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Abstract: One significant risk factor that is considered to contribute to Kenya’s TB burden is HIV. TB is one of the most
common opportunistic infections associated with HIV, and HIV infection increases the risk of developing active TB disease
in individuals with latent TB infection. Due to their compromised immune systems, increased susceptibility to TB infection
and latent TB reactivation, people with HIV have a higher probability of attaining TB. This study develops an age-stratified
mathematical model with optimal control for co-infection of HIV and TB. The model’s reproduction number, as well as the
equilibrium of endemic and disease-free states have been computed. Least Squares technique of minimization has be used to
determine the model parameters. HIV antiretroviral therapy treatment adherence and tuberculosis treatment have been considered
for optimization. Runge-KuttaO(h4) has been used to solve the system differential equations for its high accuracy and flexibility.
Results from the numerical simulations show that ART adherence is the best intervention to control the co-infection in its earlier
stages (HIV and latent TB). TB treatment is the best intervention for those affected with the coinfection on the later stage (HIV
and active TB). Considering viral load suppression and TB prevention, viral load suppression is most effective for children and
TB prevention is most effective for adults. The results of this research can be used by the Ministry of Health (MOH) for emphasis
on most effective interventions as well as a basis study tool that can be recreated for other co-infections.
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1. Introduction
HIV is transmitted through certain body fluids, including

blood, semen, vaginal fluids, and breast milk [1]. The most
common modes of transmission include unprotected sexual
intercourse, sharing needles or syringes contaminated with
HIV-infected blood, and from mother to child during childbirth
or breastfeeding [2]. Tuberculosis (TB) is an infectious disease
caused by the bacterium Mycobacterium tuberculosis. TB
is primarily spread through the air when an infected person
coughs, sneezes, or talks, releasing tiny droplets containing

the bacteria [3].
HIV-TB coinfection occurs when an individual is infected

with both HIV (Human Immunodeficiency Virus) and TB
(Tuberculosis). HIV-TB coinfection can have synergistic
effects, with each disease exacerbating the progression and
severity of the other. HIV infection raises the chance of
developing active TB disease in those with latent TB infection,
and TB is one of the most prevalent opportunistic infections
linked to HIV. HIV-positive individuals are more likely to
develop TB because of weakened immune systems, increased
vulnerability to TB infection, and latent TB reactivation [4].
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HIV primarily targets CD4+ T cells, which are essential for
TB infection control, weakening the immune system. As
a result, those who have HIV are less able to control the
TB germs, which causes the TB condition to progress more
quickly. Co-infected individuals may have more severe and
rapid progression of both HIV and TB, leading to increased
morbidity and mortality if not diagnosed and treated promptly.
Diagnosis and treatment of HIV-TB co-infection require
careful coordination and management, including simultaneous
treatment of both diseases and monitoring for drug interactions
and potential complications [5].

Since the first case was identified in 1984, the HIV epidemic
in Kenya has progressed to rank among the leading causes
of death and has put enormous strain on the country’s health
system and financial resources [6]. Antiretroviral therapy
(ART), a medication used to treat HIV, slows the progression
of the illness by preventing the virus from replicating in
the body. In Kenya, tuberculosis (TB) is a serious public
health concern that presents difficulties for both communities
and healthcare systems across. Kenya and other SubSaharan
African countries are among those with a high worldwide TB
burden. Each year, more than 120,000 people contract TB,
with about 11% of cases occurring in children. According to
estimates from Kenya’s Ministry of Health, TB caused 3.2%
of all fatalities in 2020 [7].

According to the [4], Kenya has emphasized efforts to treat
HIV/TB coinfection since HIV infection significantly rises the
incidence of active tuberculosis to patients who are dually
infected. Kenya was the first country in sub-Saharan Africa
to meet the worldwide targets for identification of tuberculosis
cases at 80% and treatment rate at 85%. The percentage of TB
patients who were tested for HIV increased from 83% in 2008
to 95% in 2009, exceeding the set national target which of 90%
TB cases being tested in 2013.

A study on Rural Kenyan TB patients’ HIV burden and
treatment outcomes showed despite the strong uptake of
antiretroviral therapy (ARTs) and cotrimoxazole preventative
medicine, HIV infection and unknown HIV status were linked
to reduced TB treatment completion rates, a higher risk of
death, and TB treatment default [8]. This result emphasized
the need for greater study on methods targeted at finishing
TB treatment and reducing death. A nonlinear compartment
model was used to assess the impact of media coverage on the
control and prevention of HIV/AIDS and tuberculosis [9]. The
study concluded that if TB infection is treated properly then
HIV infection can be kept under control. A comprehensive
review and meta-analysis study to determine the combined
burden of virological unsuppression among individuals with
HIV-TB and the impact of TB on virological failure in Ethiopia
by [10] suggested stepping up efforts to prevent tuberculosis,
managing cases as soon as they are identified, and giving adult
HIV-positive individuals’ viral load monitoring and adherence
assistance should be a top priority.

According to KENPHIA report [11], the estimated HIV
prevalence in Kenya for adults aged 15 − 49 is 4.5%. In
contrast to the 5% national HIV prevalence, the rates for those
aged 50 − 54, 55 − 59, and 60 − 64 were 9%, 8%, and
6%, respectively. Individuals who received HIV Testing and

received results were 64.4% for 15 − 24 years, 87.9% for
25− 49 years, 74.6% for 50− 64 years and 78.5% for 15− 49
years. HIV positive status on ART treatment; 49.1% for 15−24
years, 67.2% for 25 − 49 years, 80.8% for 50 − 64 years and
65.0% for 15− 49 years.

From the discussed previous work done, it is evident that
there needs to be more study on the effectiveness of the
different interventions put forward to control HIV-TB co-
infection. This study develops an age-stratified mathematical
model which has not been addressed by the previous studies
covered. This research paves way to helpful insights and ideas
which will impact positively in Kenya’s fight of infectious
diseases.

2. Materials and Methods
In this section, a deterministic mathematical model is

developed to analyze the transmission dynamics of the HIV
and TB co-infection. Model analysis is performed to check
the model’s well-posedness. The model is the subdivided to
three sub-models; HIV, TB and Full model. The equilibrium
states are computed and both local and global stability of the
sub-models is proved. Finally, the methods of solution are
presented.

2.1. Model Formulation

Various assumptions were made to simplify the complexity
of the disease interaction and to focus on specific aspects of
the problem. The risk of an individual contracting an infection
is not influenced by factors such as gender, social status, race,
or environmental factors. Individuals in the population have an
equal chance of encountering and transmitting the infection to
others. Drug resistance is asumed. Other health conditions that
can influence disease outcomes and treatment responses are
assumed. The population is considered to be mixing uniformly
(homogeneous) [12]. The entire population N(t) is split into
multiple epidemiological states at any given time t.

This study partitioned Kenyan population into 2 groups
according to available data from UNAIDS and National
Tuberculosis, Leprosy and Lung Disease Program (NLTP);
children 0 − 14 years, and adults above 15 years. Each group
is labeled by subscript i = 1, 2 respectively. Each population
of age group i is classified into ten compartments. The model
has this classes: The susceptible individuals Si(t) are recruited
at rate π. These class can be infected with HIV and be
undiagnosed Ui(t) or Latent TB infected Ei(t). It is assumed
that individuals infected with HIV become Diagnosed Di(t)
at a rate εi. These individuals can get recruited under anti-
retroviral therapy class Ai(t). Individuals in the Ai(t) may
drop out of art at rate di and join class Di(t). Individuals
infected with Latent TB can advance to Active TB Ii(t) or
treated to join the Treatment class Ri(t) [13]. Treated Active
TB individuals can be reinfected with TB at a rate θ to join Ei.
Individuals can either have co-infection of undiagnosed HIV
and Latent TB, CLUi, diagnosed HIV and Latent TB, CLHi or
HIV and Active TB, CTHi
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Figure 1. Parameterized compartmental model for HIV and TB co-infection.

Table 1. Model parameters.

Parameters Epidemiological Interpretation

π(i) Recruitment rate for susceptible individuals

βH(i) Transmission rate for HIV respectively

βT (i) Transmission rate for TB respectively

µ(i) Natural mortality rate

ε(i) Rate of HIV testing

α1(i) Progression rate from latent to Active TB

α2(i) Progression rate from CLH(i) to CTH(i)

τH(i) Treatment rate of HIV infectives

τT (i) Treatment rate of TB infectives

τC(i) Treatment rate of TB-HIV co-infectives

θ(i) TB treatment failure

d(i) Rate of ART dropout

η(i) Proportion of ART non-adherence

δH(i) Mortality induced by HIV only

δT (i) Mortality induced by TB only

δC1(i) Mortality induced by CLU(i)

δC2(i) Mortality induced by CLH(i)

δC3(i) Mortality induced by CTH(i)

The total population Ni(t) is given by;

Ni(t) = Si(t) + Ui(t) +Di(t) +Ai(t) + Ei(t) + Ii(t) (1)
+Ri(t) + CLUi(t) + CLHi(t) + CTHi(t), (2)

The force of infection associated with HIV is given as,
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λHi
=
βH(i)

N
(U +D + ηiA+ CLU + CLH + CTH)

Further, individuals infected with TB and those who are coinfected with HIV and TB can spread TB among susceptible
individuals with the force of infection, given as,

λTi
=
βT (i)

N
(I + CTH)

The differential equations based on the compartmental model and the parameter descriptions are provided by,

dSi
dt

= π(i) − (λH(i) + λT (i) + µi)Si,

dUi
dt

= λH(i)Si − (λT (i) + εi + δH(i) + µ(i))Ui,

dDi

dt
= ε(i)Ui(i) + d(i)Ai − (λT (i) + τH(i) + µ(i))Di,

dAi
dt

= DiτH(i) + (CLHi + CTHi)τC(i) − (µ(i) + d(i))Ai,

dEi
dt

= λT (i)Si + θ(i)Ri − (α1(i) + λH(i) + µ(i))Ei,

(3)

dIi
dt

= α1(i)Ei − (λH(i) + τT (i) + δT (i) + µ(i))Ii,

dRi
dt

= τT (i)Ii − (θ(i) + µ(i))Ri,

dCLU(i)

dt
= λT (i)Ui + λH(i)Ei − (ε(i) + δC1(i) + µ(i))CLU(i),

dCLH(i)

dt
= ε(i)CLU(i) + λT (i)Di − (τC(i) + α2(i) + δC2(i)

+ µ(i))CLH(i),

dCTH(i)

dt
= α2(i)CLHi + λH(i)Ii − (τC(i) + δC3(i)

+ µ(i))CTH(i)

2.2. Model Analysis

This section investigates the positivity and boundedness of
the solution. It is crucial for the formulated epidemiological
model to be biologically reasonable [14].

2.2.1. Positivity
For realistic modeling of human population, all the state

variables must be positive and the solutions to the model
system with positive initial conditions should remain positive.
This theorem is arrived at:

Theorem 2.1. For the given initial conditions of the model
(3), the solutions of our model system remains positive for all
t > 0.

Proof. Susceptible population: Taking the equation for the
susceptible and assuming there is no disease,

dSi
dt

= π(i) − (λH(i) + λT (i) + µi)Si ≥ −φsSi

=⇒ dSi
dt
≥ −φsSi

dSi
Si
≥ −φsdt =⇒ ln |Si| ≥ −φst+ c1

for constant c1 and φs = µi. Taking the exponential for both
sides,

eln |Si| ≥ e−φst+c1 = Ke−φst

Si(t) ≥ Ke−φst

where K = ec1 is a constant. Substituting the initial condition
Si(0) = Si0, then

Si(0) ≥ Ke−φs(0) = Si0

=⇒ Si(t) ≥ Si0e−φst

Hence K = Si0. The exponential part is always positive
and Si0 ≥ 0, hence Si(t) is always positive, meaning;

Si(t) ≥ 0

In the same way, all our states are positive,
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Ui(t) ≥ Ui0e−φut, Di(t) ≥ Di0e
−φdt, Ai(t) ≥ Ai0e−φat,

Ei(t) ≥ Ei0e−φet, Ii(t) ≥ Ii0e−φIt, Ri(t) ≥ Ri0e−φr ,

CLU(i)(t) ≥ CLU(i0)e
−φclut, CLH(i)(t) ≥ CLH(i0)e

−φclht,

CTH(i)(t) ≥ CTH(i0)e
−φctht,

given the initial conditions,
Si0, Ui0, Di0, Ai0, Ei0, Ii0, Ri0, CLUi0, CLHi0, CTHi0 (4)

2.2.2. Boundedness
Boundedness ensures population sizes within each compartment cannot grow indefinitely or exceed reasonable and feasible

range. This arrives at,
Theorem 2.2. The solutions of the model system (3) with initial conditions given are bounded in a positive region, Ω
Proof.

dNi
dt

=
dSi
dt

+
dUi
dt

+
dDi

dt
+
dAi
dt

+
dEi
dt

+
dIi
dt

+
dRi
dt

+
dCLUi
dt

+
dCLHi
dt

+
dCTHi
dt

dN

dt
= π(i) − (Si + Ui +Di +Ai + Ei + Ii +Ri + CLUi + CLHi + CTHi)µi − δT (i)Ii − δC1(i)CLU(i)

− δC2(i)CLH(i) − δC3(i)CTH(i)

dNi
dt

= π(i) −Niµi − δT (i)Ii − δC1(i)CLU(i) − δC2(i)CLH(i) − δC3(i)CTH(i)

Asumming there is no disease in the system,

dNi
dt
≤ π(i) −Niµi.

Solving the above inequality using the integrating factor method and applying the initial condition, Ni(0) = Ni0,

Ni(t) ≤
π(i)

µi
+ (Ni0 −

π(i)

µi
)e−µit

If Ni0 >
π(i)

µi
,, the right-hand side (RHS) experiences the largest possible value of Ni0. That is, Ni(t) ≤ Ni0 for all t > 0.

If Ni0 <
π(i)

µi
, so that the largest possible value of the RHS approaches π(i)

µi
as time t goes to infinity Ni0. That is, Ni(t) ≤ Ni0

for all t > 0.
Hence Ni(t) ≤ max{Ni0,

π(i)

µi
} ∀ t > 0 thus Ω

2.3. HIV Submodel Analysis

In this section, the model system 3 is analyzed by considering that TB is not present in the population. Thus, by substituting
Ei = Ii = T = CLU(i) = CLH(i) = CTH(i) = 0, the HIV sub-model is obtained as,

dSi
dt

= π(i) − (λH(i) + λT (i) + µi)Si,

dUi
dt

= λH(i)Si − (λT (i) + εi + δH(i) + µ(i))Ui,

dDi

dt
= ε(i)Ui(i) + d(i)Ai − (λT (i) + τH(i) + µ(i))Di,

dAi
dt

= DiτH(i) + (CLHi + CTHi)τC(i) − (µ(i) + d(i))Ai.

(5)

2.3.1. HIV-Free Equilibrium, ˆEH0

The HIV-Free Equilibrium is obtained by setting the system of differential equations to zero and setting all infected classes to
zero. The EH0,

ˆEH0 =

(
πi
µi
, 0, 0, 0

)
.
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2.3.2. Endemic Equilibrium, ÊH

The endemic equilibrium is obtained by setting the system of differential equations to zero and solving for each variable. The
EE,

ÊH = (Ŝi, Ûi, D̂i, Âi)

where,

Ŝi =
πi

(λH(i) + λT (i) + µi)
,

Ûi =
λH(i)πi

h1
,

D̂i =
εiÛi + diÂi

(λT (i) + τH(i) + µi)
,

Âi =
τH(i)εiλH(i)πi

(µi + di)(λT (i) + τH(i) + µi)h1
,

where h1 = (λT (i) + εi + δH(i) + µi)(λH(i) + λT (i) + µi).

2.3.3. Reproduction Number, RH
0

Using the method by [15], the basic reproduction number was computed using the next generation matrix method. The disease
infected classes that were considered are Ui, Di, Ai to compute for RH0 . The matrix F of new infections and matrix V showing
the transfer of infections from one compartment to the other are generated.

F =

λH(i)Si
0
0

 ,
V =

 (λT (i) + εi + δH(i) + µi)Ui
−εiUi − diAi + (λT (i) + τH(i) + µi)Di

−τH(i)Di + (CLH(i) + CTH(i))τC(i) + (µi + di)Ai

 .
Computing the derivatives with respect to Ui, Di, Ai and substituting for DFE to get the Jacobian matrices F and V ,

F =

βH(i) βH(i) ηiβH(i)

0 0 0
0 0 0

 ,

V =

δH(i) + µi + εi 0 0
−εi τH(i) + µi −di
0 −τH(i) di + µi

 .
The next generation matrix is computed and given by FV −1, βH(i)h1

h2(δH(i)+µi+εi)
βH(i)(di+ηiτH(i)+µi)

h2

βH(i)(di+ηiµi+ηiτH(i))
h2

0 0 0
0 0 0

 ,
where h2 =

(
(di + µi)(µi + εi) + τH(i)(µi + ηiεi)

)
, h3 = µi

(
di + τH(i) + µi

)
. Computing the eigenvalues of the matrix

FV −1 to obtain R0,

RH0 =
βH(i)

(
(di + µi)(µi + εi) + τH(i)(µi + ηiεi)

)
µi
(
di + τH(i) + µi

) (
δH(i) + µi + εi

) .

2.3.4. Stability Analysis of HIV-Free Equilibrium
The local stability analysis of the HIV-free equilibrium point (EH0) of the model is determined by finding the Jacobian matrix

and its eigenvalues [16]. An equilibrium point is locally asymptotically stable if all the eigenvalues of the Jacobian matrix at that
point are negative. The general Jacobian matrix of model, JEH0

, is written as:
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
−µi −βH(i) −βH(i) −ηiβH(i)

0 βH(i) − (εi + δH(i) + µi) βH(i) ηiβH(i)

0 εi −(τH(i) + µi) di
0 0 τH(i) −(di + µi)

 .
By inspection of JE0 , the first eigenvalue is on row 1, column 1, λ1 = −µi which is negative. The row and column are

eliminated with which the eigenvalue is contained to get the reduced matrix to be,βH(i) − (εi + δH(i) + µi) βH(i) ηiβH(i)

εi −(τH(i) + µi) di
0 τH(i) −(di + µi)

 .
The Routh-Hurwitz criterion
A 3rd-degree polynomial,

p(s) = s3 + a1s
2 + a2s+ a3, (6)

is stable if and only if a1, a2, a3 > 0 and a1a2 > a3.
Rourth-Hurtwiz criterion is used to determine when the eigenvalues are negative [17]. The characteristic polynomial are

determined using the trace, sum of diagonal minors and the determinant. The characteristic polynomial P (s) is given by,

P (s) = s3 − [βH(i) − di − δH(i) − τH(i) − 3µi − εi]s2 − [βH(i)

(
di + τH(i) + 2µi + εi

)
− δH(i)(di + τH(i)

+2µi)− 2µi(di + εi)− diεi − τH(i)(2µi + εi)− 3µ2
i ]s− [βH(i)[(di + µi)(µi + εi) + τH(i)(µi

+ ηiεi)]− µi
(
di + τH(i) + µi

) (
δH(i) + µi + εi

)
].

(7)

Hence stability is achieved by, a1, a2, a3 > 0 and a1a2 > a3 where,

a1 = di + δH(i) + τH(i) + 3µi + εi − βH(i),

a2 = βH(i)

(
di + τH(i) + 2µi + εi

)
− δH(i)[di + τH(i) + 2µi]− 2µi(di + εi)− diεi − τH(i)(2µi + εi)− 3µ2

i ,

a3 = βH(i)

(
(di + µi)(µi + εi) + τH(i)(µi + ηiεi)

)
− µi

(
di + τH(i) + µi

) (
δH(i) + µi + εi

)
.

2.3.5. Global Stability of the HIV-Free Equilibrium
The method illustrated in [18, 19] is used to investigate

the global asymptotic stability (GAS) of DFE point of the
HIV model, EH0 . Firstly, the model 5 must be written in the
pseudotriangular form:

Ẋ1 = A1(X1 −X∗1 ) +A2X2, (8)

Ẋ2 = A3X2, (9)

where X1 = (Si), represents the number of uninfected
individuals and X2 = (Ui, Di, Ai), denotes the number of

infected individuals. Let X∗ be the HIV-free equilibrium.
From X1,

A1 =
[
−µi

]
, A2 =

[
−βH(i) −βH(i) −ηiβH(i)

]
.

We can easily see that the eigenvalue of matrix A1 is both
real and negative (−µi < 0). This shows that the subsystem
Ẋ1 = A1(X1−X∗1 )+A2X2, is globally asymptotically stable
at the HIV free equilibrium X∗1 =

(
πi

µi

)
. Additionally, from

subsystemX2 = A3X2, we obtain the following matrix A3,

βH(i) − (δH(i) + µi + εi) βH(i) ηiβH(i)

εi −(τH(i) + µi) di
0 τH(i) −(di + µi)

 . (10)

Notice that all the off-diagonal entries of A3 are nonnegative (equal to or greater than zero), showing that A3 is a Metzler
matrix. To show the global stability of the HIV-free equilibrium ET0, we need to show that the square matrix A3 in (10) is
Metzler stable. We therefore need to prove the following;

Lemma 2.1. Let M be a square Metzler matrix that is block decomposed:

M =

[
A B
C D

]
(11)

,
where A and D are square matrices. The matrix M is Metzler stable if and only if A and D − CA−1B are Metzler stable.
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Proof. Matrix M in our case is A3. We therefore let,

A =

[
βH(i) − (δH(i) + µi + εi) βH(i)

εi −τH(i) − µi

]
,

B =

[
ηiβH(i)

di

]
, C =

[
0 τH(i)

]
& D =

[
−(di + µi)

]
.

(12)

Clearly, A is Metzler stable if
βH(i)

(δH(i) + µi + εi)
< 1. Then,

D − CA−1B =

[
βH(i)h2−h3(δH(i)+µi+εi)

(τH(i)+µi)(δH(i)+µi+εi)−βH(i)(τH(i)+µi+εi)

]
(13)

From (13), D − CA−1B is Metzler stable when the main diagonal element is negative. Simplifying the element,

βH(i)

[
(di + µi)(µi + εi) + τH(i)(µi + ηiεi)

]
µi
(
di + τH(i) + µi

) (
δH(i) + µi + εi

) < 1,

RH0 < 1.

Hence EH0 is G.A.S when RH0 < 1.
Thus the HIV free Equilibrium point ETOH is globally

asymptotically stable. Epidemiologically, the above result
implies that when there is no HIV infection, different human
populations under consideration will stabilize at the EHO .
However, if there exists a HIV infection infection, then
an appropriate control e.g. HIV ART treatment would be
necessary to control the disease and restore the system to the

stable HIV-free equilibrium.

2.4. TB Submodel Analysis

In this section, the model system 3 is analyzed by
considering that HIV is not present in the population. Thus, by
substituting Ui = Di = Ai = CLU(i) = CLH(i) = CTH(i) =
0, the TB sub-model is obtained as,

dSi
dt

= π(i) − (λH(i) + λT (i) + µi)Si,

dEi
dt

= λT (i)Si + θ(i)Ri − (α1(i) + λH(i) + µ(i))Ei,

dIi
dt

= α1(i)Ei − (λH(i) + τT (i) + δT (i) + µ(i))Ii,

dRi
dt

= τT (i)Ii − (θ(i) + µ(i))Ri.

(14)

2.4.1. TB-Free Equilibrium, ET0

The TB-Free Equilibrium is obtained by setting the system of differential equations to zero and setting all infected classes to
zero. The ET0,

ET0 =

(
πi
µi
, 0, 0, 0

)
.

2.4.2. Endemic Equilibrium, ET

The endemic equilibrium is obtained by setting the system of differential equations to zero and solving for each variable. The
EE,

ÊT = (Ŝi, Êi, Îi, R̂i)

where,
Ŝi =

πi
(λH(i) + λT (i) + µi)

,

Êi =
Ŝi

(α1(i) + λH(i) + µi)

(
αT +

θiτT (i)α1(i)λT (i)

h4

)
,

Îi =
α1(i)λT (i)πi(θi + µi)

(λH(i) + λT (i) + µi)h4
,
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R̂i =
τT (i)α1(i)λT (i)πi

(λH(i) + λT (i) + µi)h4
,

where is h4 = ((θi + µi)(α1(i) + λH(i) + µi)(λH(i) + τT (i) + δT (i) + µi)− α1(i)θiτH(i)).

2.4.3. Reproduction Number, RT
0

Using the method by [15], the basic reproduction number was computed using the next generation matrix method. The disease
infected classes that were considered are Ei, Ii to compute for RT0 . The matrix F of new infections and matrix V showing the
transfer of infections from one compartment to the other are generated.

F =

[
λT (i)Si + θiRi

0

]
,

V =

[
(α1(i) + λH(i) + µi)Ei

−α1(i)Ei + (λH(i) + τT (i) + δT (i) + µi)Ii

]
.

Computing the derivatives with respect to Ei, Ii and substituting for DFE to get the Jacobian matrices F and V ,

F =

[
0 βT (i)

0 0

]
,

V =

[
α1(i) + µi 0
−α1(i) τT (i) + δT (i) + µi

]
.

Computing the next generation matrix given by,

FV −1 =

[
α1(i)βT (i)

h5

βT (i)

τT (i)+δT (i)+µi

0 0

]

where h5 = α1(i)δT (i) + µ2
i + α1(i)µi + δT (i)µi + α1(i)τT (i) + µiτT (i). Computing the eigenvalues of the matrix FV −1 to

obtain R0,

RT0 =
α1(i)βT (i)

(α1(i) + µi)(τT (i) + δT (i) + µi)
.

2.4.4. Local Stability of TB-Free Equilibrium
The general Jacobian matrix, JET0

of model after substituting ET0 is written as:
−µi 0 −βT (i) 0

0 −(α1(i) + µi) 0 θi
0 α1(i) −(δT (i) + µi + τT (i)) 0
0 0 τT (i) −(θi + µi)

 .
By inspection on row 1 and column 1, a negative eigenvalue λ1 = −µi is gotten. The matrix reduces to;

JE0
=

−(α1(i) + µi) 0 θi
α1(i) −(δT (i) + µi + τT (i)) 0

0 τT (i) −(θi + µi)

 . (15)

The Routh-Hurwitz criterion
The characteristic polynomial of (15) is computed and (6) criteria is used as applied in HIV sub-model.

P (s) = s3 + [(α1(i) + δT (i) + τT (i) + θi + 3µi)]s
2 − [(δT (i)

+ µi + τT (i))(θi + µi) + (α1(i) + µi)(θi + µi)

+ (α1(i) + µi)(δT (i) + µi + τT (i))]s+ [µ2
i (α1(i) + δT (i)

+ θi + τT (i) + µi) + θiµi(α1(i) + δT (i) + τT (i))

+ α1(i)µi(δT (i) + τT (i) +
δT (i)θi

µi
)].

Hence stability is achieved by,
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1. (α1(i) + δT (i) + τT (i) + θi + 3µi) > 0,
2. [(δT (i) + µi + τT (i))(θi + µi) + (α1(i) + µi)(θi + µi) + (α1(i) + µi)(δT (i) + µi + τT (i))] > 0,

3. [µ2
i (α1(i) + δT (i) + θi + τT (i) + µi) + θiµi(α1(i) + δT (i) + τT (i)) + α1(i)µi(δT (i) + τT (i) +

δT (i)θi

µi
)] > 0,

4. (α1(i) +δT (i) +τT (i) +θi+3µi)[(δT (i) +µi+τT (i))(θi+µi)+(α1(i) +µi)(θi+µi)+(α1(i) +µi)(δT (i) +µi+τT (i))] >

[µ2
i (α1(i) + δT (i) + θi + τT (i) + µi) + θiµi(α1(i) + δT (i) + τT (i)) + α1(i)µi(δT (i) + τT (i) +

δT (i)θi

µi
)].

2.4.5. Global Stability of the TB-Free Equilibrium
The method illustrated in [18, 19] is used to investigate

the global asymptotic stability (GAS) of DFE point of the
TB model, ET0 . Firstly, the model 14 must be written in the
pseudotriangular form:

Ẋ1 = A1(X1 −X∗1 ) +A2X2, (16)

Ẋ2 = A3X2, (17)

where X1 = (Si, Ri), represents the number of uninfected
individuals and X2 = (Ei, Ii), denotes the number of infected
individuals. Let X∗ be the TB-free equilibrium. From X1,

A1 =

[
−µi 0

0 −(θi + µi)

]
, A2 =

[
0 −βT (i)

0 τT (i)

]
.

We can easily see that the eigenvalues of matrix A1 are

both real and negative (−µi < 0,−(θi + µi) < 0). This
shows that the subsystem Ẋ1 = A1(X1 − X∗1 ) + A2X2,
is globally asymptotically stable at the TB free equilibrium
X∗1 =

(
πi

µi
, 0
)

. Additionally, from subsystem X2 = A3X2,
we obtain the following matrix,

A3 =

[
−(α1(i) + µi) βT (i)

α1(i) −(µi + δT (i) + τT (i))

]
. (18)

Notice that all the off-diagonal entries ofA3 are nonnegative
(equal to or greater than zero), showing that A3 is a Metzler
matrix. To show the global stability of the TB-free equilibrium
ET0, we need to show that the square matrix A3 in (18) is
Metzler stable. We therefore need to prove the lemma outlined
at (11).

Proof. Matrix M in our case is A3. We therefore let,

A =
[
−(α1(i) + µi)

]
, B =

[
βT (i)

]
,

C =
[
α1(i)

]
& D =

[
−(µi + δT (i) + τT (i))

]
.

(19)

Clearly, A is Metzler stable. Then,

D − CA−1B =

[(
−(µi + δT (i) + τT (i)) +

α1(i)βT (i)

(α1(i) + µi)

)]
. (20)

From (20), D − CA−1B is Metzler stable when the main
diagonal element is strictly negative. This can be achieved by
reorganizing the diagonal element as follows,

(
−(µi + δT (i) + τT (i)) +

α1(i)βT (i)

(α1(i) + µi)

)
< 0,

α1(i)βT (i)

(α1(i) + µi)
< (µi + δT (i) + τT (i)),

α1(i)βT (i)

(α1(i) + µi)(µi + δT (i) + τT (i))
< 1,

RT0 < 1.

Hence ET0 is G.A.S when RT0 & < 1.
Thus the TB free Equilibrium point ETO is globally

asymptotically stable. Epidemiologically, the above result
implies that when there is no TB infection, different human
populations under consideration will stabilize at the ETO .
However, if there exists a TB infection, then an appropriate
control e.g. TB treatment would be necessary to control
the disease and restore the system to the stable TB-free

equilibrium.

2.5. Full Model Analysis

The whole system (3) is considered for full model analysis.

2.5.1. Disease-Free Equilibrium
The disease free equilibrium is obtained by setting the

system of differential equations to zero and setting all infected
classes to zero to get,

E0 =

(
πi
µi
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

2.5.2. Endemic Equilibrium, Êi

The EE equilibrium is obtained by setting the system of
differential equations 3 to zero and solving for each variable.
The Êi,

Êi = (Ŝi, Ûi, D̂i, Âi, Êi, Îi, R̂i, ˆCLU(i), ˆCLH(i), ˆCTH(i))

where,
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Ŝi =
πi

(λH(i) + λT (i) + µi)
, Ûi =

λH(i)πi

h6
,

D̂i =
εiλH(i)πi

(λT (i) + τH(i) + µi)h6
,

Âi =
τH(i)εiλH(i)πi

µi(λT (i) + τH(i) + µi)h6
+ τC(i)( ˆCLH + ˆCTH),

Êi =
1

(α1(i) + λH(i) + µi)

(
αT Ŝi +

θiτT (i)α1(i)λT (i)

h4
Ŝi

)
,

Îi =
α1(i)λT (i)πi(θi + µi)

(λH(i) + λT (i) + µi)h4
, T̂ =

τT (i)α1(i)λT (i)πi

(λH(i) + λT (i) + µi)h4
,

ˆCLU(i) =
1

(εi + δc1 + µi)

(
λT (i)λH(i)πi

h6
+ λH(i)Êi

)
,

ˆCLH(i) =
1

h7

(
εi ˆCLU(i) +

λT (i)εiλH(i)πi

h6

)
,

ˆCTH(i) =
1

(τ + δC1(i) + µi)

(
α2(i)

ˆCLH(i) +
λH(i)α1(i)λT (i)(θi + µi)

h4
Ŝi

)
,

where h4 = ((θi+µi)(α1(i)+λH(i)+µi)(λH(i)+τT (i)+δT (i)+µi)−α1(i)θiτH(i)) and h6 = (λT (i)+εi+δH(i)+µi)(λH(i)+
λT (i) + µi).

2.5.3. Basic Reproduction Number
Using the method by [15], the basic reproduction number was computed using the next generation matrix method. The

infectious classes that were considered are Ui, Di, Ai, CLU(i), CLH(i), CTH(i), Ii to compute for R0. The matrix F of new
infections and matrix V showing the transfer of infections from one compartment to the other are generated.

F =



λH(i)Si
0
0

λT (i)Ui + λH(i)Ei
0
0

α1(i)Ei


, (21)

and

V =



(λT (i) + εi + δH(i) + µi)Ui
−εiUi − diAi + (λT (i) + τH(i) + µi)Di

−τH(i)Di − (CLH(i) + CTH(i))τC(i) + (µi + di)Ai
(εi + δc1 + µi)CLU(i)

−εiCLU(i) − λT (i)Di + h7CLH(i)

−α2(i)CLH(i) − λH(i)Ii + (τ + δC1(i) + µi)CTH(i)

(λH(i) + δT (i) + τT (i) + µi)Ii


, (22)

where h7 = (τC(i) + α2(i) + δC1(i) + µi) The derivatives with respect to Ui, Di, Ai, CLU(i), CLH(i) , CTH(i), Ii are computed
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and substituted for E0 to get the Jacobian matrices F and V . Computing the next generation matrix given by,

FV −1 =



g∗1g1 g∗2g1 g∗3g1 g2 g3 g4 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Where,

g1 =
βH(i)

µi
(
di + τH(i) + µi

) , g∗1 =
h2(

δH(i) + µi + εi
)

g∗2 = (di + ηiτH(i) + µi), g
∗
3 = (di + ηi(µi + τH(i))),

g∗4 = µi
(
di + τH(i) + µi

) (
τC(i) + δC3(i) + µi

)
,

g∗5 = (α2(i) + τC(i) + µi),

g2 =
g∗4 (g∗5 + δC2(i)) + diεiτC(i) (g∗5 + δC3(i))

(δC1(i) + µi + εi)
(
τC(i) + δC3(i) + µi

)
(g∗5 + δC2(i))

g1 +
εig
∗
4 + h8 + α2(i)µiεi

(
di + τH(i) + µi

)
(δC1(i) + µi + εi)

(
τC(i) + δC3(i) + µi

)
(g∗5 + δC2(i))

g1,

g3 =

(
α2(i) + τC(i) + δC3(i) + µi

)(
α2(i) + τC(i) + δC2(i) + µi

)g4,
g4 =

(
τC(i)

(
di + ηiµi + ηiτH(i)

)
+ µi

(
di + τH(i) + µi

))(
τC(i) + δC3(i) + µi

) g1,

h8 = ηiεiτC(i)

(
τH(i) + µi

)
(g∗5 + δC3(i)) .

Computing the eigenvalues of the matrix FV −1 to obtain
that the basic reproduction number of the co-infection model
is the maximum of the absolute values of the eigenvalues of
RC0 which is given by,

RC0 = max{RH0 , RT0 }.

Thus, the following result has been stated arising from the
theorem of [20].

2.5.4. Local Stability of Disease Free Equilibrium
The local stability analysis of the disease-free equilibrium

point (DFE) of the model is determined by finding the Jacobian
matrix and its eigenvalues [16]. An equilibrium point is locally
asymptotically stable if all the eigenvalues of the Jacobian
matrix at that point are negative. The general Jacobian matrix
of model is written as:



−µi −βH(i) −βH(i) −ηiβH(i) 0 −βT (i) 0 −βH(i) −βH(i) −(βH(i) + βT (i))
0 c0 βH(i) ηiβH(i) 0 0 0 βH(i) βH(i) βH(i)

0 εi −(τH(i) + µi) di 0 0 0 0 0 0
0 0 τH(i) −(di + µi) 0 0 0 0 τC(i) τC(i)

0 0 0 0 −(α1(i) + µi) βT (i) θi 0 0 βT (i)

0 0 0 0 α1(i) −c5 0 0 0 0
0 0 0 0 0 τT (i) −(θi + µi) 0 0 0
0 0 0 0 0 0 0 −c1 0 0
0 0 0 0 0 0 0 εi −c2 0
0 0 0 0 0 0 0 0 α2(i) −c3


.

where c0 = βH(i) − (δH(i) + µi + εi), c1 = (δC1(i) + µi + εi), c2 = (α2(i) + τC(i) + δC2(i) + µi), c3 = (τC(i) + δC3(i) + µi) and
c5 = (µi+δT (i)+τT (i)). Clearly−µi,−(di+µi),−(µi+δT (i)+τT (i)),−(θi+µi),−(δC1(i)+µi+εi),−(α2(i)+τC(i)+δC2(i)+µi)
are the six negative eigenvalues of the jacobian matrix above. The matrix reduces to;



Applied and Computational Mathematics 2024; 14(1): 37-63 49


c0 βH(i) 0 βH(i)

εi −(τH(i) + µi) 0 0
0 0 −(α1(i) + µi) βT (i)

0 0 0 −c3

 .
The other four remaining eigenvalues of the matrix are the zeros of the polynomial,

P (s) = s4 +A1s
3 +A2s

2 +A3s+A4, (23)

where,

A1 = α1(i) + τC(i) + δC3(i) − βH(i) + δH(i) + τH(i) + 4µi + εi,

A2 = α1(i)[τC(i) + δC3(i) − βH(i) + δH(i) + τH(i) + 3µi + εi]− βH(i)[τC(i) + δC3(i) + τH(i) + 3µi + εi]

+ τH(i)

(
τC(i) + δC3(i) + δH(i) + 3µi + εi

)
+ τC(i)δH(i) + 3µiτC(i) + εiτC(i) + 3µiδC3(i) + εiδC3(i)

+ δC3(i)δH(i) + 3µiδH(i) + 3µi(2µi + εi),

A3 = α1(i)[−βH(i)

(
τC(i) + δC3(i) + τH(i) + 2µi + εi

)
+ τC(i)δH(i) + τH(i)[τC(i) + δH(i) + 2µi + εi] + 2µiτC(i)

+ εiτC(i) + δC3(i)
(
δH(i) + τH(i) + 2µi + εi

)
+ 2µiδH(i) + 3µ2

i + 2µiεi]− βH(i)[(2µi + εi)
(
τC(i) + δC3(i)

)
+ τH(i)

(
τC(i) + δC3(i) + 2µi

)
+ µi(3µi + 2εi)] + µi[τC(i)[2δH(i) + 3µi + 2εi] + δC3(i)[2δH(i) + 3µi

+ 2εi] + µi
(
3δH(i) + 4µi + 3εi

)
] + τH(i)[τC(i)[δH(i) + 2µi + εi] + δC3(i)(δH(i) + 2µi + εi) + µi[2δH(i)

+ 3µi + 2εi],

A4 =
(
α1(i) + µi

) (
τC(i) + δC3(i) + µi

)
[
(
τH(i) + µi

)
[δH(i) + µi + εi]− βH(i)

(
τH(i) + µi + εi

)
].

(24)

The Routh-Hurwitz criterion
A 4rd-degree polynomial P (s) = a4s

4 + a3s
3 + a2s

2 +
a1s + a0 is stable if and only if a4, a3, a4a1 − a3a2, a4a0 −
a3a1, a2a0 − a21 > 0.

Hence the E0 is locally asymptotically stable if,
1. Clearly A4 = 1 > 0 which is satisfied,
2. A1 > 0,
3. A3 −A1A2 > 0,
4. A4 −A1A3 > 0 and,
5. A2A4 −A2

3 > 0.

2.6. Sensitivity Analysis

The basic reproductive number R0 also called propagation
threshold of the model described by the system of differential
equation 3 is very important in establishing efficient control
measures. For its easiness to apply, Normalized Forward

Sensitive Index method is used to determine the sensitivity
indices as used in [21, 22]. It’s index with regard to each
parameter has been derived as follows to analyze the sensitivity
of R0 to any parameter(say µi),

ΩR0
µi

=
∂R0

∂µi

µi
R0

. (25)

Where,
1. ΩR0

µi
is positive, increase in µi leads to increase in R0

and,
2. ΩR0

µi
is negative, increase in µi leads to decrease in R0.

The main goal of all control measures is to reduce the
value of R0 and to analyze the propagation threshold such that
effective interventions can be determined. From the expression
of the basic reproductive number in 2.5.3 and 25, the following
is obtained:

ΩR0

βH(i)
=

∂R0

∂βH(i)

βH(i)

R0
= 1,

ΩR0
τT (i)

=
∂R0

∂τT (i)

τT (i)

R0
= −

τT (i)

µi + δT (i) + τT (i)
,

ΩR0
α1(i)

=
∂R0

∂α1(i)

α1(i)

R0
=

µi
α1(i) + µi

,

ΩR0

βT (i)
=

∂R0

∂βT (i)

βT (i)

R0
= 1,

ΩR0

δT (i)
=

∂R0

∂δT (i)

δT (i)

R0
= −

δT (i)

µi + δT (i) + τT (i)
,
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ΩR0

δH(i)
=

∂R0

∂δH(i)

δH(i)

R0
= −

δH(i)

δH(i) + µi + εi
,

ΩR0
ηi =

∂R0

∂ηi

ηi
R0

=
ηiεiτH(i)

h9
,

ΩR0
εi =

∂R0

∂εi

εi
R0

=
εi
(
δH(i)h10 + (ηi − 1)µiτH(i)

)(
δH(i) + µi + εi

)
(h9)

,

ΩR0
τH(i)

=
∂R0

∂τH(i)

τH(i)

R0
=

(ηi − 1)εi(di + µi)τH(i)(
di + τH(i) + µi

)
(h9)

,

ΩR0

di
=
∂R0

∂di

di
R0

= −
di(ηi − 1)εiτH(i)(
di + τH(i) + µi

)
(h9)

,

ΩR0
µi

=
∂R0

∂µi

µi
R0

= −µi

(
1

di + τH(i) + µi
+

1

δH(i) + µi + εi

)
+
−diεi − ηiεiτH(i) + µ2

i

h9
,

(26)

where h9 = (di + µi)(µi + εi) + τH(i)(µi + ηiεi) and h10 =
(
di + ηiτH(i) + µi

)
.

3. Results and Discussions

In this section, approximate solutions to the model equations 3 are found using O(h4) and O(h5) order Runge-Kutta methods
which are implemented via the solve ivp() function from Scipy library in Python. The initial populations are given by,

{N0 = 10000, S0 = 9850, D0 = 10, I0 = 5, U0 = A0 = 0,

E0 = R0 = CLU0 = CLH0 = CTH0 = 0} and
{N0 = 10000, S0 = 9850, D0 = 100, I0 = 50,

U0 = A0 = E0 = R0 = CLU0 = CLH0 = CTH0 = 0},

(27)

for children (0-14 years) and adults (above 15 years)
respectively.

3.1. Fitting Graphs and Parameters Estimation

This study used HIV data from UNAIDS that was available
online at HIV estimates with uncertainty bounds from 1991 to
present. It gives Global HIV & AIDS statistics for different
countries including Kenya. TB data was available from NLTP
accessible at DSTB Dashboard. TB data was available from
2015 to 2023. The data was prepared using Python by
filtering Kenya data only and also reorganizing the columns

by renaming.
Given the data points,

(t1, y1), (t2, y2), ..., (tn, yn), (28)

least squares method is used to find the parameter value P̂ such
that the approximate solution ŷ = f(t, P̂ ) gives the squared
sum of errors(SSE):

SSE(P̂ ) =

n∑
i=1

(yi − f(ti, P̂ ))2. (29)

(a) Children: βH(1) = 0.17, ε1 = 0.676 and SSE = 17430.58 (b) Adults: βH(2) = 0.29, ε2 = 0.78 and SSE = 612814.91

Figure 2. Fitting graphs for HIV new infections in the HIV diagnosed classes,Di & CLU(i), compared with UNAIDS data.
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The best approximate solution ŷ∗ is picked after minimizing SSE such that,

SSE(P̂ ∗) =
n

min
i=0
{SSEi(P̂ )} and ŷ∗ = f(t, P̂ ∗). (30)

(a) Children: τH(1) = 0.8, τC(1) = 0.67, d1 = 0.4 and SSE = 77398.29 (b) Adults: τH(2) = 0.75, τC(2) = 0.65, d2 = 0.25 and SSE = 63704.94

Figure 3. Fitting graphs for people living with HIV who are on ART,Ai, compared with UNAIDS data.

Using least squares method, figures 2, 3 and 4 are some of the fitting graphs that were obtained with their respective parameters
and SSE as described at (29).

The parameter values are presented on table 2 and 3 for children and adults respectively. They are based on Least Square
Method(LSM), previous study sources and estimation.

(a) Children: βT (1) = 0.31, α1(1) = 0.3, α2(1) = 0.6 and SSE = 10763.41 (b) Adults: βT (2) = 0.33, α1(2) = 0.25, α2(2) = 0.5 and SSE = 13421.10

Figure 4. Fitting graphs for those infected with TB, compared with NLTP data.

Throughout the fitting process, there are parts of the curve
that fit well while there are parts that do not fit well. The
latter is caused by non-uniform data distribution or different
behaviors in the data. This study would recommend assessing
polynomial fitting, spline fitting, or other nonlinear models.
Data points that are far from the curve (outliers) and have
unusual large residuals disproportionately affect the least
squares fit. The outliers should be determined if they are
measurement errors or genuinely part of the data. Also,
robust fitting techniques are recommended, like least absolute
deviation or weighted least squares.

3.2. Sensitivity Analysis

In epidemic modeling, sensitivity analysis is performed to
investigate model parameters with significant influence on
R0 and hence on the transmission and the spread of the
disease under study [23]. The model sensitivity analysis in
this study is used to investigate parameter influence on the
dynamics of HIV, TB and both HIV & TB infected population
under different conditions on the reproduction number, R0.
In order to eliminate the HIV-TB co-infection infection, the
reproduction number should be less than one, that is, R0 < 1.

From table 4, a positive sign on the SI indicates that an
increase in the value of such a parameter increases the value
of R0 and hence the growth of infected infection. On the
other hand, a negative sign is indicative of a parameter that
negatively affects R0.
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Table 2. Estimated parameters for children aged 0-14 years: y−1 = year−1.

Par Value Source Interval Units

π1 0.028N [2,6] (0.028N, 0.0409N) y−1

βH(1) 0.17 LSM (0.17, 0.2) y−1

βT (1) 0.31 LSM (0.25, 0.31) y−1

µ1 0.04 * (0.045, 0.055) y−1

ε1 0.676 LSM (0.6, 0.8) y−1

α1(1) 0.3 LSM (0.25, 0.4) y−1

α2(1) 0.6 LSM (0.5, 0.65) y−1

τH(1) 0.79 LSM (0.75, 0.95) y−1

τT (1) 0.58 NLTP (0.55, 0.6) y−1

τC(1) 0.78 LSM (0.67, 0.8) y−1

θ1 0.0001 [1] (0.0001, 0.9) y−1

η1 1-0.65 [4] 1-(0.5, 0.82) y−1

d1 0.4 LSM (0.2, 0.5) y−1

δH(1) 0.06 * (0.05, 0.08) y−1

δT (1) 0.1 * (0.08, 0.12) y−1

δC1(1) 0.14 * (0.1, 0.16) y−1

δC1(1) 0.14 * (0.1, 0.16) y−1

δC1(1) 0.24 * (0.2, 0.26) y−1

1 - [24], 2- [25], 4 - UNAIDS, 6 - [26], & * - Assumed.

Table 3. Parameters value used in numerical simulations for adults: year−1 = y−1.

Par Value Source Interval Units

π2 0.0355N [3,6] (0.028N, 0.0409N) y−1

βH(2) 0.29 LSM (0.21, 0.29) y−1

βT (2) 0.33 LSM (0.25, 0.33) y−1

µ2 0.06 * (0.06, 0.07) y−1

ε2 0.78 LSM (0.62, 0.9) y−1

α1(2) 0.25 LSM (0.2, 0.29) y−1

α2(2) 0.5 LSM (0.4, 0.58) y−1

τH(2) 0.75 LSM (0.65, 0.8)) y−1

τT (2) 0.4 * (0.4, 0.6) y−1

τC(2) 0.65 LSM (0.6, 0.69) y−1

θ2 0.0001 [1] (0.0001, 0.9) y−1

η2 1-0.75 [4] 1-(0.75, 0.98) y−1

d2 0.25 LSM (0.23, 0.3) y−1

δH(2) 0.08 * (0.07, 0.1) y−1

δT (2) 0.1 [1] (0.09, 0.12) y−1

δC1(2) 0.16 * (0.14, 0.18) y−1

δC1(2) 0.16 * (0.14, 0.18) y−1

δC1(2) 0.26 [8] (0.24, 0.28) y−1

1 - [24], 3- [25], 4 - UNAIDS, 6 - [26], 8 - [27] & * - Assumed.
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Table 4. Sensitivity Indices: 1 - Children and 2 - Adults.

Par SI(0-14) SI(> 15) Desc

βH(i) +1 +1 βH(1), βH(2) ∼ R0

βT (i) +1 +1 βT (1), βT (2) ∼ R0

α1(i) +0.117647 +0.193548 α1(1)α1(2) ∼ R0

δH(i) -0.0773196 -0.0869565 δH(1), δH(2) ∼
1

R0

δT (i) -0.138889 -0.178571 δT (1), δT (2) ∼
1

R0

τH(i) -0.232732 -0.2841 τH(1), τH(2) ∼
1

R0

τT (i) -0.805556 -0.714286 τT (1), τT (2) ∼
1

R0

ηi +0.350319 +0.323813 η1, η2 ∼ R0

di +0.211575 +0.229113 d1, d2 ∼ R0

εi +0.03665 +0.01136 ε1, ε2 ∼ R0

µi -0.938177 -0.869413 µ1, µ2 ∼
1

R0

3.3. Optimal Control Model

In order to control the co-infection, the system (3) is
extended into an optimal control problem by incorporating two
time-dependent control functions. These control functions are
introduced at a specified time t with t ∈ [0, T ], as follows,
where T is the final time.

1. u1(t) : TB treatment. TB should be treated early in
order to prevent its progression. The CDC recommends

12 weeks of once-weekly isoniazid and rifapentine for
people with latent TB infection and HIV who are
taking antiretroviral medications that don’t interact with
rifapentine [28].

2. u2(t) : ART adherence. For ART to suppress viral
replication and remain effective over time, high levels
of patient adherence are needed [29].

Including the control measures u1 and u2 in the model 3,
the following optimal control model is got,

dSi
dt

= π(i) −
(
λH(i) + λT (i) + µi

)
Si,

dUi
dt

= λH(i)Si − (λT (i) + εi + δH(i) + µ(i))Ui,

dDi

dt
= ε(i)Ui(i) + (1− u2)d(i)Ai −

(
λT (i) + τH(i) + µ(i)

)
Di,

dAi
dt

= DiτH(i) + (CLHi + CTHi)u1τC(i) −
(
µ(i) + (1− u2)d(i)

)
Ai,

dEi
dt

= λT (i)Si + θ(i)Ri −
(
α1(i) + λH(i) + µ(i)

)
Ei,

dIi
dt

= α1(i)Ei −
(
λH(i) + u1τT (i) + δT (i) + µ(i)

)
Ii,

dRi
dt

= u1τT (i)Ii −
(
θ(i) + µ(i)

)
Ri,

(31)

dCLU(i)

dt
= λT (i)Ui + λH(i)Ei −

(
ε(i) + δC1(i) + µ(i)

)
CLU(i),

dCLH(i)

dt
= ε(i)CLU(i) + λT (i)Di − [u1τC(i) + (1− u1)α2(i) + δC2(i) + µ(i)]CLH(i),

dCTH(i)

dt
= (1− u1)α2(i)CLHi + λH(i)Ii − [u1τC(i) + δC3(i) + µ(i)]CTH(i).

(32)

The initial conditions satisfy,

Si0 ≥ 0, Ui0 ≥ 0, Di0 ≥ 0, Ai0 ≥ 0, Ei0 ≥ 0, Ii0 ≥ 0,

Ri0 ≥ 0, CLUi0 ≥ 0, CLHi0 ≥ 0, CTHi0 ≥ 0.
(33)

The Lebesgue measurable control set U is defined as follows in order to investigate the optimal control levels,

U = {(u1(t), u2(t)) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ t ≤ tf )}, (34)
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where tf is the end time of implementing controls. The population of HIV diagnosed, Active TB and co-infection TB & HIV is
minimized by finding the optimal controls u∗1 and u∗2 that leads to the following objective function,

J(u1, u2) = min
(u1,u2)

∫ tf

0

c1D(i) + c2I(i) + c3CLH(i) + c4CTH(i) +
1

2
(w1u

2
1 + w2u

2
2)dt, (35)

where c1, c2, c3, c4, w1, and w2 are constants. Equations
1

2
w1u

2
1 and

1

2
w2u

2
2 are the costs associated with the controls.

The goal is to find the optimal controls u∗1 and u∗2 and optimal
solutions by fixing the terminal time tf that minimize the
objective functional such that,

J(u∗1, u
∗
2) = min {J(u1, u2) : u1, u2 ∈ U}. (36)

3.4. Existence of the Optimal Control

To show the existence of optimal control, the approach by
[30] is used. It is already proved that the system (3) is bounded,
so this result can be used to prove the existence of optimal
control over finite time interval as applied in [30, 31]. To
ensure the existence of optimal control, following conditions
must be checked if they are satisfied:

1. The set of controls and state variables be nonempty.
2. The control set U is convex and closed.

3. The right hand side of the state system is bounded by a
linear function in the state and control variables.

4. The integrand of objective functional is convex on U .
5. The integrand of objective functional is bounded below

by k2 − k1
(
|u1|2 + |u2|2

)k/2
, k1, k2 > 0 and k > 1.

An existence of the state system with bounded coefficients
has been used to give condition (i). The control set is convex
and closed by definition hence (ii). The right hand side of
the state system satisfies (iii). The state solutions are already
bounded (iv). The integrand in the objective functional

c1D(i) + c2I(i) + c3CLH(i) + c4CTH(i) +
1

2
(w1u

2
1 + w2u

2
2)

is clearly convex in U . For (v), from the bounds of the control
system,

1

2
wiu

2
i ≤

1

2
wi, ui ∈ [0, 1]. (37)

Also, considering the preceding inequality, the integrand
can be written as

c1D(i)+c2I(i) + c3CLH(i) + c4CTH(i) +
1

2
(w1u

2
1 + w2u

2
2) ≥ k1

(
|u1|2 + |u2|2

)k/2 − k2, (38)

where k1 = min(w1/2, w2/2), k2 = w2/2, k = 2. Therefore, there exists optimal control measures u1 and u2 that minimize the
objective functional J(u1, u2).

3.5. The Hamiltonian and Optimality System

The Pontryagin maximum principle stated the necessary conditions which are satisfied by optimal pair. Hence, by this
principle, the Hamiltonian function (H) is obtained and defined as,

H
(
S(i), ..., CTH(i)

)
= c1D(i) + c2I(i) + c3CLH(i) + c4CTH(i)

+
1

2
(w1u

2
1 + w2u

2
2) + λ1{π(i) −

(
λH(i) + λT (i) + µi

)
Si}

+ λ3{ε(i)Ui(i) + (1− u2)d(i)Ai −
(
λT (i) + τH(i) + µ(i)

)
Di}

+ λ4{DiτH(i) + (CLHi + CTHi)u1τC(i) − [µ(i) + (1− u2)

d(i)]Ai}+ λ5{λT (i)Si + θ(i)Ri −
(
α1(i) + λH(i) + µ(i)

)
Ei}

+ λ6{α1(i)Ei −
(
λH(i) + u1τT (i) + δT (i) + µ(i)

)
Ii}

+ λ7{u1τT (i)Ii −
(
θ(i) + µ(i)

)
Ri}+ λ8{λT (i)Ui + λH(i)Ei

−
(
ε(i) + δC1(i) + µ(i)

)
CLU(i)}+ λ9{ε(i)CLU(i) + λT (i)Di

−
(
u1τC(i) + (1− u1)α2(i) + δC2(i) + µ(i)

)
CLH(i)}

+ λ10{(1− u1)α2(i)CLHi + λH(i)Ii−(
u1τC(i) + δC3(i) + µ(i)

)
CTH(i)}.

(39)

Where, λi, i = 1, ..., 10 are the adjoint variables corresponding to state variables S(i), U(i), ... and CTH(i), respectively, and to
be determined using Pontryagins maximal principle for the existence of optimal pairs.

Theorem 3.1. Let S(i), U(i), D(i), A(i), E(i), I(i), R(i), CLU(i), CLH(i) and CTH(i) be optimal state solutions with associated



Applied and Computational Mathematics 2024; 14(1): 37-63 55

optimal control variables u1 and u2 for the optimal control model, there exist co-state variables λ1, ..., λ9 that satisfy,

diλ1
dt

= − ∂H

∂S(i)
,
diλ2
dt

= − ∂H

∂U(i)
,
diλ3
dt

= − ∂H

∂D(i)
,

diλ4
dt

= − ∂H

∂A(i)
,
diλ5
dt

= − ∂H

∂E(i)
,
diλ6
dt

= − ∂H

∂I(i)
,

. (40)

diλ7
dt

= − ∂H

∂R(i)
,
diλ8
dt

= − ∂H

∂CLU(i)
,
diλ9
dt

= − ∂H

∂CLH(i)
,
diλ10
dt

= − ∂H

∂CTH(i)
.

With transversality or final time conditions, λ1(tf ) = ... = λ10(tf ) = 0, and where H is Hamiltonian function given in (∗).
Furthermore, the optimal controls u∗1, and u∗2 are,

u∗1 = min

{
1,max

{
φ1

}
, 0

}
,

u∗2 = min

{
1,max

{ (λ3 + λ4)d(i)A(i)

w2

}
, 0

}
.

(41)

Where,

φ1 =
(λ4 − λ10)τC(i)CTH(i) + {(λ4 − λ9)τC(i)

w1
+

(λ9 − λ10)α2(i)}CLH(i) + (λ7 − λ6)τT I(i)

w1
.

Proof. Pontryagins maximum principle gives the standard form of adjoint equation with transversality conditions [31]. The
standard results in [32] are applied to derive the adjoint relations, the transversality conditions and the optimal control system.
Now, differentiating the Hamiltonian function with respect to state variables S(i), U(i), ... and CTH(i), respectively, the adjoint
equations can be written as,

diλ1
dt

= −∂H
∂Si

= λ1(λH(i) + λT (i) + µi)− λ2λH(i) − λ5λT (i),

diλ2
dt

= − ∂H
∂Ui

= λ2(λT (i) + εi + δH(i) + µ(i))− λ3ε(i) − λ8λT (i),

diλ3
dt

= − ∂H
∂Di

= −c1 −
(
λT (i) + τH(i) + µ(i)

)
− λ4τH(i) − λ9λT (i),

diλ4
dt

= − ∂H
∂Ai

= −λ3(1− u2)d(i) + λ4
(
µ(i) + (1− u2)d(i)

)
,

diλ5
dt

= − ∂H
∂Ei

= λ5
(
α1(i) + λH(i) + µ(i)

)
+ λ6α1(i) + λ8λH(i),

diλ6
dt

= −∂H
∂Ii

= −c2 + λ6
(
λH(i) + u1τT (i) + δT (i) + µ(i)

)
− λ7u1τT (i) + λ10λH(i),

diλ7
dt

= − ∂H
∂Ri

= −λ5θ(i) + λ7(θ(i) + µ(i)),

diλ8
dt

= − ∂H

∂CLU(i)
= λ8

(
ε(i) + δC1(i) + µ(i)

)
+ λ9ε(i),

diλ9
dt

= − ∂H

∂CLH(i)
= −c3 − λ4u1τC(i) + λ9[u1τC(i) + (1− u1)α2(i) + δC2(i) + µ(i)]− λ10(1− u1)α2(i),

diλ10
dt

= − ∂H

∂CTH(i)
= −c4 − λ4u1τC(i) + λ10

(
u1τC(i) + δC3(i) + µ(i)

)
.

Further, the characterization of optimal controls u∗1, and u∗2 shows that,

∂H

∂u1
=
∂H

∂u2
= 0. (42)
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It follows that the optimal solution subject to constraints 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 is,

u∗1 = u1 =
(λ4 − λ10)τC(i)CTH(i) + {(λ4 − λ9)τC(i)

w1
+

(λ9 − λ10)α2(i)}CLH(i) + (λ7 − λ6)τT I(i)

w1
,

u∗2 = u2 =
(λ3 + λ4)d(i)A(i)

w2
.

(43)

Using the equation (42), and the lower and upper bounds of four control measures, we obtained the characterization of optimal
controls as follows.

u∗1 ∈ U =⇒ u∗1 =

{ 0, if φ1 < 0,

φ1, if 0 ≤ φ1 ≤ 1,

1, if φ1 > 1.

and (44)

u∗2 ∈ U =⇒ u∗2 =

{ 0, if φ2 < 0,

φ2, if 0 ≤ φ2 ≤ 1,

1, if φ2 > 1.

(45)

Where,

φ2 =
(λ3 + λ4)d(i)A(i)

w2
.

In compact form, the optimal controls can be written as,

u∗1 = u1 = min{1,max{φ1}, 0},
u∗2 = u2 = min{1,max{φ2}, 0}.

(46)

3.6. Graphs for Children, 0-14 Years

In order to illustrate the feasibility of the theoretical results and the control strategies, graphs emanating from the numerical
simulations are given. The python library, Matplotlib, is used to make the plots showing children(0 − 14) population dynamics
over time.

(a) HIV sub-model graphs for children, 0 - 14 years. (b) TB sub-model graphs for children, 0 - 14 years.

Figure 5. Children dynamics for the sub-models.

In figure 5, the HIV and TB submodel dynamics for children
are presented. It can be seen that in figure 5a that the
susceptible population decreases drastically due to R0 =
2.376 > 1. HIV undiagnosed, diagnosed and ART populations
increase drastically in the initial 20 years. It can be noted
that the population for the undiagnosed is lower compared

to Di&Ai populations due to the high rate of testing. All
populations stabilize past 50 years.

Figure 5b presents the dynamics for TB among children.
Latent and Active TB populations increases fast in the first
10 years but later it goes down to stabilize at about 17 years.
TB treatment population increases over the first 17 years then
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it goes down slowly since the Active TB class has stabilized.
There is minimum population change beyond 60 years.

Figure 6. Co-infection graphs for children, 0 - 14 years.

The co-infection graphs for children are presented by the
figure 6. All the three graphs increase to reach their maxima
during the beginning 5 years then the populations decrease
slowly to later stabilize past 60 years. Notably, the populations
for co-infection of latent TB with undiagnosed and diagnosed
HIV attain almost the same maxima due to the high rate of
HIV testing, ε = 0.676

targets.png

Figure 7. Interventions comparison between viral load suppression and TB prevention
on children population.

On figure 7, an intervention comparison between viral load
suppression and TB prevention are presented. While it is
vividly clear that both the interventions reduce the co-infection
population (Active TB and HIV), the simulations show that
viral load suppression is more effective for children. As many
as 40% of the 1 million children living with HIV (CLHIV) and
receiving antiretroviral treatment (ART), have not achieved
viral suppression [33].

Figure 8. Comparison of co-infection population without and with control for children (log-scale y-axis).

Figure 8 presents the coinfection population dynamics for
children considering the TB treatment and HIV adherence
control interventions. The coinfections population sizes
remain small due to intervention with controls. However,
without controls, more people severely attacked with HIV &
TB hence they progress to advanced stages so that the sizes of
the coinfection populations population increases over time.

Figure 9 compares the effect of the two control strategies
in the coinfected populations. The graph on left shows that
ART adherence is the most effective intervention for children
infected with latent TB and HIV. TB treatment is the most
effective intervention for children infected with active TB and
HIV as shown in the graph or the right.

Figure 10 displays the comparison of the original
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coinfection dynamics presented at 6 with the dynamics with
optimal control. The optimal controls do not have instant
significance for coinfection of HIV and latent TB, CLH(i)

population but have great longterm significance in reducing

CLH(i) population size as displayed on the graph of 10-left.
The optimal controls have instant and significance reduction
for coinfection of HIV and active TB, CTH(i) population size.

Figure 9. Comparison between TB treatment only and ART adherence only strategies for the co-infection populations.

Figure 10. Comparison between scenario when there is no optimal control and when there is optimal control: combined TB treatment and ART adherence strategies for the co-infection
populations. of children.

The controls also have great longterm significance in
reducing, CTH(i) population size as displayed on the graph
of 10-right.

3.7. Graphs for Adults, 15 Years & Above

In order to illustrate the feasibility of the theoretical
results and the control strategies, graphs emanating from
the numerical simulations are given. The python library,
Matplotlib, is used to make the plots showing adults (> 15

& above) population dynamics over time.
In figure 11, the HIV and TB submodel dynamics for

adults are presented. It can be seen that in figure 11a that
the susceptible population decreases drastically due to R0 =
2.238 > 1. HIV undiagnosed, diagnosed and ART populations
increase drastically in the initial 15 years. It can be noted
that the population for the undiagnosed is lower compared
to Di&Ai populations due to the high rate of testing. All
populations stabilize past 40 years.
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(a) HIV sub-model graphs for adults, 15 years & above. (b) TB sub-model graphs for adults, 15 years & above.

Figure 11. Adults dynamics for sub-models.

Figure 12. Co-infection graphs for adults, 15 years & above.

Figure 11b presents the dynamics for TB among adults.
Latent and Active TB populations increases fast in the first
4 years but later it goes down to stabilize at about 10 years.
TB treatment population increases over the first 10 years then
it goes down slowly since the Active TB class has stabilized.
There is minimum population change beyond 40 years.

The co-infection graphs for adults are presented by the
figure 12. All thee three graphs increase to reach their maxima
during the beginning 8 years then the populations decrease
slowly to later stabilize past 40 years. Notably, the populations
for co-infection of latent TB with undiagnosed HIV attains a
higher maxima compared to the co-infection of latent TB and
diagnosed HIV due to initializing the combined treatment at
the rate, τC(i) = 0.65.

On figure 13, an intervention comparison between viral
load suppression and TB prevention are presented. While
the graphs show explicitly that both the interventions reduce

the co-infection adults population (Active TB and HIV), the
simulations show that TB prevention is more effective for
adults. Tuberculosis preventive therapy (TPT) significantly
reduces the risk of TB and mortality. Since 2011, the World
Health Organization recommends 3HP for PLHIV as part of
routine HIV care [2]. 3HP is a TPT regimen which is endorsed
by the WHO that combines high dose Isoniazid (H) and high
dose rifapentine (P) once weekly for three months.

Figure 13. Interventions comparison between viral load suppression and TB prevention
on adults population.

Figure 14 presents the coinfection population dynamics
for adults considering the TB treatment and HIV adherence
control interventions. The coinfections population sizes
remain small due to intervention with controls. However,
without controls, more people severely attacked with HIV &
TB hence they progress to advanced stages so that the sizes of
the coinfection populations population increases over time.
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Figure 14. Comparison of co-infection populations without and with control for adults (log-scale y-axis).

Figure 15 compares the effect of the two control strategies
in the coinfected populations. The graph on left shows that
ART adherence is the most effective intervention for children
infected with latent TB and HIV. TB treatment is the most
effective intervention for children infected with active TB and
HIV as shown in the graph or the right.

Figure 16 displays the comparison of the original

coinfection dynamics presented at 12 with the dynamics with
optimal control. The optimal controls do not have instant
significance for coinfection of HIV and latent TB, CLH(i)

population but have great longterm significance in reducing
CLH(i) population size as displayed on the graph of 16-left.
The optimal controls have instant and significance reduction
for coinfection of HIV and active TB, CTH(i) population size.

Figure 15. Comparison between TB treatment only and ART adherence only strategies for the co-infection populations in adults population.

The controls also have great longterm significance in
reducing, CTH(i) population size as displayed on the graph
of 16-right.

Throughout the simulations, it is also noted that HIV is more
detrimental in adults than on children. This is the same with
TB. However, figure 8 shows that if no control is done, children
will be affected adversely by the coinfection compared to the
adults as shown on the figure 14.

Numerical simulations results on the different interventions
showed that ART treatment adherence lowers significantly
the co-infection population in its earlier stages (HIV and

latent TB). HIV treatment adherence prevents the progression
of latent TB infection into active TB since HIV infection
compromises the state of the person’s immune system [29].
Thus, it is of paramount importance for latent TB coinfectives
to be adhering to HIV treatment to prevent it from becoming
active and consequently increasing the mortality rate of HIV
patients.

It is also noted TB treatment reduces greatily the population
of those affected with the coinfection on the later stage; both
HIV and active TB coinfection.
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Figure 16. Comparison between scenario when there is no optimal control and when there is optimal control: combined TB treatment and ART adherence strategies for the co-infection
populations of children.

TB treatment is important for people with HIV/TB
coinfection because it can significantly improve their
prognosis and reduce the risk of death [34]. TB can also
worsen HIV progression by causing a rapid increase in HIV
replication [35].

4. Conclusions

In this research, an age-stratified mathematical model for
HIV and TB is developed and analyzed. Unlike the model
in [24], this study considered two age groups; children (0-14
years) and adults (> 15 years). HIV undiagnosed stage was
also incorporated for the model.

This study proved that the formulated model is biologically
and mathematically well posed on an invariant region Ω.
HIV-free equilibrium and TB-free equilibrium is shown to
be locally asymptotically stable by use of Ruorth-Hurtwiz
criterion. The global stability of the HIV-free equilibrium
and TB-free equilibrium is only guaranteed if the threshold
quantity RH0 and RT0 is less than unity.

Viral load suppression is a more effective intervention for
children compared to TB prevention. ART uptake should
therefore be monitored for children to ensure achieving the
necessary viral suppression level for children. On the other
hand, TB prevention is a more effective intervention for adults
compared to viral load suppression. TB preventative measures
e.g. TPT, should therefore be emphasized in order to reduce
HIV and active TB menace.

ART treatment adherence has proven to be the best
intervention to control the co-infection in its earlier stages
(HIV and latent TB). For ART to suppress HIV virus
replication and remain effective over time, high levels of
patient adherence are needed. The ministry should therefore
invest in making ART treatment available for latent Tb

coinfectives as well as enforcing combined treatment to the
same. It is also noted TB treatment is the best intervention
for those affected with the co-infection on the later stage; both
HIV and active TB coinfection. It implies, adherence to HIV
treatment alone, is not effective to control the coinfection.

HIV is more detrimental in adults than on children. This
is the same with TB. However, if no control is done, children
will be affected adversely by the coinfection compared to the
adults. The health policy makers should therefore prioritize on
elimination of mother to child transmission (eMTCT) of HIV.

One of the limitations of the study was inconsistency and
non-linearity of the data used for data fitting. This study
recommends assessing polynomial fitting, spline fitting, or
other nonlinear models. The outliers data points should be
determined if they are measurement errors or genuinely part
of the data. Also, robust fitting techniques are recommended,
like least absolute deviation or weighted least squares. This
study recommends that more research should be done to ensure
minimization of health risks of combining both treatments
while eliminating the co-infection menace. Combining more
than one intervention at a go is also recommended. More
research could be done to consider the drug resistant TB.
Finally, researchers could investigate on the cost effectiveness
of different and/or combined interventions.

Symbols
S Susceptible population
U HIV undiagnosed population
D HIV diagnosed population
A Population on ART
E Latent TB population
I Active TB population
R TB recovered population



62 Robert Mureithi Maina et al.: An Age-stratified Mathematical Model for Human Immunodeficiency Virus and
Tuberculosis Co-infection with Optimal Control

CLU Latent TB and undiagnosed HIV co-infected
population

CLH Latent TB and diagnosed HIV co-infected
population

CTH Active TB and diagnosed HIV co-infected
population

MOH Ministry of Health
CDC Centers for Disease Control
Par Parameter
Desc Description

Abbreviations
HIV Human Immunodeficiency Virus
TB Tuberculosis
VLS Viral Load Suppression
ART Antiretroviral Therapy
TPT Tuberculosis Preventive Therapy
PLHIV People Living with HIV
CLHIV Children Living with HIV
DFE Disease-Free Equilibrium
KENPHIA Kenya Population-based HIV Impact

Assessment
UNAIDS United Nations Programme on HIV/AIDS
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