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Abstract 

Early detection of COVID-19 plays a vital role in enabling timely treatment and curbing the spread of the virus. This study 

introduces a novel hybrid deep learning model tailored to identify COVID-19 infections from chest CT scan images, aiming to 

support healthcare professionals facing overwhelming diagnostic demands. Our approach integrates the strengths of three 

pre-trained convolutional neural networks namely VGG16, DenseNet121, and MobileNetV2, each known for their robust feature 

extraction capabilities. These models independently extract deep features from input CT images, capturing both low-level and 

high-level representations essential for accurate classification. To address potential redundancy and reduce the computational 

burden, Principal Component Analysis (PCA) is employed for dimensionality reduction. The refined feature vectors from all 

three models are then concatenated to form a comprehensive feature representation, which is subsequently passed to a Support 

Vector Classifier (SVC) for final classification. Our hybrid architecture enables the model to leverage the complementary 

strengths of each CNN while maintaining efficiency. We evaluated our proposed model on a dataset consisting of 2,108 training 

images and 373 test images, comprising both COVID-positive and non-COVID samples. Comparative analysis with individual 

CNN models showed that our hybrid model achieved superior performance, reaching an accuracy of 98.93%. It also 

outperformed standalone models in precision, recall, F1-score, and ROC-AUC, highlighting its potential as a highly reliable and 

efficient diagnostic aid. 
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1. Introduction 

In March 2020, the World Health Organization (WHO) 

declared COVID-19, caused by the SARS-CoV-2 virus, a 

global pandemic. COVID-19 is highly contagious and can 

develop into severe acute respiratory distress syndrome 

(ARDS), which can be life-threatening. Early detection and 

diagnosis are critical for controlling the spread of the virus. 

The reverse-transcription polymerase chain reaction (RT-PCR) 

test is the most commonly used method for COVID-19 

screening. However, this technique is time-consuming, and 

studies have noted that its sensitivity is low in the early stages 

of infection [1]. 

Chest imaging techniques, including X-rays and com-

puted tomography (CT) scans, have also been used to detect 

lung abnormalities associated with COVID-19. However, 

the accuracy of COVID-19 diagnosis using chest imaging 

relies significantly on the expertise of radiologists [2]. Re-

cently, several studies have investigated deep learning 

techniques as a tool to aid in and automate the diagnostic 

process [3-21]. 

A CT scan generates detailed images of organs, bones, soft 

tissues, and blood vessels, providing physicians with critical 

insights into internal structures, including their shape, size, 

density, and texture. Unlike conventional X-rays, which 

overlay different structures in a single image, CT scans pro-

duce a series of cross-sectional "slices" of a specific body 

region, offering a more comprehensive view. This level of 

detail aids in accurately identifying potential medical issues, 

along with their exact location and severity. Consequently, 

numerous deep learning-based methods have recently been 

proposed for COVID-19 screening using CT scan images 

[22-27]. 

The overarching goal of our research is to advance the 

application of deep learning and LLMs across software 

engineering [28, 29] and medical diagnostics [30, 31]. In 

light of recent research advancements, our primary objec-

tive of this research is to develop a high-performing deep 

learning-based classification system to enhance the detec-

tion and diagnosis of COVID-19 using CT scan images. 

Our study seeks to address critical challenges in existing 

approaches, such as ineffective feature extraction, compu-

tational inefficiencies, and the risk of overfitting. By inte-

grating powerful pre-trained models with advanced dimen-

sionality reduction techniques, our research aims to achieve 

superior performing model in distinguishing COVID-19 

cases from non-COVID-19 cases. 

2. Related Works 

Since the COVID-19 outbreak, researchers have increas-

ingly focused on creating deep learning methods to screen 

the disease using medical imaging techniques such as CT 

scans and chest X-rays. We specifically explored previous 

research focused on deep learning methods using CT scans 

for COVID-19 detection, as our approach also utilizes CT 

scan images. Given our focus on CT-based COVID-19 de-

tection, we analyzed prior research utilizing deep-learning 

approaches related to CT imaging to enhance our methodol-

ogy. 

2.1. CNN and Transfer Learning Approaches 

Several studies have focused on leveraging CNNs, partic-

ularly transfer learning, for COVID-19 detection using CT 

scans. Xu et al. (2019) [32] developed a novel deep learning 

method using a location-attention mechanism and ResNet 

architecture to automatically screen COVID-19 CT images in 

this multi-center case study. The model achieved an 86.7% 

accuracy in classifying COVID-19, IAVP, and healthy cases, 

showing promise as a supplementary diagnostic tool for 

frontline clinicians [32]. He et al. (2020) [22] developed the 

COVID-19 CT dataset with 349 CT scans and proposed the 

Self-Trans approach, combining self-supervised learning 

with transfer learning. Their method achieved an F1 score of 

0.85 and AUC of 0.94, demonstrating high accuracy in di-

agnosing COVID-19 with limited data [22]. Wang et al. 

(2021) [26] proposed an artificial intelligence-based method 

using a modified Inception transfer-learning model to diag-

nose COVID-19 from CT images, achieving 89.5% accuracy 

in internal validation and 79.3% in external validation [26]. 

Amyar et al. (2020) [25] proposed a multi-task deep learning 

model for simultaneously classifying COVID-19 and seg-

menting lesions in chest CT images. 

The model, which jointly performs segmentation, classifi-

cation, and reconstruction tasks, achieved a dice coefficient 

higher than 0.88 for segmentation and an AUC of 0.97 for 

classification [25]. Wang et al. (2020) [33] introduced a joint 

learning framework to improve COVID-19 CT diagnosis by 

learning from heterogeneous datasets. They redesigned 

COVID-Net, incorporating feature normalization and a con-

trastive training objective, achieving 12.16% and 14.23% 

higher AUC than the original model on two large-scale da-

tasets, outperforming other multi-site learning methods [33]. 

Han et al. (2020) [34] introduced AD3D-MIL, a model for 

weakly-supervised COVID-19 screening from chest CT, 

achieving 97.9% accuracy, 99.0% AUC, and 95.7% Cohen 

kappa. The model uses attention-based pooling for high ac-

curacy and interpretability, showing strong potential as an 

efficient tool for large-scale COVID-19 screening [34]. Pol-

sinelli et al. (2020) [24] developed a light CNN model based 

on SqueezeNet for distinguishing COVID-19 CT images. 

CNN-2 achieved 85.03% accuracy, 87.55% sensitivity, and 

86.20% F1-score. It classified images in 1.25 seconds on a 

high-end workstation and 7.81 seconds on a medium laptop 

without GPU acceleration. 

Performance can be improved with efficient 

pre-processing [24]. Haryanto et al. (2024) [35] proposed 
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SCOV-CNN, a convolutional neural network for COVID-19 

classification based on CT images. Inspired by LeNet, it uses 

a deeper architecture with seven and five kernel sizes and 

three fully connected layers with dropout. Evaluated on CT 

images from 120 patients, SCOV-CNN achieved 96% accu-

racy, 98% precision, and 95% F1 score [35]. 

2.2. Explainable AI Approaches 

Some recent works have focused on explainability and 

improving clinical acceptance through transparent AI. Soares 

et al. (2020) [27] introduced a dataset with 2482 CT scans 

(1252 COVID-19 positive, 1230 negative) collected from 

São Paulo, Brazil. They applied the xDNN classifier, 

achieving an F1 score of 97.31%. The xDNN model provides 

explainable results with IF... THEN rules for early diagnosis 

[27]. Rajpoot et al. (2024) [36] proposed an ensemble ap-

proach combining CNN models with explainable AI tech-

niques (LIME, SHAP, Grad-CAM, Grad-CAM++), achiev-

ing high. Their work emphasizes model transparency and 

interpretability, bridging the gap between precision and clin-

ical applicability [36]. This approach ensures that deep 

learning models for COVID-19 detection are not only accu-

rate but also interpretable by clinicians, increasing their trust 

and adoption in clinical settings. 

2.3. Hybrid and Ensemble Approaches 

Other research has focused on hybrid and ensemble mod-

els that combine multiple techniques for improved perfor-

mance. Mobiny et al. (2020) [23] introduced Detail-Oriented 

Capsule Networks (DECAPS) for automatic COVID-19 di-

agnosis from CT scans. DECAPS integrates Capsule Net-

works with enhancements like Inverted Dynamic Routing, 

Peekaboo training, and data augmentation using generative 

adversarial networks. The model achieves 84.3% precision, 

91.5% recall, and 96.1% AUC, outperforming state-of-the-art 

methods and experienced radiologists, suggesting its poten-

tial to assist in CT scan-based COVID-19 diagnosis [23]. 

Islam et al. (2022) [37] proposed an ensemble model for 

COVID-19 CT image classification, addressing the limita-

tions of RT-PCR by using CT scans for detection. They ap-

plied contrast-limited histogram equalization (CLAHE) for 

image enhancement and developed a Convolutional Neural 

Network (CNN). 

The extracted features were used with various machine 

learning algorithms-Gaussian Naive Bayes (GNB), Support 

Vector Machine (SVM), Logistic Regression (LR), Decision 

Tree (DT), and Random Forest (RF). The ensemble model 

outperformed state-of-the-art models [37]. Kundu et al. 

(2022) [38] developed an ensemble-based framework called 

ET-NET for automated COVID-19 detection using chest 

CT-scan images. Their approach employs a bootstrap aggre-

gating (bagging) technique, integrating three transfer learn-

ing models-Inception v3, ResNet34, and DenseNet201-to 

enhance classification performance, achieving an impressive 

accuracy of 97.73% [38]. Aversano et al. (2021) [39] intro-

duced an ensemble-based approach for COVID-19 detection 

using CT scan images. By combining pre-trained networks 

(VGG, Xception, ResNet) optimized via a genetic algorithm, 

the method classifies clustered lung lobe images using a ma-

jority voting strategy. The ensemble outperformed single 

classifiers, achieving F1-scores of 0.94–0.95 on an integrated 

dataset, demonstrating improved generalization and stability 

across diagnostic contexts [39]. Shaik et al. (2022) [40] pro-

posed an ensemble-based approach for detecting COVID-19 

infection from chest CT scan images, aggregating predictions 

from multiple fine-tuned pre-trained models such as VGG16, 

InceptionV3, ResNet50, Xception, and MobileNet. Their 

method leverages a composite ensemble classifier that com-

bines candidate model predictions, achieving superior results 

[40]. Maftouni et al. (2021) [41] developed an ensemble 

model for COVID-19 diagnosis using chest CT scans, com-

bining Residual Attention-92 and DenseNet-121 to leverage 

complementary features. A meta-learner integrates the out-

puts of these networks, achieving superior performance with 

an accuracy of 95.07% and ROC AUC of 96.72% [41]. De 

Jesus Silva et al. (2023) [42] proposed four ensemble CNN 

models using transfer learning for COVID-19 detection from 

CT scans and compared them with state-of-the-art CNN ar-

chitectures. After testing 11 models, they selected Dense-

Net169, VGG16, and Xception. The ensemble of these three 

models, called EnsembleDVX, achieved the best results with 

an accuracy of 97.7%, precision of 97.7%, recall of 97.8%, 

and an F1 score of 97.7% [38]. 

Our approach uniquely combines transfer learning using 

DenseNet121, VGG16, and MobileNetV2, followed by fea-

ture extraction, dimensionality reduction with PCA, and 

classification using SVC. Our method significantly improves 

accuracy and AUC scores for distinguishing between 

COVID-19 and non-COVID-19 cases, which sets our ap-

proach apart from the studies reviewed. Additionally, dimen-

sionality reduction techniques, such as PCA, are often not 

adequately integrated into these systems, leading to ineffi-

cient feature representation and model performance degrada-

tion. Furthermore, our approach uniquely tackles the chal-

lenge of dimensionality reduction through PCA, effectively 

minimizing computational costs and reducing the risk of 

overfitting, issues that are prevalent in many existing models, 

particularly in the context of COVID-19 classification. 

3. Methodology 

The proposed hybrid deep learning model is presented in 

Figure 1. We first normalized the images to meet pre-trained 

CNN model input requirements and applied image augmen-

tation to enhance dataset diversity and reduce overfitting. 

Next, to leverage the strengths of deep learning, we adopted a 

transfer learning approach using three pre-trained CNNs: 

MobileNetV2, DenseNet121, and VGG16. These networks 
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were employed to extract deep features from the processed CT 

scan images. This step is vital for effectively capturing and 

representing both high-level and low-level features from CT 

scan images, ensuring that critical image details are repre-

sented for accurate analysis and classification. Following this, 

to handle the high dimensionality of the extracted features, we 

applied PCA to transform the features into a low-

er-dimensional space, retaining the most significant variations 

in the data. This process reduced redundancy and noise, im-

proved computational efficiency, and ensured that the most 

discriminative information was preserved for downstream 

classification. The reduced features from all three pre-trained 

networks were then stacked (concatenated) together to form a 

final unified feature set, combining the diverse and comple-

mentary information captured by each model. Finally, the 

stacked features were fed into SVC to train the model and 

perform the final classification, enabling the effective detec-

tion of COVID-19. In this section, we will outline the key 

components of the methodology. 

 
Figure 1. Hybrid Deep Learning Model Approach. 

3.1. Dataset 

We used the SARS-CoV-2 CT scan dataset available on 

Kaggle [43] (PlamenEduardo, 2020), originally collected by 

Angelov and Almeida Soares [27] (2020) from hospitals in 

São Paulo, Brazil. The SARS-CoV-2 CT-scan dataset consists 

of 2481 CT scans from 120 patients, with 1252 CT scans of 60 

patients infected by SARS-CoV-2 from males (32) and fe-

males (28), and 1229 CT scan images of 60 non-infected 

patients by SARS-CoV-2 from males (30) and females (30), 

but presenting other pulmonary diseases. Data was collected 

from hospitals in São Paulo, Brazil. The dataset includes CT 

images with varying sizes, ranging from 182×129 pixels for 

the smallest images to 484×416 pixels for the largest. Some 

examples of these images are shown in Figure 2. The dataset 

was split into two sections: 85% of the images were used for 

training, and 15% were reserved for testing to facilitate model 

training and evaluation. We chose this dataset as it is from 

real-time patients collected from multiple hospitals in São 

Paulo, Brazil [27]. The dataset's diversity of patient cases and 

image sizes, along with its prior testing with various methods 

[27], makes it a well-established resource for evaluating 

COVID-19 detection models. As a next step, image 

pre-processing and augmentation techniques were applied to 

enhance the quality and variability of the dataset, ensuring its 

suitability for efficient model training and evaluation. 
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Figure 2. Sample COVID-19, non-COVID-19 Images from Dataset. 

3.2. Image Pre-Processing and Augmentation 

In computer vision tasks, image pre-processing is a crucial 

step in preparing the data for model training. The 

pre-processing technique helps improve model performance 

by addressing various factors such as noise reduction, image 

normalization, and resizing. These steps are particularly im-

portant for CNNs, which rely on consistent input dimensions 

and well-scaled pixel values. In our work, pixel intensity 

normalization is applied to scale the pixel values to the range 

of [0, 1]. This normalization step is essential for stabilizing the 

training process and ensuring efficient model convergence, 

enabling the model to learn patterns more effectively without 

being influenced by variations in image brightness or contrast. 

Additionally, we resized the images to ensure compatibility 

with the network's input dimensions. This resizing process is 

crucial for maintaining consistency across the dataset, espe-

cially when using pre-trained models that require fixed input 

sizes. The choice of 224x224 pixels aligns with common 

practices in the field, where such dimensions are frequently 

used in models like MobileNetV2, DenseNet121, and VGG16, 

ensuring efficient training and inference. 

We also performed image augmentation to enhance dataset 

diversity by simulating real-world variances, which helps in 

the development of a more resilient model and reduces over-

fitting. Our approach involved configuring a range of trans-

formations, including rotation, width and height shifts, shear, 

zoom, and brightness adjustments. For instance, slight rota-

tions and shifts were applied to allow the model to recognize 

features from different perspectives, while brightness and 

zoom adjustments helped the model generalize across varied 

lighting conditions and scales. These augmentations ensure 

that the model can learn more robust features, improving its 

ability to handle a variety of real-world scenarios and data 

variations. Table 1 provides a detailed overview of the aug-

mentation techniques, specifying the parameters used for each 

image transformation. Our augmentation parameters fall 

within similar ranges as those commonly used in the literature 

[70], ensuring that anatomical integrity is maintained while 

introducing realistic variability in the data. As the next step, 

the prepared and augmented dataset is used to apply transfer 

learning for fine-tuning pre-trained CNN models to detect 

COVID-19. 

Table 1. Image Augmentation parameter values. 

Augmentation Parameter Value Description 

Rotation Range ±10 degrees Randomly rotates images within ±10 degrees 

Width Shift Range 5% Shifts images horizontally by up to 5% of the image width 

Height Shift Range 5% Shifts images vertically by up to 5% of the image height 

Shear Range 0.1 Applies a random shear transformation with intensity of 0.1 

Zoom Range 10% Randomly zooms in or out by up to 10% 

Brightness Range [0.9, 1.1] Randomly adjusts brightness within the specified range 

Fill Mode Reflect Fills points outside the boundaries by reflecting edges 

 

3.3. Transfer Learning 

We adopted a transfer learning approach to fine-tune 

pre-trained CNN models, such as MobileNetV2, VGG16, and 

DenseNet121, for COVID-19 detection. These models were 

initially trained on ImageNet, a large-scale dataset containing 

1.28 million natural images divided into 1,000 categories. By 

leveraging feature representations learned from large datasets 

like ImageNet, this strategy significantly reduced the need for 

extensive labeled data, which is often scarce during pandem-

ics. It also enabled rapid adaptation to the specific task while 

enhancing diagnostic accuracy. Additionally, the approach 

minimized computational demands, making it particularly 
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effective in resource-constrained settings. Transfer learning 

thus provides a scalable and cost-effective solution to improve 

COVID-19 detection, addressing challenges of data scarcity 

and limited resources. The CNN models chosen for this study, 

MobileNetV2, DenseNet121, and VGG16, were selected 

based on state-of-the-art review and are discussed in detail in 

this section. 

3.3.1. Mobilenetv2 

MobileNetV2, introduced by Sandler et al. (2018) [44], is a 

CNN architecture optimized for mobile and embedded vision 

applications. It uses an inverted residual structure with 

shortcut connections between compact bottleneck layers, 

which helps reduce the number of parameters and improve 

computational efficiency. The design begins with a 32-filter 

convolutional layer, followed by 19 bottleneck layers, which 

allow for deeper networks while minimizing the size of in-

termediate layers. MobileNetV2 is well-suited for tasks re-

quiring efficient performance, such as object detection, image 

segmentation, and real-time inference on mobile and edge 

devices [45-50]. 

3.3.2. DenseNet121 

DenseNet121, introduced by Huang et al. (2017) [51], 

consists of a dense connectivity design where each layer is 

directly connected to all its preceding layers. This architecture 

features a dense connection pattern that mitigates the van-

ishing gradient problem during the training of deeper archi-

tectures. Each layer has direct access to both the gradients 

from the loss function and the original input signal, hence 

enhancing the flow of gradients and information throughout 

the network. It also ensures the network is more compact and 

efficient. The architecture of DenseNet121 is built on dense 

blocks that include several convolutional layers, batch nor-

malization units, and dense connections. To further minimize 

the dimensionality of feature maps, DenseNet121 incorpo-

rates transition layers. These layers utilize 1×1 convolutions 

and average pooling to compress the size of feature maps, 

thereby reducing computational complexities. DenseNet121 

achieved remarkable performance in the ImageNet classifi-

cation challenge and is widely utilized across various com-

puter vision applications, including object detection and im-

age segmentation [52-57]. The design principle of dense 

connectivity offers essential insights for developing efficient 

and accurate deep neural networks. It captures complex, 

high-level features effectively, making it a key component for 

tasks requiring detailed feature extraction, such as disease 

detection. 

3.3.3. VGG16 

VGG16, introduced by Simonyan and Zisserman in 2014 

[58], is a well-known convolutional neural network (CNN) 

architecture recognized for its simplicity and effectiveness. 

The model increases depth by stacking small 3x3 convolution 

filters, allowing it to capture intricate patterns in images 

without requiring complex operations. VGG16 consists of 16 

weight layers, including 13 convolutional layers and three 

fully connected layers. The architecture starts with two con-

volutional layers (64 filters), followed by max pooling. This 

pattern is repeated, with the number of filters increasing at 

each layer (e.g., 128 filters in Conv_2, 256 filters in Conv_3, 

and 512 filters in Conv_4 and Conv_5), each followed by max 

pooling. The network concludes with three fully connected 

layers and a Softmax activation function. VGG16 excels at 

extracting low-level features such as edges and textures, 

making it highly effective for capturing these fundamental 

patterns in images. Trained on the ImageNet dataset, VGG16 

has become a foundational model in deep learning and com-

puter vision. It provides a strong baseline for extracting es-

sential image features, making it a valuable complement to the 

strengths of other architectures in a hybrid approach. Nu-

merous follow-up research studies have demonstrated the 

model’s utility and flexibility, leading it to be a foundational 

model in deep learning and computer vision research [59-66]. 

3.4. Fine-Tuning Pre-Trained Models 

After selecting the three pre-trained CNN architectures, we 

implemented a fine-tuning strategy tailored to COVID-19 de-

tection for the models. By leveraging pre-trained CNN models, 

we retained all layers of the pre-trained CNN models except the 

top classification layer, which were frozen to preserve the 

general features learned from ImageNet. Freezing these layers 

means that their weights were not updated during training on 

the new dataset. This approach prevents the model from over-

writing the general-purpose feature representations, such as 

edges, textures, and basic shapes, that these layers have already 

learned from the large and diverse ImageNet dataset. The final 

classification layer is replaced with new layers customized for 

the COVID-19 detection task. Only the newly added layers 

were left unfrozen, meaning their weights were updated during 

training. This allowed for targeted fine-tuning that enhanced 

task-specific performance by adapting to COVID-19 detection 

while maintaining computational efficiency. The transfer 

learning process we followed is illustrated in Figure 3. The 

same fine-tuning strategy is followed for all the three models i.e. 

VGG16, DenseNet121, and MobileNet. 

As shown in Figure 3, the custom layers added include a 

global average pooling layer to summarize the features. This 

layer helps reduce the spatial dimensions of the feature maps, 

offering computational efficiency and preventing overfitting 

by generating compact representations [67]. A dropout layer is 

included to combat overfitting by randomly omitting a frac-

tion of the units during training. Dropout acts as a regularizer 

by forcing the network to rely on a subset of neurons, which is 

shown to enhance generalization by simulating a bagged 

ensemble of neural networks [68]. Furthermore, a batch 

normalization layer is used to improve the stability and speed 

of training by normalizing the output of each layer, ensuring 
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zero mean and unit variance [69]. This regularization tech-

nique helps accelerate convergence while stabilizing learning. 

The Rectified Linear Unit (ReLU) activation function is ap-

plied to introduce non-linearity. ReLU, defined as 

f(x)=max(0,x), has become one of the most popular activation 

functions due to its simplicity and efficiency, promoting 

sparsity and mitigating the vanishing gradient problem. The 

final dense layer uses a sigmoid activation function to produce 

the probabilities for the binary classification task. The sig-

moid function, as defined in Equation 1, transforms inputs 

into a value between 0 and 1, effectively representing the 

probability of the positive class in a binary classification task. 

𝜎(𝑥) =
1

(1+𝑒−𝑥)
                (1) 

 
Figure 3. Transfer Learning Architecture. 

 
Figure 4. Transfer Learning Architecture. 

We present a detailed comparison of the parameter con-

figurations in three popular architectures, DenseNet121, 

VGG16, and MobileNetV2, with and without a transfer 

learning approach in Table 2. We outline two scenarios for 

each model: training all layers versus training only the newly 

added layers. In the first scenario, where all layers are trained, 

the total, trainable, and non-trainable parameters are docu-

mented for each architecture. In the second scenario, where 

only the newly added layers are trained, we highlight the 

significant reduction in the number of trainable parameters 

achieved by the transfer learning strategy. This reduction 

factor demonstrates the computational efficiency of the mod-
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els, enabling faster training with fewer resources while 

maintaining high performance. The input shape used for all 

models is (224, 224, 3). Finally, the fine-tuned models are 

used for feature extraction in the proposed model, and their 

features are combined and fed into a classification model. The 

reduction in trainable parameters for individual models 

through transfer learning is shown in Figure 4. 

3.5. Ensemble Learning 

Ensemble learning, which merges the predictions of several 

classifiers, has emerged as a robust strategy for image classi-

fication, often yielding higher performance than individual 

classifiers. In the context of image classification, ensemble 

techniques typically involve combining the outputs of various 

base classifiers, such as support vector machines, decision trees, 

and neural networks. These models leverage the unique char-

acteristics of each classifier, enhancing accuracy and robustness 

by capturing different features of the data while compensating 

for their respective strengths and weaknesses. Common 

methods used to create ensemble classifiers include bagging, 

boosting, and stacking. Bagging, or Bootstrap Aggregating, 

generates diverse models by training each classifier on a boot-

strapped subset of the training dataset. On the other hand, 

boosting improves weak learners iteratively by focusing more 

on misclassified examples, thereby enhancing their perfor-

mance over successive iterations. Stacking employs a me-

ta-classifier that learns to combine the predictions of base 

classifiers, using these outputs as inputs to generate a high-

er-level representation of the data. By integrating multiple 

classifiers, ensemble learning offers a promising approach to 

advancing the state-of-the-art in image classification. This 

method effectively combines the outputs of different models, 

improving overall performance and robustness in complex 

classification tasks. 

Proposed Hybrid Model 

In our research, we employed a stacking approach to build 

the hybrid model. This method is particularly effective, as each 

CNN can extract distinct sets of image features, reducing the 

potential loss of important information and improving the 

overall representation. In CNNs, the initial layers capture sim-

ple shapes, while the deeper layers identify complex, high-level 

features, making the fusion of features from different CNN 

models highly beneficial for enhanced performance. Before 

employing the stacking technique, we performed feature ex-

traction from the three models: DenseNet121, VGG16, and 

MobileNetV2. Specifically, the final dense layer (the layer just 

before the output layer) of each model was utilized as a feature 

extractor. This approach captured intricate patterns and char-

acteristics from the images. By leveraging this dense layer, we 

effectively transferred learned features to enhance the 

COVID-19 classification task. 

The stacking of features from multiple models leads to an 

increase in the dimensionality of the feature space, which can 

introduce redundancy and computational challenges. To ad-

dress these issues, after feature extraction, we applied PCA to 

reduce the dimensionality of the extracted features and opti-

mize them for classification tasks. PCA is a statistical technique 

that transforms the original feature set into a smaller set of 

uncorrelated components, known as principal components, 

which capture the most variance in the data. Prior to applying 

PCA, the features were standardized to ensure uniform scaling. 

This step was crucial, as it ensured that each feature contributed 

equally to the PCA analysis, preventing features with larger 

numerical ranges from dominating the results. Standardization 

was performed by subtracting the mean and scaling the features 

to have unit variance. After this step, we applied PCA to reduce 

the dimensionality of the data while preserving as much vari-

ance as possible, ensuring a more meaningful and efficient 

representation of the features. Its linear nature also makes it 

computationally efficient. To decide how many principal 

components to retain, we performed an explained variance 

analysis with the goal of capturing at least 95% of the total 

variance. By retaining 95% of the variance, we aim to pre-

serve the essential features of the data while minimizing noise 

and reducing computational complexity. This approach strikes 

a balance between reducing dimensionality effectively and 

preserving crucial information, ultimately improving the per-

formance of the COVID-19 classification model. 

After this, we employed a feature-level stacking approach, 

where features extracted from all three models were concate-

nated to form a comprehensive feature set. These combined 

features were then used to train the Support Vector Classifica-

tion (SVC) model, which classifies the features by finding the 

optimal hyperplane that best separates the data. The kernel 

function in SVC maps the feature space into a high-

er-dimensional space, allowing the model to learn from the 

diverse representations captured by each architecture. The 

approach aimed to leverage the strengths of each model's fea-

ture extraction capabilities, thereby enhancing overall classifi-

cation performance for distinguishing between COVID-19 and 

non-COVID-19 cases. 

3.6. Evaluation 

We evaluated the results of a direct transfer learning ap-

proach, which involves using pre-trained models directly 

without additional processing, alongside our proposed hybrid 

deep learning model. To rigorously assess all the models' ef-

fectiveness in binary classification for COVID-19 diagnosis, 

we employed several key evaluation metrics: accuracy, preci-

sion, recall, F1 score, the area under the ROC curve 

(AUC-ROC), and the confusion matrix. These metrics com-

prehensively analyzed each model's ability to distinguish be-

tween COVID-19-positive and normal cases, offering insights 

into class-specific performance and overall classification 

strength. This thorough evaluation enabled us to clearly com-

pare the direct transfer learning models and our proposed hy-

brid deep learning model, underscoring the advantages of our 

technique in leveraging diverse feature representations for 
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robust COVID-19 detection. 

3.6.1. Accuracy 

Accuracy is the simplest evaluation metric, calculated as the 

ratio of correct predictions to the total predictions, providing an 

overall measure of each model's performance (Equation 2). It is 

represented as TP representing True Positives, TN representing 

True Negatives, FP representing False Positives, and FN rep-

resenting False Negatives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (2) 

3.6.2. Confusion Matrix 

The confusion matrix offers a deeper view of the model's 

performance across each class by providing counts of True 

Positives, True Negatives, False Positives, and False Negatives. 

This metric helps evaluate class-level performance and diag-

nose potential class imbalances or misclassifications. 

3.6.3. Precision, Recall, and F1 Score 

Precision, Recall, and F1 Score offer class-specific insights, 

particularly for evaluating model performance on imbalanced 

datasets. These metrics are derived from the confusion matrix 

values. Precision (Equation 3) is defined as the ratio of cor-

rectly predicted positive cases (True Positives) to all predicted 

positives, indicating the accuracy of positive predictions. Re-

call (Equation 4) is defined as the ratio of correctly predicted 

positives to all actual positives, capturing the model's ability to 

detect COVID-19 cases. The F1 (Equation 5) score is defined 

as the harmonic mean of Precision and Recall, providing a 

balanced measure of performance for each class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (4) 

𝐹1 = 2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (5) 

3.6.4. Weighted Average 

In classification performance metrics, weighted averages are 

used to summarize Precision, Recall, and F1 scores across 

multiple classes, particularly in imbalanced datasets. These 

averages provide insights into model performance by consid-

ering both class imbalance and individual class performance, 

enhancing the interpretation of results beyond per-class metrics. 

The weighted average (Equation 6) is a weighted mean of the 

metrics (Precision, Recall, F1 Score) for each class, where the 

weight is the support, or the number of instances, for each class. 

This average takes into account the class distribution, providing 

a more realistic view of model performance in imbalanced 

datasets. Larger classes influence the weighted average more, 

making it ideal for understanding overall model performance 

on the dataset as a whole. The weighted average is calculated 

by summing the metric values 𝑀𝑖  for each class, where 𝑀𝑖 

corresponds to the metric for the 𝑖-th class, and multiplying 

each by the support, 𝑛𝑖, the number of instances in the 𝑖-th 

class. The sum of these weighted values is then divided by the 

total number of instances 𝑁 in the dataset. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑁
 ∑ 𝑀𝑖  ×  𝑛𝑖

𝑐
𝑖=1         (6) 

3.6.5. Area Under the Curve (AUC) and Receiver 

Operating Characteristic Curve (ROC) 

The AUC score evaluates the model's ability to distinguish 

between COVID-19 and Normal cases. It is derived from the 

ROC curve, which plots the True Positive Rate (TPR) against 

the False Positive Rate (FPR) at various classification thresh-

olds. A model achieving an AUC score of 1.0 represents perfect 

discrimination, while 0.5 represents random guessing. The 

AUC is calculated as shown in Equation 7. The ROC curve 

demonstrates a binary classifier's diagnostic ability by plotting 

the TPR against the FPR as the discrimination threshold varies. 

TPR and FPR are calculated as shown in Equations 8 and 9. 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝑡) 𝑑(𝐹𝑃𝑅(𝑡))
1

0
            (7) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (8) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
              (9) 

4. Results 

We conducted the experiments using Google Colab, with 

CPU resources, 51 GB of RAM, and 225.8 GB of disk space. 

Python 3 and relevant libraries, including Scikit-Learn, Keras, 

and TensorFlow, were employed to implement the proposed 

hybrid deep-learning model. We loaded the pre-trained mod-

els, namely, VGG16, DenseNet121, and MobileNetV2 ar-

chitectures from Keras, each initialized with ImageNet 

weights. We trained the three pretrained learning models and 

proposed a hybrid deep learning model using the 2108 

COVID-19 and non-COVID-19 patient scan images. For 

model compilation, we employed an Adam optimizer with a 

learning rate of 1e-4, paired with a binary cross-entropy loss 

function, which is ideal for binary classification tasks. To 

enhance the training process, we incorporated several 

callbacks. Early stopping was utilized to prevent overfitting 

by monitoring the validation loss and restoring the best 

weights after a patience period of 5 epochs without im-

provement. Additionally, we implemented a learning rate 

reduction strategy that dynamically adjusts the learning rate 

by a factor of 0.5 when a plateau in validation loss is detected, 

with a minimum learning rate of 1e-6. Model checkpointing 

was also integrated to save the best-performing model based 

on validation loss, ensuring we retain the most effective 
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model after training. The training process was executed on the 

augmented data, with 20 epochs and a batch size of 8, using 

the specified callbacks to optimize performance and training 

efficiency. 

We compared the performance of the pre-trained CNN 

model to that of our proposed model. We evaluated all these 

models using 373 CT scan images, where 186 images are 

COVID-infected and 187 are noninfected images, based on 

various evaluation metrics defined in the methodology section. 

We generated a confusion report, as shown in Table 4, for each 

model to evaluate its robustness by determining its accuracy, 

precision, recall, and f1 score (Table 3). Class level metrics, 

i.e., COVID-19 and non-COVID-19 confusion reports, are 

shown in Table 4. The confusion matrix for models is shown 

in Figure 5. The ROC curve for all models is shown in Figure 

6. 

Table 2. Performance Metrics of the Models. 

Model Parameters Precision (Weighted Avg) Recall (Weighted Avg) F1 (Weighted Avg) 

VGG16 88.47% 88.53% 88.47% 88.47% 

DenseNet121 92.76% 92.79% 92.76% 92.76% 

MobileNetV2 94.10% 94.18% 94.10% 94.10% 

Proposed Hybrid Deep Learning Model 98.93% 98.95% 98.93% 98.93% 

Table 3. Class-wise Performance Metrics for Models. 

Model Class Precision Recall F1 Score 

VGG16 
COVID-19 89.94% 86.56% 88.22% 

non-COVID-19 87.11% 90.37% 88.71% 

DenseNet121 
COVID-19 93.92% 91.40% 92.64% 

non-COVID-19 91.67% 94.12% 92.88% 

MobileNetV2 
COVID-19 96.07% 91.94% 93.96% 

non-COVID-19 92.31% 96.26% 94.24% 

Proposed Hybrid Deep 

Learning Model 

COVID-19 100.00% 97.85% 98.91% 

non-COVID-19 97.91% 100.00% 98.94% 

 

The proposed hybrid deep learning model demonstrates 

superior performance, achieving an accuracy of 98.93%, 

with weighted average precision, recall, and F1-score all 

reaching 98.95%. Compared to the individual pre-trained 

models, MobileNetV2 (94.10%), DenseNet121 (92.76%), 

and VGG16 (88.47%), the proposed model shows signifi-

cant improvements. In terms of class-wise performance, the 

proposed model achieves perfect precision and recall for the 

non-COVID-19 class (100%) and a remarkable recall of 

97.85% for the COVID-19 class, resulting in an overall 

superior F1 score. 

The confusion matrices presented in Figure 5 compare the 

performance of the proposed hybrid model against three es-

tablished models: VGG16, DenseNet121, and MobileNetV2. 

The results demonstrate a significant improvement in classi-

fication accuracy for the proposed model. Specifically, the 

proposed model achieves almost perfect classification, cor-

rectly identifying most of the instances of both COVID-19 

and non-COVID-19 cases (182 and 187, respectively), re-

sulting in zero non-COVID-19 misclassifications. In contrast, 

VGG16 misclassifies 25 COVID-19 cases and 18 

non-COVID-19 cases, indicating relatively lower sensitivity 

and specificity. DenseNet121 performs better, misclassifying 

16 COVID-19 cases and 11 non-COVID-19 cases. Mo-

bileNetV2 shows further improvement, with only 15 mis-

classified COVID-19 cases and seven non-COVID-19 cases. 

These findings underscore the reliability of the proposed 

model in comparison to existing models. 
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Figure 5. Confusion Matrix for Model Evaluation. 

 
Figure 6. ROC Curve for Different Models. 

The ROC curves depicted in Figure 6 compare the classi-

fication performance of the proposed model with three 

benchmark models: VGG16, DenseNet121, and Mo-

bileNetV2. The Area Under the Curve (AUC) values illustrate 

the superior performance of the proposed model, achieving an 

AUC of 0.999, indicating near-perfect discrimination between 

COVID-19 and non-COVID cases. This high AUC value 

reflects the model's remarkable ability to maintain a high True 

Positive Rate (TPR) while minimizing the False Positive Rate 

(FPR). MobileNetV2 demonstrates an AUC of 0.988, fol-

lowed by DenseNet121 with an AUC of 0.977, and VGG16 

with an AUC of 0.955. These results highlight the perfor-

mance of the proposed model and its potential for real-world 

deployment in COVID-19 detection scenarios. 

5. Discussions and Limitations 

The main reason for the performance differences between 

VGG16, DenseNet121, and MobileNetV2 can be attributed to 

the unique strengths and design principles of each architecture. 

DenseNet121 performed better than VGG16 because it has 

densely connected layers, which allowed for more efficient 

information flow and enabled the extraction of intricate pat-

terns from the data. On the other hand, we observed that 

MobileNetV2 achieved strong performance compared to 

VGG16 and DenseNet121 due to its efficient use of 

depth-wise separable convolutions, which reduced computa-

tional complexity while maintaining high accuracy, making it 

ideal for resource-limited environments. Additionally, the use 

of linear bottleneck layers in MobileNetV2 ensured the 

preservation of important image features, which is critical for 

tasks like COVID-19 detection. 

The proposed model demonstrates substantial improvements 

in COVID-19 detection accuracy, precision, recall, and F1 

score, as reflected in the results, where the model outperformed 

individual pre-trained CNNs. These improvements can be at-

tributed to several key factors. First is our image augmentation 

approach, which, by introducing transformations such as rota-

tions, shifts, and brightness adjustments, simulates real-world 

variances, helping the model generalize better. This exposure to 

diverse data variations not only reduces overfitting but also 

allows the model to learn more discriminative features, con-

tributing to the overall effectiveness of the hybrid model. An-

other key factor contributing to the improved performance of 

the proposed model is the combination of features extracted 

from MobileNetV2, DenseNet121, and VGG16, allowing the 

model to capture a diverse range of data characteristics. The 

integration of transfer learning further strengthens the model by 

leveraging the complementary strengths of each architecture: 

VGG16 excels in low-level feature extraction, DenseNet121 

captures complex high-level patterns, and MobileNetV2 offers 

efficiency and scalability. This combination reduces overfitting, 

improves classification accuracy, and proves particularly ef-

fective with smaller datasets, as each model contributes its 

unique strengths to enhance overall performance. Additionally, 

the use of PCA resulted in improved computational efficiency 

by refining the feature set, retaining significant variations while 

reducing redundancy. 

The proposed hybrid model demonstrated high perfor-

mance in COVID-19 detection. However, there are limitations 

that require further exploration. Our hybrid model has shown 

that using a transfer learning approach significantly reduces 

the number of trainable parameters, improving computational 

efficiency compared to existing ensemble approaches for 

COVID-19 detection. However, it also required more com-

putational resources compared to using an individual transfer 

learning model, such as DenseNet121 or MobileNetV2. In 

future work, we plan to focus on optimizing efficiency with-

out reducing the model's performance, making it more suita-

ble for deployment in resource-constrained environments. 

While our study successfully achieves its primary goal of 

enhancing COVID-19 detection, future research should 

evaluate the performance of the proposed ensemble approach 

on larger and more diverse datasets to assess its scalability and 
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adaptability. Additionally, exploring alternative data aug-

mentation methods, advanced optimization strategies, and 

hyperparameter tuning could further improve the model's 

robustness and accuracy. Our study did not account for re-

al-world clinical validation within its scope, and future work 

is needed to assess the model’s performance and integration 

into routine medical workflows. Additionally, resizing CT 

images to 224×224 may result in the loss of fine-grained 

features such as ground-glass opacities, potentially affecting 

the detection of subtle abnormalities. Future work needs to 

explore higher-resolution inputs or multi-scale approaches to 

better preserve critical diagnostic details. In future work, we 

plan to adopt k-fold cross-validation (e.g., 5-fold) to enhance 

model robustness and assess stability across different data 

splits. Since the proposed approach, like many deep learning 

models, operates as a black box with limited interpretability, 

incorporating explainable AI techniques in future work could 

enhance transparency and trust in its decision-making process, 

making it more suitable for clinical use. 

6. Conclusion 

The results obtained from our study demonstrate that the 

proposed hybrid deep learning model significantly improves 

COVID-19 detection from CT scan images, achieving an 

accuracy of 98.93%. By combining transfer learning from 

three pre-trained CNNs, namely VGG16, DenseNet121, and 

MobileNetV2, with Principal Component Analysis (PCA) 

and Support Vector Classification (SVC), the proposed 

model outperforms individual CNN models in terms of ac-

curacy, precision, recall, F1 scores, and ROC curve per-

formance. The comparative analysis confirms that the pro-

posed model exhibits superior performance with minimal 

misclassifications. Our proposed approach can be extended 

to detect other diseases using CT scan images, leveraging the 

power of deep learning and transfer learning techniques. We 

plan to focus our future research on exploring alternative 

feature extraction methods, fusion techniques, and advanced 

image processing or augmentation strategies, which could 

further enhance the performance of the proposed model. 

Furthermore, we plan to optimize the computational effi-

ciency of the proposed model in the future to enable its 

deployment in real-world clinical settings, particularly in 

resource-constrained environments like mobile or edge de-

vices, with faster inference. 
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CT Computed Tomography 
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SVC Support Vector Classifier 

AUC Area Under the Curve 

ROC Receiver Operating Characteristic Curve 
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RTPCR Reverse-Transcription Polymerase Chain 

Reaction 

GNB Gaussian Naive Bayes 

SVM Support Vector Machine 

LR Logistic Regression 
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RF Random Forest 
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