                          (59) 

and by setting   as a matrix with at least as many rows as 

columns at maximum rank when applying Eq. (58) and aim-

ing for positive definiteness of    
           as in the con-

tinuous-time system description. If   only has stable eigen-

values, then the positive definiteness of   follows from the 

positive definiteness of      respectively   [2, 4] and thus 

also the positive definiteness of   according to Eq. (41). If, 

on the other hand,   has stable and/or critically stable ei-

genvalues,   can be chosen to be positive definite, but      

respectively   can then at best be positive semi-definite (see 

example from section 6). 

In order for     to be negative (semi-)definite, the sum of 

all three summands must be negative (semi-)definite in addi-

tion to the first summand of Eq. (57), which can now be 

represented in the form     
           respectively 

    
       . To achieve this, starting from the second 

summand, the control law 

            
   (           )          (60) 

or the associated controller matrix 

        (           )          (61) 

is applied – if applicable with     in the case of Eq. (59). 

Eq. (60), after insertion into Eq. (57) and taking into account 

Eqs. (58) and (61) yields the result 

          
  (                          )     

      
  (        (                )      

           )    
 
 

      
  (                      

           )    

     
 

  (                     

                        

          )     

      
  ((     )

 

(     )   

     (             )  )    .    (62) 

Using Eq. (59) as a basis,   is then simply specified as the 

zero matrix and      is replaced by  . If   is now chosen 

so that the bracket expression                 is 

positive definite, then the entire matrix term in the last row of 

Eq. (62) is positive semi-definite due to    . Again, this 

can always be achieved with sufficiently large amounts     

(       ) of  . Furthermore, because the matrix term in 

the second last row of Eq. (62) is at least positive 

semi-definite,     cannot become positive. With    , 

quadratic, positive definite specification of   and     

      , a stable discrete-time controlled system according to 

Eq. (4) can therefore always be stabilized using the control 

law (60) via a PI-state controller. This also applies in partic-

ular when manipulated variable constraints occur, because 

when limiting          (       ), only the element     of 

  needs to be increased in thought until          corresponds 

to the relevant limiting value using Eq. (60). 

5. Discrete-time Systems with Dead Time 

for Manipulated Variable 

Determination 

With discrete-time systems, it is often the case that the 

manipulated variables do not act on the system – not even 

approximately – from the instant at which the state variables 

from which the respective manipulated variables were de-

termined are sampled. A dead time between the calculation of 

the manipulated variables and their becoming effective must 

therefore be taken into account when creating the model. In 

order to have defined and at the same time easily manageable 

correlations, a dead time is usually introduced that incorpo-

rates exactly one sampling interval [9, 13]. The calculated, if 

necessary limited manipulated variable vector       , which 

was determined on the basis of the state vector   , is then set 

to a newly introduced vector   , using the difference equation 

               .               (63) 

If      is now used instead of        as the manipulated 

variable vector acting on the controlled system, the dead time 

is taken into account in the model. If   and    are then 

combined to form the overall state vector 

       *
 
  
+               (64) 

this results in the vectorial controlled system state difference 

equation 

                                    ,      (65) 

using the extended transition matrix 

       [ 
  

  
 ]             (66) 

and the extended discrete-time control input matrix 

       [ 
 

 
 ].              (67) 
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For the output equation of the system with dead time, it is 

correspondingly obtained 

                           (68) 

with 

       [    ].            (69) 

If it is now successful to establish a generally valid corre-

lation between the stability behavior of the system extended 

by dead times and the dead-time-free system with and without 

manipulated variable constraints, then the effort for stability 

analysis and controller synthesis can be significantly reduced 

for systems with manipulated variable saturation and dead 

times in the manipulated variable paths. 

For the difference equation (65) of the controlled system 

with dead time, the same stability considerations can now be 

made as those based on the system state difference equation 

(4). Analogous to Eq. (57), the relationship 

             
  (    

                )          

          
      

                     

         
      

                          (70) 

then occurs, where first for        
  (    

            

    )         and then for the remaining terms negative defi-

niteness or negative semi-definiteness must be ensured. With 

the approaches 

    
                        

      ,    (71) 

            
   (    

                
      )      (72) 

respectively      instead of     
       and at the same time 

      , this is achieved in the same way as previously 

described in section 4 for discrete-time systems without dead 

times in the manipulated variable paths. If you now specify 

     as a symmetrical matrix in block matrix notation 

       0 
      

 

      
 1,              (73) 

     as block diagonal matrix 

       0 
    

    
 1          (74) 

and      in block matrix notation 

       [ 
   
   

],            (75) 

then it follows from Eq. (71) by block-by-block writing, 

taking into account Eq. (66) 

                     
     ,         (76) 

                  ,          (77) 

                     
     .         (78) 

While Eq. (76) represents the discrete-time Lyapunov 

equation of the dead time-free controlled system, Eqs. (77) 

and (78) directly yield the solutions 

       
       ,                  (79) 

       
             

                (80) 

for the matrix blocks     and     of     . The specifica-

tion of      therefore determines     . Because      is 

positive definite if     
       respectively      with stable 

transition matrix      is positive definite [2, 4] and      as 

upper block triangular matrix with stable matrix   fulfills 

this condition, the positive definiteness of      no longer 

needs to be proven separately. If we also evaluate Eq. (61) for 

     according to Eq. (73) instead of  ,      according to Eq. 

(66) instead of  ,      according to Eq. (67) instead of  , 

     according to Eq. (74) instead of   and      according 

to Eq. (75) instead of  , then the following results with      

instead of  , taking into account Eq. (79): 

        
   ([     ] [ 

      
      

 ]  [ 
  

  
 ] 

 [    
     

  ]  0 
    

    
 1/  

      (    [     ]  [   
        

     ]) 

      (         [     ]  [   
        

     ]). (81) 

A comparison with Eq. (61) shows that for        the 

controller matrix      of the system with dead time is asso-

ciated with the controller matrix   of the system without 

dead time via the relationship 

         [     ].              (82) 

In [13], Eq. (82) was already derived – without taking ma-

nipulated variable limits into account – for the problem that a 

controller matrix (here     ) is requested for the system with 

dead time, which produces the same control behavior as the 

associated dead time-free system, only delayed by one sam-

pling interval. Interestingly, this controller setting also fulfills 

the requirement for stability in the case of manipulated vari-

able constraints, provided that the dead time-free system (with 
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the controller matrix  ) fulfills this requirement. Furthermore, 

when applying Eq. (82), the pre-filter matrix ensuring sta-

tionary accuracy in the command behavior, which is denoted 

below as      to distinguish it from   from Eq. (19), is 

identical to  , i.e. it holds 

        .                 (83) 

To recognize this, the determination equation for      is 

first written according to Eq. (19) with      instead of  , 

     instead of  ,      instead of   and      instead of  . 

It reads 

        (     (                )
  
     )

  
. (84) 

In this context, taking into account Eqs. (66) and (67), it 

holds 

                   0
     

     (     )
 1    (85) 

as well as 

(                )
  
  

 [
(       )

  
   (       )

  
 

   (       )
  
    (       )

  
   

 ] (86) 

The easiest way to verify the above relationship is to mul-

tiply (                )
  

 by                  to 

obtain the unit matrix. If (                )
  

 is then 

multiplied from the left by      according to Eq. (69) and 

from the right by      according to Eq. (67), the following 

results 

     (                )
  
         (       )

  
 , 

which just equals     . The renewed inversion and nega-

tion according to Eq. (84) finally leads to the statement of Eq. 

(83). 

Finally, it should be noted that the stability statement made in 

this section also applies if the controlled system includes a dead 

time in the maniplated variable paths and is to be controlled with 

a PI-state controller. In this case, as described above, a P-state 

controller is first designed for the controlled system with dead 

time using Eqs. (82) and (83) (without controller integral-action 

component) and then      from Eq. (82) is inserted as the con-

troller matrix   in Eq. (17). The extended system matrices     , 

     and      from Eqs. (66), (67) respectively (69) can be used. 

The pre-filter matrix   can remain unchanged due to Eq. (83) 

and the statements in section 3. 

6. Example 

The following example from the field of electrical drives is 

intended to illustrate the methodology described above. It 

concerns the speed control system of a three-phase drive to be 

controlled. The associated model consists of the series con-

nection of a dead time element and a P-T1 element to simulate 

the subordinate closed current control loop as well as an 

integrator to model the mechanics (single-mass oscillator). 

Figure 2 shows the continuous-time structure of the model. To 

concentrate on the essentials, the setpoint        respectively 

the actual value    of the electric torque are used directly as 

input and output variables of the subordinate current control 

loop instead of the corresponding torque-forming current 

(setpoint) components. The time constant of the closed cur-

rent control loop is     . The dead time element comes from 

the modeling of the computing time of the signal processor 

used for control. The difference between the electric torque 

   and the load torque    results in the acceleration torque, 

which leads to the speed (angular velocity)   when inte-

grated via the moment of inertia  . 

 
Figure 2. Continuous-time block diagram of the exemplary controlled system. 
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A discrete-time PI-state controller is to be used as the speed 

controller. For this purpose, the system model must be dis-

cretized beforehand. Using the sampling time    and ne-

glecting the load torque, the discrete-time state equations of 

the dead-time-free system are approximately as follows [8, 

17] 

                     (      )   , 

         
  

 
 
        

 
               

  

 
 
      

 
   , 

           , 

if the state variable    is understood to be the actual torque 

value and the state variable   , which is also the controlled 

variable  , is understood to be the actual speed value. In 

contrast, the output variable of the dead time element from 

Figure 2 serves as the manipulated variable   in the dead 

time-free system. For     , it holds       
  

  
    . For the 

relevant system matrices, this results in the values 

    0 
     

  

 
 
        

 
 
 1, 

    0
      
  

 
 
        

 

1, 

    [    ]. 

As can easily be seen, the transition matrix   has an ei-

genvalue at    , which is why the controlled system is not 

asymptotically stable. It can therefore be assumed that      

respectively   will not be a positive definite matrix term. 

The calculation of            according to Eq. (58) or (59) 

shows this immediately. Because with the symmetrical matrix 

    * 
      
      

 + 

and the abbreviation   
  

 
 
        

 
 you get 

            [ 
(    
   )                   

    (      )          
(      )           

 ]  

Because of the zero element on the main diagonal,      

respectively   can at best be positive semi-definite, and only 

if the secondary diagonal elements are zero. From this follows 

directly 

      
        

 
    . 

Since it is sufficient for the example to carry out the con-

troller calculation with     and thus use Eq. (48) as a 

basis, it applies that 

    [
(      

 )       (      )     
  

 ]. 

Finally, the condition 

      
      

 
     

must be fulfilled so that   can be positive semi-definite. For 

the matrix  , it follows under the above conditions 

    0 
      

   
        

 
    

 1. 

It has positive definiteness for       and       
        

 
    . Furthermore, the positive semi-definiteness of 

           must also be fulfilled, which leads in the 

example to the condition 

    
(      )

 

 
 .    

  (      )

(      )
 
    / 

using    . In the next step, the P-state controller matrix   

is calculated by means of Eq. (61). Because     was 

selected, the result is 

    
        

 
 *         

  (      )

        
    

 

        
    +. 

If, for example,      
 

 
 holds and       is chosen 

without restricting the generality, then     
 

   
 and   

 

 
, 

for example, fulfill the above conditions. For   and  , it 

follows from this, but for general  , 

    
 

 
 * 
  

  

 

    
 +, 

    
 

 
 
 

    
. 

If the controlled system model is then extended by the dead 

time element, Eq. (82) immediately provides the extended 

controller matrix 
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 * 
  

  

 

    
 +  [ 

 

 
 

 

 

  
 

 

 ]    
 

 
 * 

  

   

 

    

   

    
 +. 

Finally, if a controller integral-action component with the 

eigenvalue    
 

 
 assigned to it is added, it follows from Eqs. 

(17) and (18) 

     * 
 

 
 

   

      

 

 
 (
 

 
 

   

     
)

   

      
 
 

 
 +, 

       
 

      
. 

Figure 3 shows the transient response that is achieved. Here, 

a speed setpoint step from 0 to            is specified at 

time        with vanishing initial state variable values. 

The step height was intentionally chosen so large that the 

manipulated variable of the speed controller, i.e. the torque 

setpoint       , reaches the limit             at the start of 

the transient response. In addition to the uncorrected speed 

setpoint     , the actual speed value   and the unlimited 

torque setpoint       , Figure 3 also shows the corrected speed 

setpoint          , the saturated torque setpoint            and 

the output variable      of the speed controller integrator. 

With regard to the latter, it should be noted that Figure 3 is 

based on the fact that the control difference is first multiplied 

by     and only then integrated and fed to the manipulated 

variable determination with a positive sign. In addition to the 

aforementioned value   
 

 
 for the weighting factor, Figure 

3 also shows curves for other values of the weighting factor   

in order to demonstrate its influence on the control quality. All 

diagrams are based on the moment of inertia             

and the sampling time          . 

As can be clearly seen in Figure 3, the control loop dy-

namics continue to increase as the weighting factor   de-

creases. At       , however, there appears a clear torque 

ripple. But, at       , the previously mentioned sufficient 

stability condition is no longer fulfilled. Since this is only a 

sufficient condition, stable operation cannot be excluded, 

which is also shown in principle in Figure 3d. 

 

 
Figure 3. Transient response of the relevant variables of the speed control loop when a speed setpoint step is specified with a limited torque 

setpoint; a)     , b)    , c)      , d)       . 

7. Conclusions 

In the paper it was shown by means of a clearly simplified 

proof that for linear time-invariant controlled systems with 

limited manipulated variables, the stability of the anti-windup 

measures of a PI-state controller in the limiting case depends 

exclusively on the stability of the P-state-controlled system, 

provided that the PI-state controller was designed in such a 

way that it produces the same control behavior as a P-state 

controller in the unlimited case. This statement was proven in 
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the article for both continuous-time and discrete-time con-

trollers. Furthermore, it was shown that even in linear 

time-invariant controlled systems with dead times in the 

manipulated variable paths, the stability of the anti-windup 

measures can be traced back to the stability of the anti-windup 

measures of a corresponding dead-time-free system if the 

state controller used for the dead-time-controlled system is 

derived from the state controller for the dead-time-free system 

via the setting rules presented. The handling of the necessary 

design steps was demonstrated using an example from the 

field of electrical drives, where a controlled system with dead 

time and manipulated variable saturation is controlled by a 

PI-state controller in discrete time. 
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