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Abstract 

In this paper, considered non-classical equations of mathematical physics are applied in the fields of astronomy and astrophysics 

in the case of plasma models of Jupiter‘s magnetosphere. It is known that non-classical equations of mathematical physics have 

applications in gas dynamics, aerodynamics, hydrodynamics, and magneto-hydrodynamics. According to comparisons and 

observation results of Pioner-10, 11, and Voyager 1-2, considered mathematical models of Jupiter‘s magnetosphere, which is 

cold plasma, as searches of Jupiter‘s Io. At first, the mathematical justification of the physical process of Io concerning plasma 

was described by a non-classical equation of the Keldysh type. For this reason, using MHD equations for the derivation of the 

model equations of cold plasma and hot plasma on Jupiter‘s magnetosphere. In the region tail of Jupiter given analyses of basic 

model equations of the Jupiter magnetosphere for the equilibrium between magnetic force, pressure gradient, and centrifugal 

force in the presence of plasma rotations. Additionally, based on the basic theoretical and observational results, the role of the 

Alfven Mach number with a constant Euler potential parameter in the region tail of Jupiter‘s magnetosphere proves the 

justification of the steady magneto-hydrodynamic equilibrium. as agreed previously in the results of observation Voyager 1,2. 

Therefore, in the magnetosphere, Jupiter‘s hot and cold plasma describe the same class equation of Keldysh-Tricomi types. In 

this case, the exact solution is obtained by integrals, which are first expressed as analytical formulas. Theoretical aspects of the 

model hot and cold plasma on the tail magnetosphere contain concepts of reconnection, which connects lost mass from Jupiter‘s 

Io. Such an effect reconnection coronal problem as Parker‘s also occurs by lost temperature and energy dissipation. Lorentz 

force, supported by means of solar wind, changes cold plasma to hot plasma in cases where a magnetic disk acts as a balancing 

mechanical equilibrium to retain cold-hot plasma. For motivation, both mathematical and physical, we used some figures, a 

table, and an appendix. Note that considered approaches to the theory of planetary sciences at first time applicable for Jupiter. 
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1. Introduction 

Since our research work is related to non-classical equa-

tions of mathematical physics, astrophysical hydrodynamics, 

plasma, cold plasma, Jupiter‘s magnetosphere, the satellite Io, 

mechanical movements, stable magneto-hydrodynamics, as 

well as aerodynamic and gas-dynamic transient processes 

such as sound barriers, which are all described in stages with 

partial differential equations, In this case, it is precisely the 

mechanical and physical processes of cold plasma from the 

satellite Io to the Jupiter‘s magnetosphere plasma that are 

modeled and described using the so-called non-classical 

equations of mathematical physics. Therefore, it is appropri-

ate to give some important concepts and small overview 

comparisons of the above-mentioned terminology. 

Non-classical Equations of Mathematical Physics: 

Mathematical physics is perhaps the only mathematical 

science that is based not on axioms (such as algebra) or fun-

damental concepts (such as calculus), but directly on the laws 

of nature. Archimedes is considered to be the father of 

mathematical physics, and in his mathematical research, he 

widely used the natural science concepts known to him. Some 

of them (for example, Archimedes‘ law on the floating of 

bodies in liquid) are still applied today, and some (for example, 

the limitation of the universe to the sphere of stars) have long 

lost their relevance. After approximately two millennia, with 

the development of sciences, especially physics and mathe-

matics, came the realization of the object of the study of 

mathematical physics: equations and systems of partial dif-

ferential equations that model certain natural phenomena. The 

first step towards such an understanding was made by P. 

Fermat and J.L.R. D'Alembert, having obtained and studied 

the first mathematical models—the equation of heat propa-

gation in a thin rod ( ,t xxU aU  -operators Laplace) and 

the equation of string vibration ( )tt xxU aU , respectively. 

Soon, these models were generalized and are now known as 

the heat equation ( )tU a U  . For quite a long time, these 

types of equations were sufficient to describe the phenomena 

of new models of mathematical physics such as, for example, 

the system of Maxwell's equations, which models the dy-

namics of the electromagnetic field, or the system of Na-

vier-Stokes equations, which models the flow of a viscous 

incompressible fluid. A tradition has developed: all mathe-

matical models whose equations can be attributed to one of 

these three types are called classical. The term ―non-classical 

equations of mathematical physics‖ was introduced into use 

by V.N. Vragov [2] and his students in order to isolate the area 

of his research. But below given strictly justification of defi-

nition non-classical equation in mathematical physics. 

Definition of a non-classical equation in mathematical 

physics: 

Non-classical models of mathematical physics are those 

whose representations in the form of equations or systems of 

partial differential equations do not fit within the framework 

of one of the classical types: elliptic, parabolic, or hyperbolic. 

In particular, non-classical models include those described by 

mixed type equations (for example, the Tricomi equation [3], 

degenerate equations (for example, the Keldysh equation [4]), 

or Sobolev type equations (for example, the Baren-

blatt-Zheltov-Kochina equation [5, 6]. Apparently, 

non-classical equations of mathematical physics first ap-

peared in the works of S.A. Chapligin [7] in the study of 

transonic flows, where the so-called mixed-type equations 

were introduced. In particular, the study of equations of mixed 

type in connection with the Tricomi problem, transonic gas 

dynamics ([8, 9]), aerodynamics, magneto hydrodynamic 

flows with transition through the speed of sound and Alphen, 

fluid flows in an open channel, with the theory of infinitesimal 

bending of surfaces, as well as with the momentless theory of 

shells with curvature of alternating sign, and with many other 

questions of mechanics. Currently, the scope of non-classical 

equations of mathematical physics, together with functional 

analysis of the connection between mechanics, astrophysics, 

galaxies, black holes, etc., is expanded by the addition of 

equations of forward-backward ([10-13]). 

Note: Astrophysical fluid dynamics is a modern branch of 

astronomy that includes fluid mechanics, which deals with the 

movement of fluids such as the gases that make up stars or any 

fluid that is found in outer space. Based on the point of view 

of this definition, the author M.A. Nurmammadov (see [13]), 

combining and expanding the scope of application, noted as in 

the definition of the equation of non-classical mathematical 

physics from the mechanical, hydrodynamic, aerodynamic 

gas-dynamic sense in the terminology of the Mach number in 

addition, astrophysical hydrodynamics, for the first time, 

considers new applied problems in the fields of astronomy 

and astrophysics. The mutual linear transformation of elec-

tromagnetic and plasma waves in an inhomogeneous plasma 

is of considerable interest and has been studied by many (see, 

for example, [14-19]). However, in all cases, only a 

plane-layered medium was considered, i.e., a medium whose 

parameters depend on one spatial coordinate. Since such 

conditions are never encountered in practice, it is desirable to 

study the linear transformation process under more realistic 

assumptions. As is known, the linear transformation of elec-

tromagnetic waves into plasma waves in a flat layer is closely 

related to the field features in cold plasma (see [15, 18, 20]. It 

is the presence of such features that is a necessary condition 

for the transformation, and the energy carried away by the 

plasma wave is equal to the energy absorbed in the cold 

plasma. This circumstance makes it essentially unnecessary to 

solve the transformation problem if the simpler problem for 

cold plasma is solved. A simple physical consideration (see 

[15-17, 21]), from which the indicated connection between 

transformation and absorption follows, can be directly gen-

eralized to the case of arbitrary inhomogeneity. Therefore, it 

can be stated that in the general case, the question of the field 
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features in cold plasma is of greatest interest. The model of 

two-dimensional inhomogeneity covers a large number of 

plasma configurations, including a toroidal system of the 

Tokamak type. Among the many equations of mathematical 

physics that move along a smooth curve from the elliptic to 

the hyperbolic type, constant attention has been paid only to 

the equations of transonic flow. In this article, in the intro-

duction section and a brief overview, we consider ellip-

tic-hyperbolic equations arising in a simple model of the 

propagation of electromagnetic waves through a ze-

ro-temperature plasma. Solutions to such equations will likely 

have significantly less regularity than solutions to linearized 

transonic flow equations. Recognizing the interdisciplinary 

nature of the topic, we assume familiarity with physics, but 

not necessarily plasma physics, and analysis, but not neces-

sarily elliptic-hyperbolic equations. However, physics is lim-

ited to a review of fundamental results in the physical sense 

(the ―cold plasma model‖ [17, 21]), and while mathematical 

results are somewhat more technical. Since plasma is an ion-

ized gas, plasma simulations use equations of gas dynamics. 

In this case, elliptic-hyperbolic equations of mixed type arise 

naturally, and for the first time, an equation of this type ap-

peared in Chaplygin‘s work [7] on gas jets in 1902. They have 

analogies for equations arising from another physical problem. 

By continuing such research in various mechanical, physical, 

and geometric contexts (see [16-21]), one can hope to even-

tually obtain a natural theory for linear elliptic-hyperbolic 

equations in partial derivatives ([26, 27]). 

Important explanations cold plasmas and mathematical 

models. 

1.1. Physical Background with Bound Cold 

Plasmas 

The plasma state is characterized by the dominance of 

long-range nonlinear effects. In this state, it is especially diffi-

cult to obtain mathematical problems that can be formulated 

with a satisfactory degree of rigor and for which the existence 

of solutions can be demonstrated. Without proof of the exist-

ence and uniqueness of solutions, which, in particular, deter-

mines the functional spaces in which the solutions lie, it is 

difficult to set suitable boundary conditions in numerical ex-

periments and assess the reliability of the results obtained. If 

one hopes to obtain a solvable mathematical problem, it is 

usually necessary to impose stringent assumptions on both the 

plasma and the applied field. Perhaps the most severe of these 

sets the plasma temperature to zero. This allows us to com-

pletely neglect the liquid properties of the medium, which is 

then considered a linear dielectric. Somewhat surprisingly, the 

zero plasma temperature assumption is a useful first approxi-

mation to the products of tokamaks: low-density plasma that is 

remarkably free from expected high-temperature phenomena 

such as collisions and wall effects. [28, 29] More generally, the 

cold plasma model approximates the effects of low-amplitude 

electromagnetic waves propagating with phase velocities that 

are quite large compared to the thermal velocity of particles. 

Note that the term ―cold plasma‖ is very ambiguous. Although 

we believe that this means zero temperature, in the astrophys-

ical literature, interstellar plasma of order K is usually called 

―cold‖ (see, for example, [20]). More recently, an "ultra-cold" 

neutral plasma has been created experimentally, having an 

electron temperature of 310 K to K and an ion temperature of K 

to 310  K. The cold plasma model explored in this paper 

appears to be too simple to provide a quantitative representation 

of this plasma. Other physical hypotheses put forward in this 

review are also quite restrictive: although the plasma is not 

assumed to be homogeneous, the inhomogeneity is assumed to 

be two-dimensional, so the governing equations of the model 

are also essentially two-dimensional. For the most part, the 

outstanding mathematical problems related to the cold plasma 

model are boundary value problems for Maxwell's equations. 

The dielectric tensor for these equations will give them an 

elliptic type in one part of the domain of definition and a hy-

perbolic type in the rest, except for a smooth curve (parabolic 

line) separating the two domains. Little is known about the 

formulation of correct boundary value problems for equations 

that change type in such a way (belongs to the class of so-called 

equations of non-classical mathematical physics M. A. 

Nurmammadov ([13]), especially since the equations arising in 

the cold plasma model apparently have some fundamental 

differences from those that arise in gas dynamics. In this aspect, 

the conclusions of the plasma model equation differ from the 

classical MHD equations in that we obtain direct physical na-

ture using the dielectric tensor, which gives a mathematical 

model of cold and hot plasma. In this case, cold plasma acts as a 

source of hot plasma in the presence of the solar wind. The 

advantage of such a single physical basis also gives rise to a 

single-form model of an elliptic-type equation in one part of the 

domain of definition. At the same time, the rest of the plasma is 

of the hyperbolic type, with the exception of the smooth curve 

(parabolic line) separating the two regions, which for cold and 

hot plasmas differs only in coefficients. Naturally, since these 

equations must have solvability, thanks to the method of func-

tional analysis, this necessity is established in the weighted 

spaces of S. L. Sobolev [1]. This fact was first studied by the 

author of this article, whose mechanical, hydrodynamic, aero-

dynamic, and gas-dynamic meanings in the terminology of the 

Mach number can be found in the author‘s work [13]. 

1.2. Mathematical Background with Connected 

Cold Plasma 

The analysis of the Beltrami projective disk model for 

hyperbolic space is, in a sense, very old mathematics. Bel-

trami introduced the projection disk in 1868 as one of the 

earliest Euclidean models of non-Euclidean space (see [28, 

29, 20]). But it also arises in the context of some new 

mathematics related to variational problems in Murkowski 

space and Hodge theory on pseudo-Riemannian manifolds. 

The Beltrami model is used as a starting point for a review of 
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aspects of the geometric vibrational theory of mixed Rie-

mannian-Lorentz domains in which the metric signature 

changes signs along a smooth hypersurface. In variational 

problems that are created for the existence of harmonic 

fields on an extended projected disk that is, solutions to the 

Hodge equations [31] an important factor for physical ap-

plications is whether the elliptic-hyperbolic differential 

operator has a real principal type, in which case the principal 

symbol of the operator is real. Since the zero bicharacteristic 

is the integral curve of the Hamiltonian system canonically 

related to the principal symbol, the basic analytical proper-

ties of real operators of the main type depend only on the 

main symbol and not on the form of the lower terms. If the 

operator has a real main type, the ideas of microlocal anal-

ysis can be applied to construct a natural theory of boundary 

regularity applicable to the elliptic-hyperbolic case [32]. In 

recent years, the author M. A. Nurmammadov [33-35] has 

been studying the generalized form of equations and systems 

of equations in a multidimensional domain with several 

degenerate lines (hyperplanes) of mixed hyperbolic-elliptic 

type M.V. Keldysh. Further, based on the mechanics of 

continuum, media, liquid and gas, and mathematical points 

of view, plasma is consistent with the following character-

istic states: Plasma is a fluid made up of electrons and one or 

more types of ions. Since it is a fluid, its evolution must 

satisfy the equations of hydrodynamics. But because the 

liquid particles are charged, they act as sources of an elec-

tromagnetic field, which is determined by Maxwell's equa-

tions. The presence of an intrinsic field results in highly 

nonlinear behavior. Indeed, the dominance of long-range 

electromagnetic interactions over short-range interatomic or 

intermolecular forces is often said to be the defining char-

acteristic of the plasma state. If the plasma has a zero tem-

perature, then as known of Amonton's law implies that the 

pressure term in the equations of fluid motion will also be 

equal to zero, and the laws of hydrodynamics will operate 

only through the laws of conservation of mass and momen-

tum. In fact, since collisions can be neglected, the fluid 

aspect of the medium can be virtually ignored. Plasma is 

then thought of as a static dielectric through which elec-

tromagnetic waves propagate. 

2. Structure of Jupiter’s Magnetosphere 

and Applicable Conditions of  

Mathematical Models in Plasma 

2.1. Structure of the Magnetosphere of Jupiter 

and the Io Satellite as a Source of Plasmas 

Before starting to explain that Jupiter's satellite Io is a source 

of plasma, to simulate plasma on Jupiter, we will consider the 

mechanical and physical-chemical processes of the interaction 

of Io with the magnetosphere of Jupiter, as well as the evolution 

of the formation of the plasma torus Io. Therefore, it is appro-

priate to refer to the volcanic process in ―Io Volcano Observer: 

Following the Heat and Hunting Clues to Planet Evolution." 

Tricia Talbert On March 18, 2021, a proposed mission called 

the Io Volcano Observer (IVO) would visit Jupiter's moon Io, 

which is a true volcanic wonderland with hundreds of erupting 

volcanoes gushing tons of molten lava and sulfurous gases at 

any moment. NASA's Galileo spacecraft caught Jupiter's moon 

Io, the planet's third largest moon, experiencing a volcanic 

eruption. Caught in a perpetual tug-of-war between Jupiter's 

formidable gravity and the smaller, persistent pulls of neigh-

boring moons, Io's warped orbit causes it to twist as it flies 

around the gas giant. The stretch causes friction and intense 

heating inside Io, causing massive eruptions on its surface. 

NASA's Galileo spacecraft captured the highest resolution 

images of Jupiter's moon Io in July 1999. This color mosaic 

uses near-infrared, green, and violet filters to bring closer what 

the human eye sees. Much of Io's surface is pastel, accented by 

black, brown, green, orange, and red elements near active vol-

canic centers. Io is the most active volcanic world in the solar 

system. Set the clock back a few billion years, and this could be 

the surface of any young rocky planet. But today, in our solar 

system, only Io is the site of such hyperactivity. Under the 

colossal gravitational pull of Jupiter and the passing orbital 

pulls of sister moons Europa and Ganymede, Io is subject to 

harsh tides that stretch and compress the Moon as it moves 

along its elliptical path. Scientists know that these tidal forces 

generate extreme heat inside Io, resulting in a heat flow 20 

times greater than on Earth, and are overall an important plan-

etary process in the universe. But we still have a deep under-

standing of how they actually work, says Alfred McEwen, a 

planetary geologist and professor at the University of Arizona's 

Lunar and Planetary Laboratory. NASA‘s Galileo spacecraft 

caught Jupiter‘s moon Io, the planet‘s third-largest moon, un-

dergoing a volcanic eruption. Locked in a perpetual tug of war 

between the imposing gravity of Jupiter and the smaller, con-

sistent pulls of its neighboring moons, Io‘s distorted orbit 

causes it to flex as it swoops around the gas giant. The 

stretching causes friction and intense heat in Io‘s interior, 

sparking massive eruptions across its surface. 

 
Figure 1. Jupiter’s moon Io is the most volcanically active world in 

the solar system. This high-resolution image of Jupiter’s fifth moon 

was captured by NASA’s Galileo spacecraft and was published on 18, 

Dec. 1997. (Image credit: NASA/JPL/University of Arizona) NASA’s 

Juno to Get Close Look at Jupiter’s Volcanic Moon Io on Dec. 30. 
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2.2. The Jupiter’s Magnetosphere and Some 

Important Basic Conditions of  

Mathematical Models in Plasma 

The magnetosphere of Jupiter is a cavity created in the solar 

wind, the planetary magnetic field of Jupiter, where various 

processes of interaction between the solar wind, the inter-

planetary magnetic field, Jupiter‘s own magnetic field, and 

the surrounding plasma occur. The existence of Jupiter's 

magnetosphere was revealed through radio observations in the 

late 1950s, first directly observed by ―Pioneer- 10‖ in 1973. 

Jupiter's internal magnetic field is generated by an electric 

current flowing in the planet's outer core, which consists of 

metallic hydrogen (gray layer). At the same time, it is a de-

generate state of matter and has some remarkable properties, 

such as high-temperature superconductivity and a high spe-

cific heat of phase transition. So, volcanic eruptions on Jupi-

ter's satellite Io throw a large volume of gray oxide into space, 

forming a large gas torus around the planet. The torus re-

plenishes the planet's magnetic field with plasma, a partially 

or fully ionized gas formed from neutral atoms (or molecules) 

and charged particles (ions and electrons). The most important 

feature of plasma is its quasi-neutrality, which means that the 

volume densities of the positive and negative charged parti-

cles from which it is formed are almost the same. Plasma is 

sometimes called the fourth (after solid, liquid, and gas), 

which, as it rotates, expands into a pancake-like structure 

known as a magnetic disk. In essence, the magnetosphere of 

Jupiter is formed by the plasma of Io and its own rotation to a 

much greater extent than by the solar winds, which are a flow 

of ionized particles (mainly helium-hydrogen plasma) flow-

ing out of the solar corona at a speed of 300–1200 km/s into 

the surrounding outer space. The Jovian magnetosphere is a 

complex structure that includes a bow shock wave, a magnetic 

transition layer, a magnetopause, a magneto tail, a magnetic 

disk, and other components. The magnetic field around Jupi-

ter is created due to a number of phenomena, for example, 

liquid circulation in the planet's core (internal field), electric 

current in the plasma surrounding Jupiter, and currents flow-

ing at the boundary of the planetary magnetosphere. The 

magnetosphere is immersed in the solar wind plasma, carry-

ing with it an interplanetary magnetic field (see [36-38]). But 

while the earth's core is made of molten iron and nickel, Ju-

piter's core is made of metallic hydrogen. Like Earth's, Jovi-

an's magnetic field is primarily a dipole, with the north and 

south magnetic poles at opposite ends of the magnetic axes 

[39]. However, on Jupiter, the north and south magnetic poles 

of the dipole lie in the hemispheres of the same name on the 

planet, while in the case of the Earth, on the contrary, the north 

magnetic pole of the dipole is located in the southern hemi-

sphere and the south in the northern hemisphere [41]. The 

magnetic field of Jupiter also contains higher multiplicative 

components (quadrupole, octupole, etc.), but they are at least 

an order of magnitude weaker than the dipole component. The 

dipole is tilted approximately 10° relative to Jupiter's rotation 

axis; this inclination is close to the Earth's (11.3°) ([39, 43, 

44]). The equatorial magnetic field induction is approximately 

428 MkTesla, approximately 10 times greater than the Earth's, 

which corresponds to a magnetic dipole moment of about 1.53 

× 10
20

Tesla. m
3
 (18,000 times that of Earth [36]. Jovian's 

magnetic field rotates at the same angular speed as the region 

below the atmosphere, with a period of 9 hours and 55 

minutes. No noticeable changes in strength or structure have 

been observed since the first measurements of "Pioneer -10" 

in mid-1970 [41]. 

Size and Shape of Jupiter - Jupiter's internal magnetic field 

interferes with the solar wind's stream of ionized particles 

flowing out of the solar upper atmosphere, preventing streams 

of ions from reaching Jupiter's atmosphere, deflecting them 

away from the planet and creating a kind of cavity in the solar 

wind called the magnetosphere, which is made of plasma, 

different from solar wind plasma. The Jovian magnetosphere 

is so large that if you place the Sun in it, even with its visible 

corona, there will still be enough space there [38]. The region 

between the magnetopause and the bow shock is called the 

magnetic transition layer, or magneto sheath (see [41]). 

Schematic representation of the magnetosphere, where the 

plasma sphere (Figure 2), (7) faces the torus of plasma and the 

magneto layer. 

 
Figure 2. Schematic representation of the magnetosphere, where the 

plasma is a sphere. 

Beyond the night side of the planet, the solar wind extends 

the lines of Jupiter‘s magnetic field into a long, elongated tail of 

the magnetosphere, which sometimes extends even beyond the 

orbit of Saturn. In its structure, the tail of the Jovian magneto-

sphere is reminiscent of the Earth‘s. It consists of two ―petals‖ 

(areas marked in blue in the diagram). The magnetic field in the 

southern petal is directed towards Jupiter, and in the northern 

petal - away from it. The lobes are separated by a thin layer of 
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plasma called the tail current sheet (the elongated orange zone 

in the diagram). Like the Earth's, the Jovian magneto tail is a 

channel through which solar plasma enters the inner regions of 

the magnetosphere, where it heats up and forms radiation belts 

at a distance of less than 10 RJ from Jupiter [38]. The shape of 

Jupiter's magnetosphere described above is maintained by 1) a 

neutral current sheet (also known as a magneto tail current) that 

flows in the direction of Jupiter's rotation through the tail 

plasma layer (see Figure 2) plasma flows within the tail flowing 

against Jupiter's rotation at the outer boundary magneto tail, 

and (see Figure 2) magnetopause currents (or Chapman-Ferrari 

currents), which flow against the rotation of the planet on the 

dayside of the magnetopause. These currents create a magnetic 

field that cancels out (compensates) Jupiter's internal field 

outside the magnetosphere. They also actively interact with the 

solar wind [41]. Traditionally, Jupiter's magnetosphere [46] is 

divided into three parts: the inner, middle, and outer magneto-

spheres. The inner one lies at a distance of up to 10 RJ from the 

center of the planet. The magnetic field inside it is predomi-

nantly a dipole because the contribution from currents passing 

through the equatorial plasma layer is very insignificant. In the 

middle (between 10 and 40 RJ) and outer (hereinafter 40 RJ) 

magnetospheres, the magnetic field deviates from the dipole 

structure and is seriously perturbed by the influence of the 

plasma layer (see [37, 38]). 

2.3. The Role of Jupiter’s Satellite Io, Source as 

a Hot Plasma Source for Jupiter 

Although in general the magnetosphere of Jupiter resem-

bles the Earth‘s in shape, close to the planet their structures are 

very different [39]. Io, a volcanically active satellite of Jupiter, 

is a powerful source of plasma and every second replenishes 

the magnetosphere of Jupiter with ~1000 kg of new matter. 

Strong volcanic eruptions on Io lift into the open space is 

sulfur dioxide, most of which dissociates into atoms and is 

ionized by solar ultraviolet radiation. 

 
Figure 3. Interaction of Io with the magnetosphere of Jupiter. Io's 

plasma torus highlighted in yellow. 

As a result, sulfur and oxygen ions are formed: S
+
, O

+
, S2+, 

and O2
+
 ions leave the satellite's atmosphere, forming Io's 

plasma torus, a massive and relatively cold ring of plasma 

surrounding Jupiter along the satellite's orbit [39]. The tem-

perature of the plasma inside the torus reaches 10-100 eV 

(100,0001,000,000 K), which is much lower than the energy of 

particles in the radiation belts, which is 10 KeV (100 million K). 

The plasma inside the torus is driven by the magnetic field of 

Jupiter ―frozen‖ into it into rotation with the same period as 

Jupiter itself [44] (such synchronous rotation is called corota-

tion). The torus of Io has a significant impact on the dynamics 

of the entire magnetosphere of Jupiter. As a result of several 

processes, among which the main role is played by diffusion 

and exchange instability, the plasma slowly leaves the vicinity 

of the planet [40]. As the plasma moves away from Jupiter, the 

radial currents flowing through it gradually increase their speed, 

maintaining coronation [38]. These radial currents also serve as 

a source of the azimuthal component of the magnetic field, 

which, as a result, bends backward relative to the direction of 

rotation. The concentration of particles in the plasma decreases 

from 2000 sm
-3

 in the torus of Io to about 0.2 sm
-3

 at a distance 

of 35 RJ [42]. In the middle magnetosphere, at a distance of 

more than 20 RJ from Jupiter, corotation gradually stops, and 

the plasma rotates more slowly than the planet [40]. Ultimately, 

at a distance of more than 40 RJ (in the outer magnetosphere), 

the plasma finally leaves the magnetic field and goes into in-

terplanetary space through the tail of the magnetosphere. 

Moving outward, the cold, dense plasma exchanges places with 

the hot, rarefied plasma (with a temperature of 20 KeV (200 

million K) or higher) moving from the outer magnetosphere. 

This plasma, approaching Jupiter and compressing, is heated 

adiabatically, forming radiation belts in the inner magneto-

sphere (see [42-44]). 

 
Figure 4. Scheme of Jupiter's magnetic field lines. A view of the 

north pole; B view of the south pole; C view of the equator. 
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The non-dipole nature of the magnetic field in the northern 

hemisphere and the dipole in the southern hemisphere are 

shown. The outlined sphere represents the proposed boundary 

of the metallic hydrogen core; whose radius is equal to 0.85 of 

the radius of Jupiter. (Nature 2018; Moore et al). 

2.4. The Magnetic Disk Acts as a Balancing 

Mechanical Equilibrium to Retain Hot 

Plasma 

Unlike the Earth's magnetic field, which is approximately 

teardrop-shaped, Jupiter's field is more flattened, more like a 

disk, and periodically oscillates about its axis. The main reason 

for this disk-shaped configuration is the centrifugal forces 

caused by the coronation of the plasma and magnetic field, as 

well as the thermal pressure of the hot plasma. Both phenomena 

lead to the stretching of magnetic field lines, forming a flat-

tened, pancake-shaped structure known as a ―magnetic disk‖ at 

a distance of more than 20 RJ from the planet. The magnetic 

field lines are directed from Jupiter above this layer and to 

Jupiter below it. Plasma coming from Io significantly increases 

the size of Jupiter's magnetosphere since the magnetic disk 

creates additional internal pressure that balances the pressure of 

the solar wind. The distance from the planet to the magneto-

pause at the ―subsolar point, » equal on average to 75 RJ, would 

decrease to 42 RJ in the absence of Io [43]. It should be noted 

that most of Jupiter's magnetic field, like Earth's, is generated 

by an internal dynamo maintained by the circulation of elec-

trically conductive fluid in the outer core. But while the Earth's 

core is made of molten iron and nickel, Jupiter's core is made of 

metallic hydrogen. Maxwell's fourth equation applies and 

shows that such loops of electric current generate a magnetic 

field. Changes in this magnetic field, according to Faraday's 

law of induction (Maxwell's third equation), generate an elec-

tric field. These electric and magnetic fields jointly act on par-

ticles (electric on any particles, magnetic only on moving ones) 

by the Lorentz force, accelerating their movement according to 

Newton‘s second law, and a positive feedback loop arises. All 

these relationships can be described using a partial differential 

equation, which forms the basis of the theory of magnetic dy-

namo (also similar to that noted by E. Parker [46]; the recon-

nection process is always restored), which explains the exist-

ence of magnetospheres near the Earth and other planets of the 

solar system, as well as near the Sun itself (only in the Sun is 

the role of a conducting liquid played by ionized gas). 

3. Important Explanations: Derivation of 

the Cold Plasma Modeling Equations 

Derivation of the Cold Plasma Modeling Equation Whose 

Source is Jupiter's Satellite Io 

Based on the considerations noted above in sections 1.1, 1.2, 

2.1, 2.2, 2.3, 2.4 and 2.5, as well as standard methods for 

deriving models of plasma, electromagnetic and Lorentz force, 

applications of Newton‘s law of motion, Maxwell‘s law, and 

dielectric tensor cold plasma, we obtain a mathematical model, 

plasma equations, which are justified by the description of 

non-classical equations of mathematical physics. Accordance 

above physical process of Jupiter‘s satellite Io let‘s consider 

derivation of equation model cold plasma, which move to the 

Jupiter‘s magnetosphere. 

Consider a single particle of mass m, having charge 

,q Z e  where Z  is a positive integer,   equals 1 or −1, 

and e  is the charge on an electron. Let the particle be sub-

jected only to the Lorentz force: 

Lorentz Elec MagF F F
  

  , ( )F q E U B
   

        (1) 

0B B k
 

                      (2) 

Equation (1) implies that the applied magnetics field is 

longitudinal: its only nonzero component is directed along the 

positive z-axis. (In fact, there is little harm in assuming, 

somewhat more generally, that ( )
10 ( , , ) ,i k r tB B k B x y z e 

  
   

where 1 0B B




 

As known that the equation of motion for 

particle is given by Newton‘s Law of Motion in the following 

formula 

d U
m F

dt




                  (3) 

Hence, from the equation (1) we get 

( )
1( , , , ) ( , , , ) ,i k r tU x y z t U x y z t e 

 
  or d U

i U
dt






    (4) 

Account into (3) in (4) we have 

( )im U q E U B
   

     where ( )
1( , , ) ,i k r tE E x y z e 

 


1 1 1 1 2 1 3( , , ) ( ) ( ) ( )E x y z E i E j E k
   

   , and the components 

1 1 1 2 1 3( ) ,( ) ,( )E E E are constants in with type shown in 

( , , , )U x y z t
 . 

0
cyclotron c

qB
f f

m
 

 

where f is the (linear) frequency, q is 

the charge of the particle, B is the magnitude of the magnetic 

field that is perpendicular to the plane in which the particle is 

travelling, and m is the particle mass and with the cyclotron 

frequency equation to yield: 
qBr

U
m

 . Hence, the kinetic 

energy for particles with speed U can be written by
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2 2 2

2 2
kinetic

mU qB r
E

m
   and we can find 1? 2 3( , )U u u u



  

by the components: 

1 1 1 1 22 2

2 1 2 1 12 2

3 1 3

( ( ) ( ) ),
( )

( ( ) ( ) ),
( )

( ) .

c

c

c

c

iq
u E i f E

m f

iq
u E i f E

m f

iq
u E

m

 


 





 




 



 


    (5) 

Although the above relations were derived for an individual 

particle, they also hold, in our simplified linear model, for 

each species of particle in a plasma consisting of electrons and 

N − 1 species of ions. In particular, the plasma current can be 

written as the sum 

1

N

J n q U
 







                (6) 

where n is the density of particles having charge magnitude 

q Z e
  . In the sequel we will only consider the aggregate 

of particles, in which equation of (1)-(6) pertain with the 

quantities , , , , ,U m q Z   cf  indexed by   where 

1,..., N  . Introduce the electric displacement vector in the 

following form 0

i
D E J



 

   where 0 is the permittivity 

of free space and we can convenient to express in the form 

0

3

0

1

,   ( ), ( ), ( ),

,

ij j

i ij j

j

D K E D D K K E E

D K E





    




   



 



   (7) 

The ( ),ijK K


 is said to be dielectric tensor and also called 

the cold plasma conductivity tensor. The tonsorial nature of 

this quantity reflects the anisotropy of the plasma due to the 

presence of an applied magnetics field. Equations (6), (7)  

imply that

11 12 13

21 22 23

31 32 33

( )ij

K K K

K K K K K

K K K

 
 

   
 
 

, 

where, 11 ,K s 12 ,K id  13 0,K  21 ,K id  22 ,K s

23 0,K  31 32 330, 0, .K K K p    

In this tensor, they are elements s, d, p can be defined from 

the plasma frequency, permittivities R or L of a right- or 

left-circularly polarized wave travelling in the direction .k


 

The plasma frequency which for particles of the species is 

given by formula 
0

n
q

m





  , or 

2
2

0

q n

m

 


  . But per-

mittivity R or L are given by 

2 2

2 2
1

1
( )

N

permitt

c

R
f 



  

 
   

  
 , 

2 2

2 2
1

1
( )

N

permitt

c

L
f 



  

 
   

  
 .                   (8) 

Hence, 

2 2

4 2 2
1

2
( )

N

c

s
f 



 


 


 , 

2

4 2 2
1 ( )

N

c

d
f



 



 







2

2
1

1

N

p

 


                        (9) 

Note that, the mass of an electron is considerably smaller 

than the mass of any ion; so the squared ion cyclotron fre-

quencies (references to ―the plasma frequency‖ in textbooks 

invariably mean the electron plasma frequency) obtained from 

combining fractions in permittR  and permittL  can be ne-

glected and therefore, the ion plasma frequencies can be ne-

glected in the definition of 
2

2
1

1

N

p

 


  (usually, it is 

standard notation). It is easily seen that  -corresponds to the 

typical electrostatic oscillation frequency of a given species in 

response to a small charge separation. Now, accordance to the 

Maxwell‘s we can write the following 

B
E

t


  
  


, 

0 0( )
E

B j
t

 


   
  


     (10) 

where, the parameter 0  denoted by the permeability‘s of 

free space. As known that from the equations of (4) the E


 

and B


 whenever implies plane wave, therefore the system 

equations of (10) can be expressed by 

0 0 0

k E B

k B i j E



  

  

   


 


    

          (11) 
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Hence, we can write 0 0 .k B K E 
  

  Hence, account 

into system of (11) and using elementary identity 0 0 2

1

c
  

(where c- is speed of light in vacuum) and from the equalities 

2

0( ) 0,k k E K E
c




    
    

 
 

c
n k



 

  we may obtain the 

following matrix:  

2 2 2

2

2 2 2 2

 cos ( )         -id               n cos( )sin( ) 

id                             s-n               0 

n  cos( )sin( )          0                   p -n sin ( )       

s n   

  

 
 
 
 
  

1,1

1,2

1,3

0.

E

E

E

 
 

 
 
 

                     (12) 

 
Figure 5. Cold plasma waves. 

As known that from the theory linear algebraic homogeneous system equation, in order existence nontrivial solution must be 

corresponding determinant equal to zero. From determinant equation (12) we find 
2n : 

2 2 2 2 2 2 2 2 2
2

2 2

[( )sin ( ) (1 cos ( )] [( )sin ( ) (1 cos ( )] 4
n  

2[ (sin ( ) cos ( )]

s d ps s d ps AC

s p

   

 

       



                (13) 

Where 
2 2[ (sin ( ) cos ( )],A s p   2 2( )C p s d  . In 

equality (13) both sides squaring and after account into 

permittR R  and permittL L  expression and value of A and 

C, we have 
2 2

2 2

( )( )
tan  

( )( )

p n R n L

sn RL n p


 
 

 
. These equations 

yield criteria for cutoff when 0n  , or rezones when 

.n  Note that. Physically, cutoffs and resonances corre-

spond to a change in the behavior of the wave from possible 

propagation to evanescence. Mathematically, we will identify 

certain resonances with a change in the type of governing field 

equation from hyperbolic (involving wave propagation) to 

elliptic (involving outflow). These transitions, under certain 

conditions, can be accompanied by the reflection and/or ab-

sorption of the wave. Sufficient conditions for cutoff are 

0, 0p R   or 0, 0L C  . But for resonances sufficient 

conditions 
2 2[ (sin ( ) cos ( )] 0,A s p    it means that 

tan  ..
p

s
    Physically, means that for propagation parallel 

to the magnetic fled must be satisfying satisfy condition of 

 .
2


  We will be particularly, interested in the hybrid res-

onances at  
2


  , which occur at frequencies for which s = 

0. Remember that, the electric field is said to be electrostatic if 

it approximately satisfies E   , where Φ is a scalar 

potential and this equation is satisfied locally by all-time 

independent electric fields and in an ordinary dielectric, the 

converse is also true. However in cold plasma there also exist 

time dependent solutions of E   . Cold plasma has been 

characterized as a linear dielectric through which electro-

magnetic waves propagate. Thus these waves include, in 
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distinction to ordinary dielectrics, the special case of propa-

gating electrostatic waves. Additionally, adding from Gauss 

law‘s for electricity, we get 

0 0

( )
1

,

(

0,

, ( , , , ) ( , , , ) ,k r i t

B
E

t

E
B j

t

divD

E x y z t x y z t e 

 




 


  




  

 

 
  


 



    

 (14) 

Hence we get 0.E
 

  Let‘s consider the following cases: 

0.B


   

(i). If we allow a plane-layered inhomogeneous medium 

(parameterized by x), the electrostatic potential has the form 

2 3( )
( , , ) ( ) ,

i k y k z
x y z u x e


   where 1 2 3( , , )k k k k



 is propa-

gation vector of wave. Substitution of this form for the electric 

potential into equation 0divD  and using 

3

0

1

i ij j

j

D K E


  (see [21]) we get 

11 11 0(( ) ) 0,xx x xK u K i u                  (15) 

where, 0 3 13 31 2 12 21( ) ( ),k K K k K K      and zero order 

( )u x  is neglected. The equation of (14) has a power –series 

solution with except when 11 0.K   Explicit solutions of the 

model equation (15) under various physical assumptions are 

given ([5, 6, 20, 21, 22].). It is easy to believe that inhomo-

geneities may develop in a plasma. For example, if the tem-

perature is not exactly zero, the difference in velocity between 

electrons and ions can be expected to destabilize an initially 

homogeneous distribution. However, it is difficult to imagine 

a force that will restrict these inhomogeneities to a 

1-parameter foliation, which would be necessary in order to 

arrive at equation (15). Formally, an electromagnetic potential 

leading to equation of (15) could be induced by applying a 

driving potential to the metallic plates of a condenser. But in 

practice, this plasma geometry has little application either in 

the laboratory or in nature. 

(ii). Suppose instead that the medium is a cold, anisotropic 

plasma with a two-dimensional inhomogeneity parameterized 

by two variables, x and z (see [20]). Then the field potential 

has the form 2( , , ) ( , ) .
ik y

x y z u x z e  As known the electric 

field 1 2 3( , , ),E E E E
 

   where 

2
1 ( , ) ,

ik y
E u x z e 2

2 2( , ) ,
ik y

xE u x z ik e 2
3 2( , ) ,

ik y
zE u x z k e

 

for electric displacement vector 1 2 3( , , ),D D D D


 taken 

Maxwell‘s equation with 0,div D


 and hence we get 

1 2 30 ( ) ( ) ( )x y zD D D D


            (16) 

We continue to neglect those terms which do not contain 

derivatives of ( , )u x z  as ( , )u x z is assumed to oscillate 

rapidly. Because neither ( , )u x z nor ijK  have any depend-

ence on y , the problem is two-dimensional case taken. Using 

(14) and the

3

0

1

i ij j

j

D K E


  when 0 1  and collecting 

terms we find that [20]: 

11 33( , ) 2 ( , ) ( , ) ( , ) 0,xx xz zz x zK u x z u x z K u a x z u b x z u      (17) 

13 312 ,K K   11 2 12 21 31( , ) ( ) ( ) ( ) ,x za x z K ik K K K     

13 2 23 32 33( , ) ( ) ( ) ( )x zb x z K ik K K K    . If for matrix K to 

make under our assumptions on 0B


  imply that 0  . 

Therefore, the equation (15) can be written in the following 

form 

11 33( , ) ( , ) ( , ) 0,xx zz x zK u x z K u a x z u b x z u       (18) 

If take in simple notation as 11 1 33 2( ), ( )K K x K K z  then 

1 2( ) ( , ) ( ) ( , ) ( , ) 0,xx zz x zK x u x z K z u a x z u b x z u     
(19) 

The equation of (18) is the particular case of equation M. A. 

Nurmammadov ([13, 33-35]). 

1 2( ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),xx zz x zK x u x z K z u a x z u b x z u c x z f x z      (20) 

When 1( ) 0,xK x  for 0,x   1( ) 0,zK z   for 0.z  The 

equation is called mixed elliptic-hyperbolic type of M. V. 

Keldysh in two dimensional problems. Two-dimensional 

inhomogeneities of the kind represented by equations of (18) 

and (19), (20) can be expected to arise in toroidal fields, such 

as those created in tokamaks. Finally, frankly speaking, the 

cold plasma and toroidal –poloidal plasma which in tokamaks 

describing mathematically models corresponding to ellipti-

cal-hyperbolic equation of mixed type, both Keldysh and 

Tricomi or Keldysh-Trikomi types. In last time these equa-

tions is called equations of nonclassical mathematical physics 

(see above of definition as it noted in section ―Introduction‘). 

Now, let‘s consider for equation (20) when will be elliptical or 

hyperbolic? For cold plasma in anisotropy case, the equation 

(20) is of either elliptical or hyperbolic type, depending on 

whether the sign of the product 11 33K K  or 1 2K K , i. e. from 

sign 
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2 2

1 2 2 2 2
1 1

(1 )(1 ).
( )

N N

c

K K
f

 

   

 
  


       (21) 

is, respectively, positive or negative. In this case, the sign of 

1K  changes at the cyclotron resonances 
2 2( ) .cf    The 

cold plasma model breaks down at these resonances, as three 

terms of the dielectric tensor become infinite. Also, the sign of 

1K  as changes at the hybrid resonances, at which satisfy 

condition 

2

2 2
1

1
( )

N

cf



 





              (22) 

(These resonances, which have both a low-frequency and a 

high-frequency solution, are hybrid in that they involve both 

plasma and cyclotron frequencies.) In particular, the sign 

changes at the lower hybrid resonance (standard form) 

2 2

2 2 2
1

( )cf

 

 

 
 


            (23) 

The sign of 33K changes on the surface 

2

2
1

1

N


 


                (24) 

where as before, the subscript e denotes electron frequency, 

and the subscript i denotes ion frequency. At the hybrid res-

onance frequencies, the cold plasma model retains its validity. 

Thus in evaluating (21) and in the sequel we will take 2K  to 

be strictly positive. The sonic condition of  
2 2sin ( ) cos ( ) 0,K    

 
include that the x-axis is directed 

along the inward normal to the sonic line, relative to the hy-

perbolic region of equation (18) (or (19)). Hence, 

11 0, 0K   at the origin and taking both x and z to be small, 

one can write 
2

11 ,
x z

K
a b

   33 0 ,K   for constant 

0 0.  If we take scale x and z in the form 

1 1

0

,
x z

x x z z
a a 

    then we have 

1 1 1 1 1

2
1 1 1 1( ) ( , ) 0,x x z z xx Cz u x z u u                (25) 

where C- is constant, for example, if instead of 
2

1 1(x Cz  , 

take 
2
1 1z x , then cold plasma equation can be written as 

1 1 1 1 1

2
1 1( ) 0,x x z z xx z u u u    where the sonic line is parabola 

line 
2

1 1x z . Physical reasoning suggests that the closed 

Dirichlet problem, in which data are prescribed along the 

entire boundary of the domain, should be well-posed for the 

cold plasma model convenience for on a typical domain [24] it 

will be rather. 

2 1
( ) ( , ) 0.

2
xx zz xx z u x z u u                  (26) 

Continuing to adopt the special hypotheses and special 

notation, we can continue to review the analysis in [23] of 

geometry-preserving plane waves in an axisymmetric plasma, 

which is equation of mixed elliptic-hyperbolic type. In the 

work (see [18, 20]), the features of the field in a cold aniso-

tropic plasma with two-dimensional inhomogeneity are con-

sidered in connection with the problem of converting elec-

tromagnetic waves into plasma waves. The nature of the field 

singularities is determined by the type of singular point of the 

characteristic (a pass leads to a singularity on a line, a node 

leads to a singularity at a point). The mutual linear transfor-

mation of electromagnetic and plasma waves in an inhomo-

geneous plasma is of considerable interest and has been 

studied by many; see, for example, [14-21]. As is known, the 

linear transformation of electromagnetic waves into plasma 

waves in a flat layer is closely related to the field characteris-

tics of cold plasma. It is the presence of such features that is a 

necessary condition for the transformation, and the energy 

carried away by the plasma wave is equal to the energy ab-

sorbed in the cold plasma. This circumstance makes it essen-

tially unnecessary to solve the transformation problem if the 

simpler problem for cold plasma is solved. This article is 

devoted to the study of field features in the case when the 

parameters of the environment depend on two spatial coor-

dinates. The two-dimensional inhomogeneity model covers a 

large number of plasma configurations, including a Toka-

mak-type toroidal system. The considerations expressed 

above are, of course, purely qualitative in nature. In this sec-

tion, we give a more rigorous analysis, which, in particular, 

will allow us to establish the type of field features that arise in 

the indicated ―special‖ lines and special points in the mag-

netosphere of Jupiter. 

4. Solution Near Singular Points of the 

Characteristics of the Cold Plasma 

Equation 

The considerations expressed above are, of course, purely 

qualitative in nature. In this section, we present a more rig-

orous analysis, which, in particular, will allow us to establish 

the type of field singularities that arise in the indicated ―spe-

cial‖ lines and special points. Mixed-type equations, such as 

equation (25), describe model anisotropic cold plasma flow-

ing from the satellite Io of the Jupiter magnetosphere. In this 

sense, as a study from a mathematical point of view, the pre-

sented model, described by the use of non-classical equations 
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of mathematical physics, which included the Tricomi and 

Keldysh equations, was studied for the first time. In order to 

have motivation for non-classical models, we first illustrate a 

special solution for the Tricomi, Keldysh, and Trico-

mi-Keldysh type model equations. 

( , ) 0,xx zzzu x z u   

2( ) ( , ) 0, ( ) , , m
xx zzK z u x z u K z z z z    (27) 

Keldysh type equation deriving from equation of Tricomi (27) 

in the form 

1( ) ( , ) ( , ) 0.zz xxK z u x z u x z    2( ) , , mK z z z z   

For Tricomi (27) equation some exact solutions formulas 

exist ([3]), and solutions to some particular boundary values 

problems are known ([47, 48]). Let‘s consider more general 

form for equation (25) with coefficient 
2( )x z : 

2 1
( ) ( , ) 0.

2
xx zz xx z u x z u u        (28) 

If we seek the solution of (28) in the form 

( ),pu    2 ,
2

u x z


  2 ,u z  2

4
,

(1 4 )

u

z






(29) 

where p is an arbitrary constant, then we obtain for the func-

tion ( )  the hypergeometric equation 

2

2

3 ( 1)
(1 ) [1 (2 1) ( ) ] 0.

2 4

p p
p p

 
    



  
       


 (30) 

Almost works which is concerning plasma and its equation 

being to the form (30) and it can be solved Bessel solutions. 

But in the work author M. A. Nurmammadov [13] considered 

non-classical equations of mathematical physics, and founded 

justification classes a new ordinary equations non-classical 

type, which are has application astrophysics arise Kel-

vin-Helmholtz instabilities. In this case NODE (non-classical 

ordinary differential equation) has degenerating lines and 

singular points. For example in equation (30) has degenerat-

ing points 0, 1,   or singularities. 

( ) ( ), 0, , ( ) 0( ( ) 0),K x x L x x x L b x orb x      or the 

number ( ) 0b x b   

(1 ) ( ) ( ) ( ) ( ) ( ),xx xx x u x b x u x c x u f x        (31) 

In this situation, The coefficients of (30) corresponding for 

(28) in the following:  

3
( ) (1 ), ( ) [1 (2 1) ( ) ],

2
K b p p           

( 1)
( )

4

p p
c 


                (32) 

Accordance, equation of (33) using the solution can be 

written in the following integrals formulas, 

1 2 1( ) (exp( ( )) (exp( ( ))C P C P     , where 
1

( )
( ) ,

( )

c t
P dt

b t


  

1

1

( )
( ) ,

(1 )

c t
P dt

t t


 


 

and 1,C 2C are arbitrary constants 

which choosing from the initial conditions. 

1
( 1)

( ) ,
3

4[1 (2 1) ( ) ]
2

p p
P dt

p p t






 

   


 
1

1

( 1)
( )

4 (1 )

p p
P dt

t t





 


 

Hence we get 

1
1 2

1

( 1) 3 ( 1)
( ) (exp[ ( ) ln 1 (2 1) ( ) ] (exp( ln (1 ) )

6 2 4 lim
t t A
t t

A

p p p p
C p p t C t t     

 



 
          

Analogically for equation 
2 1

( ) ( , ) 0,
2

xx zz xx z u x z u u    can be taken ( ),pu    2 ,
2

u x z


 
2 ,u z 

2

4
,

(1 4 )

u

z






 

then 1, 2,     and 0p  arbitrary number is applicable for this equation. As it shown in above the co-

efficients of (30) can be written in the following form 

2

2

3 ( 1)
(1 ) [ (1 4 ) ( ) ] 0.

2 4

p p
p p

 
   



  
       


                       (33) 

3
( ) (1 ), ( ) [ (4 1) ( ) ],

2
K b p p          

( 1)
( )

4

p p
c 


                     (34) 

Accordance, equation of (33) using this case solution can be written in the following integrals formulas, 
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1 2 1( ) (exp( ( )) (exp( ( ))C P C P     , where 

1
( )

( ) ,
( )

c t
P dt

b t


  
1

1

( )
( ) ,

(1 )

c t
P dt

t t


 


 

and 1,C 2C are arbitrary constants 

which choosing from the initial conditions. 

1
( 1)

( ) ,
3

4[ (4 1) ( ) ]
2

p p
P dt

p p t




 

   
  

1

1

( 1)
( )

4 (1 )

p p
P dt

t t





 
                          (35) 

Finally, we get 

2
2 6 1

12

2 2
1

( ) ( 1) 3
( , ) ( ) [ ] [ (exp[ ( ) ln [ (4 1) ( ) ]

6 27

( 1) 4
(exp( ln (1 ) )., ( 1)

4 7lim

p t
t

t A
t

A

x z p p
x z x z C p p t

z

p p x
C t t

z









 







 
       




    

          (36) 

or in our terminology we have the following solution 

2
2 6 1

12

2 2
1

( ) ( 1) 3
( , ) ( ) [ ] [ (exp[ ( ) ln [ (4 1) ( ) ]

6 27

( 1) 4
(exp( ln (1 ) )., ( 1)

4 7lim

p t
t

t A
t

A

x z p p
u x z x z C p p t

z

p p x
C t t

z



 

 







 
       




    

 

 

In case of 1   in equation of (28) does not a single 

characteristics passes through the point 0, 0.x z  but when 

1 0    there are infinity numbers characteristics passes 

through the point 0, 0.x z  Additionally, all the charac-

teristics lying between the parabolas 2x z   and 
2 ,x z  

when 0   one characteristics from the each family passes 

point of 0, 0.x z  When 0z  singularity case equation is

1
( , ) 0

2
xx zz xxu x z u u   and there exists, solutions having a 

strong singularity on the line 2x z (this line is the second 

characteristic parabola). A similar situation occurs also in the 

case of plane geometry, when 0,   the equation (28) 

describes the case of plane geometry with the concentration 

gradient perpendicular to the magnetic field. Finally, the so-

lutions should have a singularity along the entire line repre-

senting the corresponding branches of the characteristics 

when z < 0 and z > 0. 

5. Equilibrium Between Magnetic and 

Centrifugal Forces, Pressure Gradient, 

in the Presence of Plasma Rotations 

Note that Caudal G. [49] studied a stationary axisymmetric 

magnetosphere (with the establishment of axial symmetry 

relative to the axis of rotation of the magnetic axis, where 

denotes the azimuthal direction in spherical or cylindrical 

coordinates). The displacement of the centrifugal equator 

(toward the magnetic equator) is expected to be small up to 

distances of 30 RJ and is therefore not included in our study. 

Again, we ignore any temporal or spatial variations, e.g., by 

density, since they usually have a small size (< 1) or are very 

short (several minutes). The model also assumes that there is 

enough time to connect the magneto disk to the planet through 

currents. Assuming a balance of forces in both the (cylindrical) 

radial and meridional directions, the equilibrium reaction 

between magnetic force, pressure gradient, and centrifugal 

force has the following equalities: 

2
1 0,magnit i iF P N m  

  

    or 

2
1 0,i iJ B P N m  

   

           (37) 

In the above expression: ,J B
 

current density and magnetic 

field, respectively; P -total thermal pressure of the plasma; 

in -ion number density; im -average ion mass;  - cylindrical 

distance from the axis of rotation; 1


-cylindrical radial unit 

vector, angular velocity of the plasma. The contribution of the 

gravitational force beyond a few radii of Jupiter is minimal 

and can be safely ignored. In addition, following the Gaudal 

model [49], using the condition · 0,B
 

   we have 

EB U 
  

                    (38) 

where the scalar functions U and E  represents the Euler 

potentials (the subscript E, is used to avoid confusion with 
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plasma β), in the general case functions in spherical coordi-

nates. Using the rotational symmetry of the system, the Euler 

potentials can be simplified and rewritten as follows U: 

,EU U 
 

   ( , ),U U r   ,E JupiterR U    (39) 

where JupiterR  is the radius of the planet. If we consider the 

meridional section of the magnetosphere, which is a constant 

and can be excluded from the rest of the analysis, then E  

the magnetic field in spherical coordinates is also expressed 

through U: 

2

1
,

sin( )
r

U
B

r 





 

1
,

sin( )

U
B

r r








    (40) 

where we also used the definition of azimuthal current 

0

1
,J B



  

  which is also a function Therefore, the origi-

nal problem of force equilibrium then reduces to calculating 

only the Euler potential, which, in turn, is obtained by solving 

the following differential equation (in normalized units): 

2 2 2

2 2 2

1
( , , ),

U U
f r U

r r






  
 

 
 or 

2 2 2

2 2 2

1 cos ( )
( , , ),

U U
f r U

r r






  
 

 
        (41) 

where r - is the radial distance in spherical coordinates, µ 

replaces the latitude  : cos( )   and ( , , )f r U  is the 

source function determined by the plasma pressure and its 

angular velocity. This expression is physically equivalent to 

equation (37), in which all terms are replaced by alternative 

expressions involving U; basically, it includes all mechanical 

forces (centrifugal, pressure gradients) acting on the plasma, 

and we can write equation (38) in the following form: 

2 2

2 2
( , ) ( , , ),

U U
K r f r U

r
 



 
 

 

2

2

1
( , ) ,K r

r





  (42) 

2 2 2

2 2 2

1 cos ( )
( , , ),

U U
f r U

r r






  
 

 

2

2

1 cos ( )
( , )K r

r





  (43) 

then it is easy to see that equations (42) and (43) are Trico-

mi-Keldysh type. If 0,
2


   , then equation (41) and (42) 

are Tricomi type: 

2 2

12 2
( ) ( ,0, ),

U U
K r f r U

r 

 
 

 

2 2

2 2 2

1
( ,0, ),

U U
f r U

r r 

 
 

 

1 2

1
( ) .K r

r
                 (44) 

Keldysh type:  

2 2
2

2 2
( , ),

U U
r F r U

r 

 
 

 
 2( , ) ( ,0, ),F r U r f r U    (45) 

Corollary 5.1 in orderto give motivation above obtained 

equations of hot –cold plasma may be conside the following 

equations and its special solutions: 

Example 1. To find special solution of equation Tricomi: 
2( ) ( , ) ( , ) 0., ( ) .xx zzK z u x z u x z K z z   Note that, 

( , ) ,P x z z is a (trivial) solution. Then from the equality with 

0,a b  the function 
2 4

2

0 0 0

( , )
2 12

x z t
x z

u x z zdr s dsdt       

is a solution too. 

Example2. To find special solution of equation Tricomi:  
2( ) ( , ) ( , ) 0., ( ) sin ( ),xx zzK z u x z u x z K z z   The function 

2
2

0 0 0

2 2

0 0

( , ) sin ( )
2

1 cos(2z) 1
[ (1 cos(2 )]   

2 2 4 8 4

x z t

z t

x
u x z zdr s dsdt

x z
s dsdt

   

    

  

 

 

is solution. For motivation of equation (41) the function  

2
2

0 0 0

2 2

0 0

( , ) 1 cos ( )
2

1 cos(2z) 1
[ (1 cos(2 )]  -  

2 2 4 8 4

x z t

z t

x
u x z zdr s dsdt

x z
s dsdt

    

   

  

 

 

is a solution too. If 1, 0   , then the equation (44) and 

(45) are Tricomi types:
2

2
( ,0, ).

U
f r U

r





 Hence, we have a 

general solution: 2

1

,

( ,0, )

dU
C r

C f r U dr

 





 where 

1 2,C C are arbitrary constants. Physical means the corre-

sponding singular point of the sonic line, cutoff, and reso-

nance phenomena having notations -parallel propagation: the 

principal resonance to be these which occurs at 0   

2


  . From equation (13) a resonance 2n   is evident 

to equation 
2 2

2 2

( )( )
tan  

( )( )

p n R n L

sn RL n p


 
 

 
. Hence, for 
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0   must be satisfy the condition ,S  since 0p  , 

is a cutoff. Since, 
( )

,
2

R L
S


 then can be satisfy for either 

R  (electron cyclotron resonance) or L   (ion cy-

clotron resonance). But, principal solution – perpendicular 

propagation in such: as ,
2


  ,

P

S
 and since, 

,P  is a trivial solution (either , so, in this case 

,p   May be satisfying hybrid in Z –mode. The source 

function ( , , )f r U  can be used to calculate the azimuthal 

current J 



, which is a key element for the stretching of field 

lines near the equator. By virtue of the balance between 

magnetic force, pressure gradient, and centrifugal force, the 

rotation of the plasma flow, which is a source of cold plasma, 

is ensured continuously by the satellite Io. In addition, the 

solar wind provides a trap that constantly allows the re-

placement of cold plasma with hot plasma, and in this region 

of the magnetosphere, a tail is formed, which standard MHD 

equations balance with the force equivalent to equations: 

1
( ) ( )

4
V V P B B



     

             (46) 

Before direct observations became available, W. Dungey 

[50] and T. Gold [51] observed that the magnetic fields of 

rotating celestial bodies impart angular velocity to the local 

plasma, resulting in a centrifugal force that strains the field. 

As a result, the field lines are stretched, or, what is the same, a 

current layer is formed in which the Lorentz force J B
 

  in 

the layer balances the centrifugal force of the rotating plasma. 

In the original method proposed by Caudal, the physical 

parameters along the equator (e.g., density, temperature) were 

limited by observations and in particular by Voyager 1 data 

[51]. In addition, a population of hot plasma (plasma with the 

thermal energy of the ions significantly exceeding their rota-

tional kinetic energy) is added to the system, which contrib-

utes to the overall plasma thermal pressure P. Using data from 

Voyager 1 and Voyager 2, and it was reported that hot ions 

dominate the plasma pressure. The content of hot plasma is 

modeled through the product of the equatorial pressure of the 

hot plasma and the volume of the welding tube, which de-

termines the hot plasma index: 

hot hot hotK P V                   (47) 

In this case, up to a distance of ~ 8, the index is assumed to 

be constant with radial distance. The transfer speed itself 

depends on the conductivity of the ionosphere, which must 

also be large enough to ensure corotation of the magneto-

spheric plasma. Significant amounts of low-energy plasma 

were detected on the dayside in the radial range from 4 RJ to 5 

to 16 RJ. The approximate distance at which corotation dis-

turbances can be calculated for Jupiter from the height of the 

integral conductivity and external plasma flux. As an initial 

condition, it is assumed that the magnetic field is a dipole, 

described using the previous notation as: 

21 cos ( )
,initial dipolU U

r


       (48) 

If 0 ,  then 0,initial dipolU U  this means that beyond 

the critical radius, the magnetic field may be too weak to 

support plasma corotation and corotation violations can be 

calculated for Jupiter from the height of the integral conduc-

tivity and external plasma flux. If we take this violation into 

account from a mathematical point of view, it turns out that 

2 10, ( ,0,0) ( ).С С f r F r      

,

( ) ( ,0, )

dU
r

F r f r U dr

 

 



      (49) 

However, the homogeneous part of the differential equation 

(44) has a special solution: 
2

( , ) ln ln 1,
2

r
U r r a

a


     

where may be taken .Ja R  

Now, accordance equality of (45) define force balance in 

the magnetosphere. As standard form define the plasma 

2

8

B


   and the Alfven Mach number by 

2 01 ln 4

2 ln
A

I
M

c B

 





 


             (50) 

In Table 1 we list the various contributions to force balance 

as measured in the MEP as a function of radial distance from  

(50)(see Appendix). It is important note that, in the tail mag-

netosphere of Jupiter, the Euler potential force is constant, and 

inside the tail, the Lorentz force J B
 

  is equal to 

( )R P
   

    . It means that the outward centrifugal 

and pressure gradient forces are balanced by Lorentz force. 

Where 


  is angular speed of Jupiter, ,J B
 

 current density 

and magnetic field, respectively; P -total thermal pressure, 

R


-centrifugal force,  - cylindrical distance from the axis of 

rotation. Above obtained theoretical results may be checked in 

results of observation Voyager1-2. 

6. Conclusion 

In this paper considered an applications non-classical equa-

tions of mathematical physics in the fields of mechanics, as-
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tronomy, and astrophysics in the case of plasma models of the 

Jupiter‘s magnetosphere, with search of lunar Io. Given com-

parisons works and using observation results of Pioner-10-11, 

Voyager1-2 considered mathematical models. For this reason, 

consider physical background with bound cold plasmas and 

mathematical background with connected cold plasma. For ap-

plications first of all given definition of non-classical equations 

of mathematical physics and how to apply to the magnetosphere 

of Jupiter, and conditions of applicability of mathematical mod-

els in plasma models. Therefore, physical process of role of 

Jupiter‘s satellite Io, source as a hot plasma source for Jupiter 

was considered. By physical observation of magnetic disk acts as 

a balancing mechanical equilibrium to retain hot plasma was 

investigated. in this case was obtained derivation of the cold 

plasma modeling equation whose source is Jupiter's satellite Io 

which being to the Keldysh type equation. At first application 

exact solution in integrals formula. Additionally, investigated 

effects for corresponding geometrical analysis of the resonance 

curve of model equation of cold plasma and hot plasma. Ana-

lyzed the solution near singular points of the characteristics of the 

cold plasma equation in terminology mathematical view of 

points as degenerating and singularity cases. At the same time for 

this reason analogical physical analyses also illustrated, as cutoff, 

resonances for cold and hot plasmas. In the region tail of Jupiter 

given analyses of basic model equations of the Jupiter magne-

tosphere for the equilibrium between magnetic force, pressure 

gradient, and centrifugal force in the presence of plasma rotations. 

A namely, role of Alfven Mach number with constant Euler 

potential parameter in the region tail of Jupiter‘s magnetosphere 

agreed previously results of observation Voyager1-2. 

Remark1. By the investigation we include that equilibrium 

between magnetic force, pressure gradient, and centrifugal 

force in the presence of plasma rotations proves mathemati-

cally justification magneto hydrodynamic equilibrium and 

steady of Jupiter rotation. For importantly estimation our 

investigation we reference concerning notes topics: ‖the au-

thor of the article ―The Magnetosphere of Jupiter: Moving 

from Discoveries Towards Understanding,‖ Professor Frank 

Crary from the University of Colorado, Boulder, Laboratory 

for Atmospheric and Space Physics (303) 735-2120, noted 

that the magnetosphere of Jupiter: from discovery to under-

standing: ―Jupiter‘s magnetosphere has been observed by 

many spacecraft, but most of these results were discoveries of 

the global and general properties of the magnetosphere. They 

usually ask more questions than they answer. Here we present 

some of the remaining questions needed to truly understand 

Jupiter's magnetosphere and argue that this can be achieved 

with small, targeted missions. Despite past missions to Jupiter, 

many questions remain about its magnetosphere and how the 

various elements of this dynamic and coupled system interact. 

Past discoveries have shown us how much remains to be 

learned before we understand Jupiter's magnetosphere. How 

and to what extent does the solar wind control Jupiter‘s 

magnetosphere?‖ 

Account into the Remark1, the solar wind acts as a trap for 

cold and hot plasma in the magnetosphere. The tail of the 

magnetosphere with cold plasma ensures the replacement of 

its hot plasma through the presence of the solar wind. But just 

as the loss of the temperature of the sun's surface (Parker's 

problem) is associated with the reconnection of magnetic 

force lines, such a picture is also connected with the loss of the 

ejection coming (almost 60 percent) from Io. The tail of the 

magnetosphere is from the plasma model equation, where 

singular degeneracy occurs and magnetic force reconnection 

occurs. However, due to force balance, the equilibrium of 

Jupiter is preserved, and the stability of magneto hydrody-

namic equilibrium is consistent with mechanical equilibrium, 

where the Alfven Mach number is also related to the angular 

velocity of Jupiter. In our work, as far as possible, unresolved 

issues are highlighted. 

Therefore, I am very grateful to Professor Frank Crary and 

other researchers noted, because they did not stand idly by but 

continued research on this topic. 

Remark 2. Account into the above investigation, which has 

a mathematical justification for the hydrodynamic equilib-

rium of Jupiter, and from the author's work [54-58], which 

also has a mathematical justification for the hydrodynamic 

equilibrium of Jupiter, the proposition model of stability and 

rotation of Jupiter, including the astronomer's two models, 

proves a new justification. 
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Appendix 

In Table 1 we list the various contributions to force balance 

as measured in the MEP as a function of radial distance from 

(50). The initial increase of the Lorentz force with ~ followed 

by a decrease is indicative of the finite radial extent of the 

current sheet. Recent modeling has shown that a better fit to 

the magnetic field data can be obtained if the model current 

sheet is tilted toward the centrifugal equatorial plane (CEP) 

and such a tilt is expected if the cold component plays a sig-

nificant dynamical role [53]. The weaker current sheet ob-

served by Voyager 2 is consistent with the lack of a su-

per—Alfvènic cold component of the plasma during that 

encounter, the current sheet observed at that time should have 

been more closely aligned with the MEP than with the CEP. 
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Table 1. Force balance at Jupiter. 




 AM    2
1.88AM   04 I

B




 

17 1.7 2.4 7.2 9.0 

21 1.6 5.7 13 17 

25 1.6 7.4 16 20 

28 1.2 4.5 9.5 24 

35 1.5 1.8 9.1 28 

42 1.8 1.0 5.0 25 
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