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Abstract: Typhoid fever is a life-threatening infection caused by the bacterium Salmonella Typhi, and it is still an important
issue in developing countries. There are two infection routes of Typhoid fever, namely, the human-to-human transmission
and the environment-to-human transmission. It is evident that people living near rivers may have a higher rate of typhoid
infection, and temperature changes also have significant impacts on Typhoid transmission dynamics. In the model, the population
of human will be divided into susceptible individuals, infected individuals, carrier individuals, individuals under treatment,
and recovered individuals. Then a periodic dispersion-reaction system is used to describe the transport and the interactions
between human and bacteria in the environment. The solution maps of the proposed periodic dispersion-reaction system lack the
compactness since the population under treatment has no diffusion term, which makes analysis more difficult. After the feasible
domain is chosen carefully, the eventually boundedness of the solutions can be established, and the loss of compactness is
overcome if the initial data is chosen from the feasible domain. In order to introduce the reproduction numberR0, the linearized
system around the disease-free state is constructed, and the basic reproduction number is defined as the spectral radius of the
next generation operator. Then the comparison principle and persistence theory can be utilized to establish that the index R0

completely determines the threshold behavior of the typhoid spread. Brief mathematical and biological interpretations are also
presented.

Keywords: Typhoid Fever, Spatial Variations, Seasonality, Basic Reproduction Number, Global Dynamics,
Reaction-diffusion Model, Noncompact Solution Maps

1. Introduction
According to the report of World Health Organization,

typhoid fever is a life-threatening infection caused by the
bacterium Salmonella Typhi (S. Typhi) and it is still an
important issue in developing countries. The infection routes
of typhoid fever include human-to-human transmission and
environment-to-human transmission, and it is usually spread
through the ingestion of contaminated food or water. In [17],

a mathematical system of ordinary differential equations was
proposed to model the spread of typhoid under the situation
that the resource of the treatment is restricted. A higher
incidence of typhoid fever usually occurs during the rainy
season [10, 11], due to the fact that the excreta with pathogenic
bacteria pollutes drinking water. On the other hand, it will
be more realistic to incorporate spatial variations into the
governing model since it is observed that people living near
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rivers may have a higher infection rate of typhoid [3]. Another
observation is that the effects of temperature also play central
roles in the transmission of typhoid fever [3], which motivates
researchers to include the seasonality in the model.

There are two approaches of modeling the seasonality and
spatial homogeneity. One simple approach is the two-patch
system in a temporal environment, namely, the environment
is divided into two zones, and the gradient of human and
bacteria between different zones is modeled by the migration
[12]. In this paper, we shall adopt the second approach using
a reaction-diffusion model to describe the movements and
transmission between human and bacteria in a periodic and
bounded environment. The above discussions motivate us

to propose the following periodic reaction-diffusion system
describing the interactions of populations and bacteria in
the environment. Assume that Ω ⊂ R2 is the habitat of
populations, and ∂

∂ν denotes the differentiation along the
outward normal ν to the boundary of Ω, ∂Ω. For the
population of human, S(x, t) represents the susceptible class at
the location x and time t; I(x, t) stands for the infected class;
C(x, t) is the carrier class; Q(x, t) represents the individuals
under treatment; R(x, t) represents the recovered individuals.
Besides, B(x, t) stands for the density of bacteria at the
location x and time t. Then the system takes the following
form:



∂S
∂t = DS∆S + Λ(x)− βC(x,t)(I+ηC)S

S+I+C+Q+R −
βB(x,t)BS
B+KB

− µS + ρR, x ∈ Ω, t > 0,
∂I
∂t = DI∆I + βC(x,t)(I+ηC)S

S+I+C+Q+R + βB(x,t)BS
B+KB

− (µ+ σ + δI + εI)I − θI, x ∈ Ω, t > 0,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t > 0,
∂Q
∂t = θI − (µ+ γ + δQ)Q, x ∈ Ω, t > 0,
∂R
∂t = DR∆R+ γQ+ εII + εCC − (µ+ ρ)R, x ∈ Ω, t > 0,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = S, I, C,R,B,

u(x, 0) = u0(x), x ∈ Ω, t > 0, u = S, I, C,Q,R,B.

(1)

Here the parameter Λ(x) represents the recruitment of
susceptible population on the location x, and µ stands for the
natural mortality of human population. In the following, the
abbreviation resp. always means respective. The parameter
βC(x, t) (resp. βB(x, t)) is the transmission rate (resp. the
per capita contact rate) between susceptible individuals and
infected/carrier individuals (resp. the environmental bacteria).
The parameter η is the measure of the relative infectiousness
satisfying 0 < η < 1 (resp. η > 1) when the infectiousness
of carriers is weaker (resp. stronger) than infected individuals;
KB is the saturation constant. Then susceptible population
S(x, t) can be either infected by the infected people I(x, t) at
the rate βC(x,t)(I(x,t)+ηC(x,t))S(x,t)

S(x,t)+I(x,t)+C(x,t)+Q(x,t)+R(x,t) or infected through

the bacteria B(x, t) at the rate βB(x,t)(t)B(x,t)S(x,t)

B(x,t)+KB
. People

in infected class can become the carrier individuals (resp.
treatment class) at the rate σ (resp. θ); εI (resp. εC) represents
the recovery rate for I(x, t) (resp. C(x, t)); δI (resp. δC)
represents disease-related death rate for I(x, t) (resp. C(x, t));
αI(x, t) (resp. αC(x, t)) stands for the bacteria shedding rate
by I(x, t) (resp. C(x, t)). The disease-related death rate for
people under treatment is δQ, and γ represents the recovery
rate. People in the recovered class can become susceptible at
the rate ρ. The generation of bacteria is gB(x, t) with g being
a positive constant; the bacteria can become non-infectious at
the rate µB(x). The Laplace operator is denoted by ∆; DS ,

DI , DC , DR, and DB are the diffusion coefficients related
to human and bacteria, respectively. It is worth pointing out
that the class Q(x, t) is supposed to be on treatment, and no
diffusion term ∆Q is included in system (1). This will cause
some troubles in mathematical analysis.

The parameters βC(·, t), βB(·, t), αI(·, t), and αC(·, t) are
assumed to be ω-periodic functions, and

µB(x)− g > 0, ∀ x ∈ Ω̄, (2)

which can coincide with the parameters provided in Table
2 of [17]. The organization of the rest of this paper is as
follows. The well-posedness of our system (1) is provided in
the next section; the basic reproduction number is defined in
section 3. Section 4 is devoted to the establishment that the
persistence/extinction of typhoid fever can be determined by
the basic reproduction number. A brief conclusion is presented
in Section 5.

2. Well-posedness
This section is devoted to the study the well-posedness for

system (1). Let X := C(Ω̄,R6) be the Banach space with
the supremum norm ‖ · ‖X. Define X+ := C(Ω̄,R6

+), then
(X,X+) is a strongly ordered space. Let

Λmin := min
x∈Ω̄

Λ(x), βmax
C := max

(x,t)∈Ω̄×[0,ω]
βC(x, t), βmax

B := max
(x,t)∈Ω̄×[0,ω]

βB(x, t).
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Assume that ζ is a positive number satisfying

0 < ζ <
Λmin

(1 + η)βmax
C + βmax

B + µ
. (3)

Let X+
ζ := {φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ X+ : ζ 6 φ1(x), for all x ∈ Ω̄}.

From Corollary 4 in [18] and Lemma 2.2 in [8] (see also [14]), the following result can be proved.
Lemma 2.1. Assume that ζ is given in (3). For every initial value function

u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ X+
ζ ,

system (1) admits a unique solution

u(x, t, u0) := (S(x, t), I(x, t), C(x, t), Q(x, t), R(x, t), B(x, t)) ∈ X+
ζ

on (0, τu0) with u(·, 0, u0) = u0, where τu0 ≤ ∞.
Proof Suppose that T1(t), T2(t), T3(t), T5(t), T6(t) : C(Ω̄,R)→ C(Ω̄,R) are theC0 semigroups associated withDS∆−µ,

DI∆− (µ+ σ + δI + εI + θ), DC∆− (µ+ δC + εC), DR∆− (µ+ ρ) and DB∆− µB(·) subject to the Neumann boundary
condition, respectively. It then follows that for any ϕ ∈ C(Ω̄,R), t > 0,

(T1(t)ϕ)(x) = e−µt
∫

Ω

Γ1(t, x, y)ϕ(y)dy,

(T2(t)ϕ)(x) = e−(µ+σ+δI+εI+θ)t

∫
Ω

Γ2(t, x, y)ϕ(y)dy,

(T3(t)ϕ)(x) = e−(µ+δC+εC)t

∫
Ω

Γ3(t, x, y)ϕ(y)dy,

(T5(t)ϕ)(x) = e−(µ+ρ)t

∫
Ω

Γ5(t, x, y)ϕ(y)dy,

and

(T6(t)ϕ)(x) =

∫
Ω

Γ6(t, x, y)ϕ(y)dy,

where Γ1, Γ2, Γ3, Γ5 and Γ6 are the Green functions associated with DS∆, DI∆, DC∆, DR∆ and DB∆ − µB(·) subject to
the Neumann boundary conditions, respectively. Let

T4(t)ϕ = e−(µ+γ+δQ)tϕ, ∀ ϕ ∈ C(Ω̄,R),

and

T (t) := (T1(t), T2(t), T3(t), T4(t), T5(t), T6(t)).

Define F (t) = (F1(t), F2(t), F3, F4, F5, F6(t)) : X+
ζ → X, t ≥ 0, by

F1(t, φ)(·) = Λ(x)− βC(x,t)(φ2+ηφ3)φ1

φ1+φ2+φ3+φ4+φ6
− βB(x,t)φ6φ1

φ6+KB
+ ρφ5,

F2(t, φ)(·) = βC(x,t)(φ2+ηφ3)φ1

φ1+φ2+φ3+φ4+φ6
+ βB(x,t)φ6φ1

φ6+KB
,

F3(φ)(·) = σφ2,

F4(φ)(·) = θφ2,

F5(φ)(·) = γφ4 + εIφ2 + εCφ3,

F6(t, φ)(·) = αI(x, t)φ2 + αC(x, t)φ3.

Then system (1) can be rewritten as the following integral equation

u(t) = T (t)φ+

∫ t

0

T (t− s)F (s, u(·, s))ds.
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Observing that

βC(x, t)(φ2 + ηφ3)φ1

φ1 + φ2 + φ3 + φ4 + φ6
= βC(x, t)

φ2

φ1 + φ2 + φ3 + φ4 + φ6
φ1 + βC(x, t)η

φ3

φ1 + φ2 + φ3 + φ4 + φ6
φ1

≤ βmax
C φ1 + βmax

C ηφ1,

and
βB(x, t)φ6φ1

φ6 +KB
= βB(x, t)

φ6

φ6 +KB
φ1 ≤ βmax

B φ1.

Hence,

φ1 + hF1(t, φ) = φ1 + h[Λ(x)− βC(x, t)(φ2 + ηφ3)φ1

φ1 + φ2 + φ3 + φ4 + φ6
− βB(x, t)φ6φ1

φ6 +KB
+ ρφ5]

≥ φ1 + h[Λmin − (βmax
C + βmax

C η + βmax
B )φ1]

= [1− h(βmax
C + βmax

C η + βmax
B )]φ1 + hΛmin, ∀ h > 0.

Thus, the following relation holds

lim
h→0+

dist(φ+ hF (t, φ),X+) = 0, ∀ φ ∈ X+
ζ .

By Corollary 4 in [18] or Theorem 7.3.1 in [20], it follows that for every initial value function u0(·) ∈ X+
ζ , system (1) admits

a unique solution u(x, t, u0) ∈ X+ on (0, τu0) with u(·, 0, u0) = u0, where τu0 ≤ ∞.
On the other hand, it is easy to see that

βC(x, t)(I + ηC)S

S + I + C +Q+R
= βC(x, t)S

I

S + I + C +Q+R
+ βC(x, t)ηS

C

S + I + C +Q+R
≤ βmax

C S + βmax
C ηS,

and

βB(x, t)BS

B +KB
= βB(x, t)

B

B +KB
S ≤ βmax

B S.

Then the susceptible population S(x, t) satisfies

∂S

∂t
≥ DS∆S + Λmin − (βmax

C + βmax
C η + βmax

B + µ)S.

By standard comparison arguments, it is not hard to show that if S(·, 0) ≥ ζ then S(·, t) ≥ ζ for t ≥ 0. The proof is complete.
Consider the following two scalar reaction-diffusion systems

∂S
∂t = DS∆S + Λ(x)− µS, x ∈ Ω, t > 0,
∂S(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), x ∈ Ω, t > 0,

(4)

and 
∂B
∂t = DB∆B + gB − µB(x)B, x ∈ Ω, t > 0,
∂B(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0,

B(x, 0) = B0(x), x ∈ Ω, t > 0.

(5)

The global dynamics of systems (4) and (5) are described in
the following lemma.

Lemma 2.2. ([14, Lemma 1])
The following statements are valid.

(i) System (4) admits a unique positive steady state S∗(x),
which is globally asymptotically stable in C(Ω̄,R+);

(ii) System (5) admits a unique non-negative steady state
0, which is globally asymptotically stable in C(Ω̄,R+)
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provided that the assumption (2) is imposed. We are ready to establish that system (1) has a compact
global attractor in X+

ζ .

Lemma 2.3. For every initial value function

u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ X+
ζ ,

system (1) has a unique solution

u(x, t, u0) := (S(x, t), I(x, t), C(x, t), Q(x, t), R(x, t), B(x, t))

on [0,∞) with u(·, 0, u0) = u0. Further, the solution is eventually bounded and the solution maps Φ(t) : X+
ζ → X+

ζ associated
with system (1) are given by Φ(t)u0(·) = u(·, t, u0), t ≥ 0, which has a global compact attractor in X+

ζ , ∀ t ≥ 0.
Proof Let Λmax := maxx∈Ω̄ Λ(x) and

U(t) =

∫
Ω

[S(x, t) + I(x, t) + C(x, t) +Q(x, t) +R(x, t)] dx.

Then it follows from (1) that

dU(t)

dt
=

∫
Ω

Λdx− µU(t)− δI
∫

Ω

Idx− δC
∫

Ω

Cdx− δQ
∫

Ω

Qdx ≤
∫

Ω

Λdx− µU(t).

Thus,

dU(t)

dt
+ µU(t) ≤

∫
Ω

Λ(x)dx ≤ |Ω|Λmax,

which yields

U(t) ≤ U(0)e−µt +
|Ω|Λmax

µ
(1− e−µt). (6)

Then it follows from (6), Theorem 1 in [9] (see also [13]), and the positiveness of solutions that there exists a positive constant
M1 depending on initial data such that the solution (S, I, C,R) of (1) satisfies

‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) + ‖C(·, t)‖L∞(Ω) + ‖R(·, t)‖L∞(Ω) ≤M1, ∀t ≥ 0. (7)

Furthermore, it follows from (6) that

lim sup
t→∞

U(t) ≤ |Ω|Λ
max

µ
,

where |Ω|Λ
max

µ is independent of initial data. By applying Theorem 1 in [9] to (1) again, it follows that there exists a positive
constant M2 independent of initial data such that

‖S(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) + ‖C(·, t)‖L∞(Ω) + ‖R(·, t)‖L∞(Ω) ≤M2, ∀t ≥ t̂, (8)

for some large time t̂ > 0. Let

αmax
I := max

(x,t)∈Ω̄×[0,ω]
αI(x, t), α

max
C := max

(x,t)∈Ω̄×[0,ω]
αC(x, t), µmin

B := min
x∈Ω̄

µB(x).

Then it follows from (1) and (7) that

∂Q

∂t
≤ θM1 − (µ+ γ + δQ)Q, x ∈ Ω, t > 0, (9)

and {
∂B
∂t ≤ DB∆B + (αmax

I + αmax
C )M1 − (µmin

B − g)B, x ∈ Ω, t > 0,
∂B(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0.

(10)
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Note that M1 is independent of initial data. By comparison arguments, together with (9) and (10), it follows that there exists a
positive constant M̂1 depending on initial data such that the solution (Q,B) of (1) satisfies

‖Q(·, t)‖L∞(Ω) + ‖B(·, t)‖L∞(Ω) ≤ M̂1, ∀t ≥ 0.

On the other hand, it follows from (1) and (8) that

∂Q

∂t
≤ θM2 − (µ+ γ + δQ)Q, x ∈ Ω, t ≥ t̂, (11)

and {
∂B
∂t ≤ DB∆B + (αmax

I + αmax
C )M2 − (µmin

B − g)B, x ∈ Ω, t ≥ t̂,
∂B(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0.

(12)

By comparison arguments, together with(11) and (12), it follows that

lim sup
t→∞

max
x∈Ω̄

Q(x, t) ≤ θM2

µ+ γ + δQ
and lim sup

t→∞
max
x∈Ω̄

B(x, t) ≤ (αmax
I + αmax

C )M2

µmin
B − g

.

From the above discussions, it follows that Φ(t) is point dissipative on X+
ζ , and forward orbits of bounded subsets of X+

ζ

for Φ(t) are bounded. Since the equation of Q in (1) has no diffusion term, system (1) lacks the property of compactness. To
overcome this problem, it is clear that the reaction term of Q in (1) takes the form

f(I,Q) := θI − (µ+ γ + δQ)Q,

which satisfies

∂f(I,Q)

∂Q
= −(µ+ γ + δQ) < 0, ∀ I ≥ 0, Q ≥ 0.

Recall that the Kuratowski measure of noncompactness (see, e.g., [2]) is defined by

κ(B) := inf{r : B has a finite cover of diameter < r}

for any bounded setB ⊂ X+
ζ . By similar arguments to those in

Lemma 4.1 in [7], it is not hard to show that the solution maps
Φ(t) are κ-contracting in the sense that limt→∞ κ(Φ(t)(B)) =

0 for any bounded set B ⊂ X+
ζ .

By the continuous-time version of Theorem 2.6 in [19] (see
also [5]), Φ(t) admits a compact global attractor that attracts
every point in X+

ζ .

3. The Basic Reproduction Number
This section is devoted to the definition of the basic

reproduction number for system (1). To this end, one will

adopt the theory developed in [16] (with delay τ = 0) to define
the basic reproduction number, R0. It is not hard to see that
the disease-free state of system (1) is as follows

E0(x) = (S∗(x), 0, 0, 0, 0, 0).

It is not hard to see that the linearized system of (1) around
the disease-free state E0(x) takes the following cooperative
system:



∂I
∂t = DI∆I + βC(x, t)I + ηβC(x, t)C + S∗(x)βB(x,t)

KB
B

−(µ+ σ + δI + εI)I − θI, x ∈ Ω, t > 0,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t > 0,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = I, C,B.

(13)

Assume that E := C(Ω̄,R3) is the Banach space with the norm ‖ · ‖E, and E+ := C(Ω̄,R3
+). Let Cω(R,E) be the Banach

space which contains all ω-periodic and continuous functions from R to E, where ‖ϕ‖Cω(R,E) = maxθ∈[0,ω] ‖ϕ(θ)‖E for any
ϕ ∈ Cω(R,E). From (13), we define F(t) : E→ E by
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F(t)

 w1

w2

w3

 =

 βC(x, t)w1 + ηβC(x, t)w2 + S∗(x)βB(x,t)
KB

w3

0

αI(x, t)w1 + αC(x, t)w2

 , (14)

and

−V

 w1

w2

w3

 =

 DI∆w1 − (µ+ σ + δI + εI)w1 − θw1

DC∆w2 + σw1 − (µ+ δC + εC)w2

DB∆w3 + gw3 − µB(x)w3

 , (15)

for any (w1, w2, w3) ∈ E. Then system (13) can be written as

dw

dt
= F(t)w −Vw, w ∈ E.

It is easy to see that F(t) : E → E is positive in the sense that F(t)E+ ⊂ E+, and hence, the condition (H1) in [16] holds.
Assume that {Y(t, s), t ≥ s} is the evolution family on E associated with the following system

dw(t)

dt
= −Vw(t). (16)

Clearly, Y(t, s)E+ ⊂ E+ for all t ≥ s, that is, Y(t, s) is a positive operator on E+. Let ω(Y) stand for the exponential
growth bound of the evolution family {Y(t, s), t ≥ s}, which is given by

ω(Y) := inf
{
ω̃ : ∃M ≥ 1 such that ‖ Y(t+ s, s) ‖≤Meω̃t, ∀ s ∈ R, t ≥ 0

}
.

In view of Proposition A.2 in [23] and Lemma 2.1 in [15], it follows that

ω(Y) =
ln r(Y(ω, 0))

ω
=

ln r(Y(ω + ξ, ξ))

ω
, ∀ ξ ∈ [0, ω]. (17)

Motivated by the arguments to those in Lemma 3.4 in [15], the following inequality can be proved.
Lemma 3.1. ω(Y) < 0.
Proof Note that {Y(t, s), t ≥ s} is the evolution family on E associated with system(16), that is,

∂w1

∂t = DI∆w1 − (µ+ σ + δI + εI)w1 − θw1, x ∈ Ω, t > 0,
∂w2

∂t = DC∆w2 + σw1 − (µ+ δC + εC)w2, x ∈ Ω, t > 0,
∂w3

∂t = DB∆w3 + gw3 − µB(x)w3, x ∈ Ω, t > 0,
∂wi(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, i = 1, 2, 3.

Assume that ω(Y) ≥ 0. Then it follows from (17) that r(Y(ω, 0)) ≥ 1. Since Y(ω, 0) is compact and monotone in E, and
the Krein-Rutman theorem (see [6]) implies that λ∗ := 1

ω ln r(Y(ω, 0)) ≥ 0 is the eigenvalue of
DI∆ψ1 − (µ+ σ + δI + εI)ψ1 − θψ1 = λψ1, x ∈ Ω,

DC∆ψ2 + σψ1 − (µ+ δC + εC)ψ2 = λψ2, x ∈ Ω,

DB∆ψ3 + gψ3 − µB(x)ψ3 = λψ3, x ∈ Ω,
∂ψi(x)
∂ν = 0, x ∈ ∂Ω, i = 1, 2, 3,

(18)

with an eigenvector

(ψ∗1 , ψ
∗
2 , ψ

∗
3) ∈ E+ and (ψ∗1 , ψ

∗
2 , ψ

∗
3) 6≡ (0, 0, 0). (19)

After adding the first three equations of (18) and doing integration over the Ω, it follows that
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λ∗
∫

Ω

(ψ1(x) + ψ2(x) + ψ3(x))dx = −(µ+ δI + εI + θ)

∫
Ω

ψ1(x)dx

− (µ+ δC + εC)

∫
Ω

ψ2(x)dx−
∫

Ω

(µB(x)− g)ψ3(x)dx < 0,

(20)

where the Neuman boundary conditions ofψ∗i (x), (2), and (19)
are used. Then it follows from (20) and (19) that λ∗ < 0,
which is a contradiction. Thus, ω(Y) < 0.

By Lemma 3.1, it is easy to see that the condition (H2)
in [16] holds. Thus, the basic reproduction number R0 can
be defined by the developed theory in [16]. Assume that
v ∈ Cω(R,E) and v(t) is the initial distribution of the
infectious individuals at time t ∈ R. For any s ≥ 0,
F(t−s)v(t−s) represents the rate of new infections produced
by the infected individuals who were introduced at time t− s.
Then Y(t, t−s)F(t−s)v(t−s) gives the distribution of those

infected individuals who were newly infected at time t− s and
remain in the infected compartments at time t, for t ≥ s. Thus,
the integral ∫ ∞

0

Y(t, t− s)F(t− s)v(t− s)ds

is the distribution of accumulative new infections at time t
produced by all those infectious individuals v(·) introduced at
all time previous to t.

The associated linear operators on Cω(R,E) is given by

[Lv](t) :=

∫ ∞
0

Y(t, t− s)F(t− s)v(t− s)ds, ∀ t ∈ R, v ∈ Cω(R,E).

Motivated by the concept of next generation operators (see,
e.g., [1, 4, 23, 24, 26]), the basic reproduction number is
defined as the spectral radius of L, namely,

R0 := r(L). (21)

For any given t ≥ 0, let P (t) be the solution maps of system
(13) on E given by P (t)φ = w(·, t, φ), where w(x, t, φ) is the
unique solution of system (13) with w(·, 0, φ) = φ ∈ E. Then
P (ω) is the Poincaré map associated with system (13) on E.
Let r(P (ω)) be the spectral radius of P (ω). By Theorem 3.7
in [16] (see also Lemma 3.5 in [15]), the following relation
holds.

Lemma 3.2. R0 − 1 and r(P (ω))− 1 have the same sign.

By Proposition II.14.4 in [6], the following statement holds,
which is crucial in the establishment of extinction/persistence
of typhoid fever.

Lemma 3.3. Let λ = 1
ω lnr(P (ω)). Then there exists a

positive, ω-periodic function v∗(·, t) such that eλtv∗(x, t) is
a solution of system (13) on E.

4. Global Dynamics
In this section, the global dynamics of system (1) will be

investigated.
The following result will play an important role in our

subsequent discussions.

Lemma 4.1. For every initial value function

u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ X+
ζ ,

assume that system (1) has a unique solution

u(x, t, u0) := (S(x, t), I(x, t), C(x, t), Q(x, t), R(x, t), B(x, t))

on [0,∞) with u(·, 0, u0) = u0.

(i) The following is always valid:
S(x, t, u0(·)) ≥ ζ > 0, for x ∈ Ω̄, t > 0,

and
lim inf
t→∞

S(x, t, u0(·)) ≥ ζ, uniformly for x ∈ Ω̄.

(ii) If (I0(·), C0(·), B0(·)) 6≡ (0, 0, 0), then

w(x, t, u0(·)) > 0, for x ∈ Ω̄, t > 0, w = S, I, C, Q, R, B. (22)
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(iii) Assume that there is a ξ1 > 0 satisfying

lim inf
t→∞

v(x, t, u0(·)) ≥ ξ1, uniformly for x ∈ Ω̄, ∀ v = I, C,B. (23)

Then there exists a ξ2 > 0 such that

lim inf
t→∞

w(x, t, u0(·)) ≥ ξ2, uniformly for x ∈ Ω̄ for, ∀ w = S, I, C,Q,R,B. (24)

Proof Part (i). By Lemma 2.1 and and Lemma 2.3, we see that Part (i) is obvious.
Part (ii). In view of the equations I , C, and B in (1), it follows that (I, C,B) satisfies

∂I
∂t = DI∆I + a(x, t)I + b(x, t)C + d(x, t)B − (µ+ σ + δI + εI)I − θI, x ∈ Ω, t > 0,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t > 0,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = I, C,B,

(25)

where 
a(x, t) := βC(x,t)S(x,t)

(S+I+C+Q+R)(x,t) ,

b(x, t) := ηβC(x,t)S(x,t)
(S+I+C+Q+R)(x,t) ,

d(x, t) := βB(x,t)S(x,t)
B(x,t)+KB

.

In view of Par (i), it is easy to see that (22) holds with
w = S, and

a(x, t) > 0, b(x, t) > 0, d(x, t) > 0, ∀ x ∈ Ω̄, t > 0.

By the results developed in CH. 7 in [20], one can show
that the solution maps associated with system (25) are strongly
monotone in C(Ω̄,R3

+). Thus,

w(x, t, u0(·)) > 0, for x ∈ Ω̄, t > 0, w = I, C, B.

From the strong maximum principle (see, e.g., Theorem 4
of [25] on p. 172) and the Hopf boundary lemma (see, e.g.,
Theorem 3 of [25] on p. 170), one can further show that
(22) holds with w = B. The standard comparison arguments
implies that (22) holds with w = Q. Thus, part (ii) is proved.

Part (iii). In view of (23), there exists a t0 > 0 such that

v(x, t, u0(·)) ≥ 1

2
ξ1, for x ∈ Ω̄, t ≥ t0, ∀ v = I, C,B,

Then the equations of Q and R satisfies the following two
equations, respectively,

∂Q

∂t
≥ 1

2
ξ1θ − (µ+ γ + δQ)Q, x ∈ Ω, t ≥ t0,

and

{
∂R
∂t ≥ DR∆R+ 1

2ξ1(γ + εI + εC)− (µ+ ρ)R, x ∈ Ω, t ≥ t0,
∂R(x,t)
∂ν = 0, x ∈ ∂Ω, t ≥ t0.

Then it follows from the standard comparison arguments that

lim inf
t→∞

Q(x, t, u0(·)) ≥ ξ1θ

2(µ+ γ + δQ)
, uniformly for x ∈ Ω̄,

and

lim inf
t→∞

R(x, t, u0(·)) ≥ ξ1(γ + εI + εC)

2(µ+ ρ)
, uniformly for x ∈ Ω̄.

Let

ξ2 := min{ζ, ξ1,
ξ1θ

2(µ+ γ + δQ)
,
ξ1(γ + εI + εC)

2(µ+ ρ)
}.

Then (24) holds. The proof of Part (iii) is finished.
In the following, it will be shown thatR0 plays a central role in the extinction/persistence of system (1).
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Theorem 4.1. For every initial value function

u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ X+
ζ ,

the unique solution of system (1) is denoted by

u(x, t, u0) := (S(x, t), I(x, t), C(x, t), Q(x, t), R(x, t), B(x, t))

on [0,∞) with u(·, 0, u0) = u0.

(i) IfR0 < 1 and ρ = 0, then the state E0(x) is globally asymptotically stable in X+
ζ ;

(ii) If R0 > 1, then system (1) admits at least one (componentwise) positive ω-periodic solution û(x, t) and there exists a
ξ > 0 such that for any u0(·) ∈ X+

ζ with I0(·) 6≡ 0 or C0(·) 6≡ 0 or B0(·) 6≡ 0, we have

lim inf
t→∞

min
x∈Ω̄

w(x, t, u0(·)) ≥ ξ, for w = S, I, C,Q,R,B.

Proof Part (i). Assume that R0 < 1 and ρ = 0. In view of Lemma 3.2 and R0 < 1, it follows that r(P (ω)) < 1. For any
given ς1 ≥ 0, let Pς1(t) be the solution maps associated with the following system on E:

∂I
∂t = DI∆I + βC(x, t)I + ηβC(x, t)C + (S∗(x) + ς1)βB(x,t)

KB
B

−(µ+ σ + δI + εI)I − θI, x ∈ Ω, t > 0,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t > 0,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = I, C,B.

(26)

By continuity, it follows that limς1→0 r(Pς1(ω)) = r(P (ω)) < 1. Thus, one can fix a sufficiently small number ς1 > 0 such
that r(Pς1(ω)) < 1. Since ρ = 0, it follows from the first equation in (1) that{

∂S
∂t ≤ DS∆S + Λ(x)− µS, x ∈ Ω, t > 0,
∂S(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0.

(27)

In view of (27), Lemma 2.2 and standard comparison arguments (see e. g., [20]), there exists a t1 > 0 such that

S(x, t) ≤ S∗(x) + ς1, ∀ x ∈ Ω̄, t ≥ t1.

From the equations of I , C and B in (1), it follows that

∂I
∂t ≤ DI∆I + βC(x, t)I + ηβC(x, t)C + (S∗(x) + ς1)βB(x,t)

KB
B

−(µ+ σ + δI + εI)I − θI, x ∈ Ω, t ≥ t1,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t ≥ t1,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t ≥ t1,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t ≥ t1, u = I, C,B.

Let λς1 = 1
ω lnr(Pς1(ω)). Then it follows from Lemma 3.3 that there exists a positive, ω-periodic function v∗ς1(·, t) such that

eλς1
tv∗ς1(x, t) is a solution of the linear system (26) on E. For any given u0(·) ∈ X+

ζ , there exists a M1 > 0 such that

(I(x, t1, u
0(·)), C(x, t1, u

0(·)), B(x, t1, u
0(·))) ≤M1e

λς1
t1v∗ς1(x, t1), ∀ x ∈ Ω̄.

Then the comparison theorem for the parabolic equation (see, e.g., [20]) implies that

(I(x, t, u0(·)), C(x, t, u0(·)), B(x, t, u0(·))) ≤M1e
λς1 tv∗ς1(x, t), ∀ x ∈ Ω̄, t ≥ t1. (28)

Since λς1 < 0, it follows from (28) that

lim
t→∞

(I(x, t, u0(·)), C(x, t, u0(·)), B(x, t, u0(·))) = (0, 0, 0), uniformly for all x ∈ Ω̄.
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Thus, Q(x, t) in (1) is asymptotic to the following system

∂Q

∂t
= −(µ+ γ + δQ)Q, x ∈ Ω, t > 0,

and B(x, t) in (1) is asymptotic to system (5). By Lemma 2.2 (ii), the theory of asymptotically periodic semiflows and internally
chain transitive sets (see, e.g., Theorem 3.2.1, Lemma 1.2.2 and Theorem 1.2.1 in [27]), it follows that

lim
t→∞

Q(x, t) = 0 and lim
t→∞

B(x, t) = 0, uniformly for x ∈ Ω̄.

Then R(x, t) in (1) is asymptotic to the following system{
∂R
∂t = DR∆R− (µ+ ρ)R, x ∈ Ω, t > 0,
∂R(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0.

By Lemma 2.2 and Theorem 3.2.1, Lemma 1.2.2 and Theorem 1.2.1 in [27]), it is easy to show that

lim
t→∞

R(x, t) = 0 uniformly for x ∈ Ω̄.

Thus, S(x, t) in (1) is asymptotic to system (4), and

lim
t→∞

S(x, t) = S∗(x), uniformly for x ∈ Ω̄.

The proof of Part (i) is complete.
Part (ii). Assume thatR0 > 1.
Let

C = X+
ζ ,

C0 = {u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ C : I0(·) 6≡ 0, C0(·) 6≡ 0, and B0(·) 6≡ 0},

and

∂C0 := C\C0 = {u0(·) ∈ C : I0(·) ≡ 0 or C0(·) ≡ 0 or B0(·) ≡ 0}.

Note that the solution maps of system
(1), Φ(t) : X+

ζ → X+
ζ , are defined in Lemma 2.3.

For any u0(·) ∈ C0, it follows from Lemma 4.1 that I(x, t, u0(·)) > 0,∀ x ∈ Ω̄, t > 0 and C(x, t, u0(·)) > 0,∀ x ∈ Ω̄, t > 0

and B(x, t, u0(·)) > 0,∀ x ∈ Ω̄, t > 0. Then Φ(ω)nC0 ⊂ C0, ∀n ∈ N. Moreover, Lemma 2.3 implies that Φ(ω) has a strong
global attractor in C.

Let
M∂ := {u0(·) ∈ ∂C0 : Φ(ω)nu0(·) ∈ ∂C0,∀n ∈ N},

and ω̃(u0(·)) be the omega limit set of the orbit Γ+ = {Φ(ω)nu0(·) : ∀n ∈ N}. Set

M0 = {E0(x)} = {(S∗(x), 0, 0, 0, 0, 0)}.

Let
J0 = {u0(·) ∈ C : I0(·) ≡ 0, and C0(·) ≡ 0, and B0(·) ≡ 0},

and

J̃0 = {u0(·) ∈ ∂C0 : Φ(ω)nu0(·) ∈ J0,∀n ∈ N},

where u0(·) = (S0, I0, C0, Q0, R0, B0)(·).
The following result will be established:
Claim 1. M∂ = J̃0.
One only need to show that M∂ ⊆ J̃0 since it is clear that

J̃0 ⊆M∂ .

For any given u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ M∂ ,
one observes that Φ(ω)n(u0(·)) ∈ ∂C0, ∀n ∈ N. Thus,
for each n ∈ N, it follows that I(·, nω, u0(·)) ≡ 0 or
C(·, nω, u0(·)) ≡ 0 or B(·, nω, u0(·)) ≡ 0. In view of
Lemma 4.1, it can be further shown that for each t ≥ 0,
I(·, t, u0(·)) ≡ 0 or C(·, t, u0(·)) ≡ 0 or B(·, t, u0(·)) ≡ 0.
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Assume, by contradiction, that I(·, t1, u0(·)) 6≡ 0, for some
t1 > 0. By maximum principle (see e.g., [25]), we see that
I(x, t, u0(·)) > 0 for x ∈ Ω̄ and t > t1. For each t > t1, it
then follows that C(·, t, u0(·)) ≡ 0 or B(·, t, u0(·)) ≡ 0. In
case where C(·, t, u0(·)) ≡ 0, for each t > t1. Then it follows
from the equation of C(x, t) in (1) that I(·, t, u0(·)) ≡ 0, for
each t > t1. This is a contradiction. Thus, C(·, t2, u0(·)) 6≡ 0,
for some t2 > t1. By maximum principle (see e.g., [25]),
it follows that C(x, t, u0(·)) > 0 for x ∈ Ω̄ and t > t2.
Then one must have B(·, t, u0(·)) ≡ 0, for each t > t2. In
view of the equation of B(x, t) in (1), it is easy to see that
I(·, t, u0(·)) ≡ 0 and C(·, t, u0(·)) ≡ 0, for each t > t2. This
is a contradiction. Therefore, I(·, t, u0(·)) ≡ 0, for each t > 0.

Then C(·, t, u0(·)) ≡ 0 and B(·, t, u0(·)) ≡ 0, for each t > 0,
due to the the equation of I(x, t) in (1). Thus, u0(·) ∈ J̃0, and
hence, M∂ ⊆ J̃0.

Claim 2. For any u0(·) ∈ M∂ , the omega limit set
ω̃(u0(·)) = M0, and no subset of {M0} forms a cycle for
Φ(ω) in M∂ .

For any u0(·) ∈ M∂ = J̃0, we have I(·, nω, u0(·)) ≡
0 and C(·, nω, u0(·)) ≡ 0 and B(·, nω, u0(·)) ≡ 0, for
n ∈ N. By Lemma 4.1, we see that I(·, t, u0(·)) ≡ 0 and
C(·, t, u0(·)) ≡ 0 and B(·, t, u0(·)) ≡ 0, for t ≥ 0. Then
(S(x, t, u0), Q(x, t, u0), R(x, t, u0)) in (1) satisfies


∂S
∂t = DS∆S + Λ(x)− µS + ρR, x ∈ Ω, t > 0,
∂Q
∂t = −(µ+ γ + δQ)Q, x ∈ Ω, t > 0,
∂R
∂t = DR∆R+ γQ− (µ+ ρ)R, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = S,R.

(29)

By Lemma 2.2, the theory of asymptotically periodic semiflows and internally chain transitive sets (see, e.g., Theorem 3.2.1,
Lemma 1.2.2 and Theorem 1.2.1 in [27]), it follows that (S(x, t, u0), Q(x, t, u0), R(x, t, u0)) in (29) satisfies

lim
t→∞

(S(x, t, u0), Q(x, t, u0), R(x, t, u0)) = (S∗(x), 0, 0), uniformly for x ∈ Ω̄.

This implies that the omega limit set ω̃(u0(·)) = M0. Obviously, system (29) is cooperative. For the attractivity ofM0 and
Lemma 2.2.1 in [27], one concludes thatM0 is locally Liapunov stable. Thus, no subset of {M0} forms a cycle for Φ(ω) in
M∂ . Thus, Claim 2 holds.

In view of Lemma 3.2 and R0 > 1, it follows that r(P (ω)) > 1. For any given ς2 ≥ 0, let Pς2(t) be the solution maps
associated with the following system on E:

∂I
∂t = DI∆I + βC(x, t) S

∗(x)−ς2
S∗(x)+5ς2

I + ηβC(x, t) S
∗(x)−ς2

S∗(x)+5ς2
C + (S∗(x)− ς2)βB(x,t)

KB+ς2
B

−(µ+ σ + δI + εI)I − θI, x ∈ Ω, t > 0,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t > 0,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t > 0,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t > 0, u = I, C,B.

(30)

By continuity, one can find a sufficiently small value ς2 with 0 < ς2 < min
x∈Ω̄

S∗(x) such that r(Pς2(ω)) > 1. From the

continuous dependence of solutions on the initial value, there is another ς∗2 > 0 such that for all u0(·) with ‖u0(·)−M0‖ ≤ ς∗2 ,
it follows that ‖Φ(t)u0(·)− Φ(t)M0‖ < ς2 for all t ∈ [0, ω]. The following claim will be proved.

Claim 3. For all u0(·) ∈ C0, there holds lim supn→∞ ‖Φ(ω)n(u0(·))−M0‖ ≥ ς∗2 .
Assume, by contradiction, that there is a φ0 ∈ C0 such that

lim sup
n→∞

‖Φ(ω)n(φ0)−M0‖ < ς∗2 .

Then there is a n2 ≥ 1 such that ‖Q(ω)n(φ0)−M0‖ < ς∗2 for n ≥ n2. For any t ≥ n2ω, assume t = nω+ t′ with n = [t/ω]

and t′ ∈ [0, ω). Then it follows that

‖Φ(t)φ0 − Φ(t)M0‖ = ‖Φ(t′)(Φ(ω)n(φ0))− Φ(t′)M0‖ < ς∗2 . (31)

For x ∈ Ω̄, t ≥ 0, we see that

(Φ(t)M0)(x) = (S∗(x), 0, 0, 0, 0, 0).
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In view of (31), for x ∈ Ω̄, t ≥ n2ω, it follows that

S∗(x)− ς∗2 < S(x, t, φ0) < S∗(x) + ς∗2 ,

and

0 < v(x, t, φ0) < ς∗2 , ∀ v = I, C,Q,R,B.

Thus, the equations of I(x, t, φ0), C(x, t, φ0) and B(x, t, φ0) in (1) satisfy

∂I
∂t ≥ DI∆I + βC(x, t) S

∗(x)−ς2
S∗(x)+5ς2

I + ηβC(x, t) S
∗(x)−ς2

S∗(x)+5ς2
C + (S∗(x)− ς2)βB(x,t)

KB+ς2
B

−(µ+ σ + δI + εI)I − θI, x ∈ Ω, t ≥ n2ω,
∂C
∂t = DC∆C + σI − (µ+ δC + εC)C, x ∈ Ω, t ≥ n2ω,
∂B
∂t = DB∆B + gB + αI(x, t)I + αC(x, t)C − µB(x)B, x ∈ Ω, t ≥ n2ω,
∂u(x,t)
∂ν = 0, x ∈ ∂Ω, t ≥ n2ω, u = I, C,B.

In view of Lemma 3.3, there is a positive, ω-periodic function v∗ς2(·, t) and λς2 := 1
ω lnr(Pς2(ω)) such that eλς2

tv∗ς2(x, t) is a
solution of the linear system (30) on E. In view of Lemma 4.1 and φ0 ∈ C0, one observes that

(I(·, t, φ0), C(·, t, φ0), B(·, t, φ0))� (0, 0, 0), ∀ t > 0.

Then there exists a M2 > 0 such that

(I(x, n2ω, φ0), C(x, n2ω, φ0), B(x, n2ω, φ0)) ≥M2e
λς2n2ωv∗ς2(x, n2ω), ∀ x ∈ Ω̄.

Then the comparison theorem for the parabolic equation (see, e.g., [20]) implies that

(I(x, t, φ0), C(x, t, φ0), B(x, t, φ0)) ≥M2e
λς2

tv∗ς2(x, t), ∀ x ∈ Ω̄, t ≥ n2ω. (32)

Since λς2 > 0, it follows from (32) that I(x, t, φ0) → ∞, C(x, t, φ0) → ∞, and B(x, t, φ0) → ∞ as t → ∞. This
contradiction proves Claim 3.

The stable set ofM0 for Φ(ω) is denoted by W s(M0). Then the above claims imply thatM0 is an isolated invariant set for
Φ(ω) in C, and W s(M0)

⋂
C0 = ∅.

From Theorem 3.7 in [19] and [5], it is clear that Φ(ω) has a global attractor A0 in C0. In view of Theorem 1.3.1 in [27] (see
also [21, 22]), it follows that Φ(ω) is uniformly persistent with respect to (C0, ∂C0) in the sense that there is a % > 0 such that

lim inf
n→∞

d(Φ(ω)n(u0(·)), ∂C0) ≥ %, ∀u0(·) ∈ C0.

SinceA0 = Φ(ω)A0, we have that I0(·) > 0, C0(·) > 0 andB0(·) > 0, for all u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ A0. Let
B0 :=

⋃
t∈[0,ω]

Φ(t)A0. Then B0 ⊂ C0 and lim
t→∞

d(Q(t)u0(·), B0) = 0, ∀u0(·) ∈ C0. Define a continuous function p : C → R+

by
p(u0(·)) = min{min

x∈Ω̄
I0(x),min

x∈Ω̄
C0(x),min

x∈Ω̄
B0(x)},

for any u0(·) = (S0, I0, C0, Q0, R0, B0)(·) ∈ C. Since B0 is compact subset of C0, it follows that inf
u0(·)∈B0

p(u0(·)) =

min
u0(·)∈B0

p(u0(·)) > 0. Thus, there is a ξ∗ > 0 such that

lim inf
t→∞

p(Φ(t)u0(·)) = lim inf
t→∞

min{min
x∈Ω̄

v(x, t, u0(·)) : v = I, C,B} ≥ ξ∗,

for any u0(·) ∈ C0.
In view of Lemma 4.1, there is another ξ ∈ (0, ξ∗) such that

lim inf
t→∞

v(t, u0(·)) ≥ ξ, ∀u0(·) ∈ C0, v = S, I, C,Q,R,B. (33)
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Furthermore, Theorem 1.3.6 in [27] implies that Φ(ω) has
a fixed point û ∈ C0 and hence, system (1) admits an ω-
periodic solution Φ(t)û ∈ C0. By Lemma 4.1, one can further
show that û(x, t) := Φ(t)û is a (componentwise) positive ω-
periodic solution.

For any u0(·) ∈ X+
ζ with I0(·) 6≡ 0 orC0(·) 6≡ 0 orB0(·) 6≡

0, it follows from Lemma 4.1 that u0(·) 6∈ J̃0, for each integer
n. Thus, one concludes that there is an integer n0 = n0(u0(·))
such that Φn0(ω)u0(·) ∈ C0. Otherwise, Φn(ω)u0(·) ∈ ∂C0,
for each integer n, and hence, u0(·) ∈ ∂C0, due to Lemma 4.1.
This implies that u0(·) ∈M∂ = J̃0, a contradiction. Since

Φ(t)u0(·) = Φ(t− n0ω)
(
Φn(ω)u0(·)

)
, ∀ t ≥ n0ω,

it follows from (33) that

lim inf
t→∞

v(t, u0(·)) ≥ ξ, ∀ v = S, I, C,Q,R,B,

where u0(·) ∈ X+
ζ with I0(·) 6≡ 0 or C0(·) 6≡ 0 or B0(·) 6≡ 0.

The proof is finished.

5. Conclusion
This paper investigates a reaction-diffusion model

describing the transmission of Typhoid fever with spatial
homogeneity and seasonality to reflect the effect of population
movement in an temporally periodic environment. A
mathematical problem comes from the first two equations
of system (1), namely, the denominator S(x, t) + I(x, t) +

C(x, t) + Q(x, t) + R(x, t) must be positive at any location
x ∈ Ω̄ and any time t ≥ 0. To overcome this difficulty, the
constant ζ in (3) is introduced, and it can be shown that the
feasible domain X+

ζ is positively invariant under the solution
maps associated with system (1) (see Lemma 2.1). Another
mathematical challenge is that the solution maps associated
with system (1) lose the compactness since no diffusion term
is added on the class Q(x, t) representing the typhoid patients
who are quarantined symptomatic. This reflects the fact that
Q(x, t) cannot move randomly in the habitat, which makes
mathematical analysis more difficult. For this problem the
Kuratowski measure of noncompactness (see, e.g., [2]) is
introduced, and the solution maps associated with system (1)
will be κ-contracting (see Lemma 2.3).

In order to introduce the basic reproduction number,R0, for
the model, one first determines the disease-free state E0(x)

and the linearized system around E0(x) of (1) is constructed.
Basically, the linearized system around E0(x) can be divided
into two parts; one is related to the new infection (see (14)),
and the other one is related to the internal evolution (see
(15)). Utilizing the concepts in [1, 4, 23, 24, 26], the basic
reproduction number, R0, is defined as the spectral radius
of the next generation operator (see (21)). The index R0

determines not only the local stability of the disease-free state

E0(x) (see Lemma 3.2), but also the extinction/persistence of
Typhoid (see Theorem 4.1). Using the comparison principle
and the persistent theory, it can be shown that the Typhoid
fever will persist if R0 > 1 (Theorem 4.1 (ii)). On the other
hand, the Typhoid fever will die out if R0 < 1 and the rate
of immunity loss is ignored, that is, ρ = 0 (Theorem 4.1
(i)). From the study in this paper, it is worth pointing out
that incorporating with the immunity loss (i. e. ρ > 0), it is
challenging to show that the Typhoid fever will die out under
the conditionR0 < 1. Although the rate of the immunity loss,
ρ, does not appear in the definition of R0, it seems that ρ also
play an important in the extinction of Typhoid fever.

The mobility of the infected population (before they become
infectious) during the incubation period could be also a central
factor affecting the transmission of Typhoid fever, and the
modeling usually involves a delay term with spatial averaging.
This leads to a nonlocal and time-delayed system describing
the Typhoid fever transmission, in which the incubation in the
population is included. It will be also interesting to investigate
this reaction-diffusion model with nonlocal delay effect in the
near future.
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