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Abstract: Rice is the thirdly most valued cereal crops in Kenya after maize and wheat. The demand for rice in Kenya has
increased greatly over the last few years while production has still remained low. This is because rice production is affected by
serious constraints especially rice diseases of which the most threatening is rice blast. Rice blast infection and re-infection can
occur in different stages of rice growth and therefore need to be controlled. This study aims to developed a mathematical model
for rice blast re-infection. The model employs a system of nonlinear ordinary differential equations which is analysed in details
for its stability properties. Basic reproduction number Ro for rice blast re-infection was found to be less than one. Numerical
simulation of the model is done using Mathematica, and graphical profile of the main variables are depicted. We conclude that
rice blast re-infection reduces rice yield and necessary remedy are needed.

Keywords: Mathematical Modeling, Basic Reproduction Ratio, Rice Blast, Epidemiology Model, Epidemic Mode

1. Introduction

Mathematical modelling involves an art of converting a
problem from an application area into tractable mathematical
formulations whose theoretical and numerical analysis
provides insight, answers and guidance useful for the
originating application. It also gives precision and direction
for problem solution. Mathematical modelling has an immense
role in the investigation of problems that emerge in our day-to-
day life and when applied to experimental data, it can reveal
correlation between several observable phenomena [7, 35].

Re-infection of diseases is a great challenge in our country
[10]. developed a model on tuberculosis re-infection where
only a small percentage of persons who are infected with
the disease experience primary disease. Those who survive
the original illness may, at some point in their lifetimes,
reactivate this concealed infection. Infected individuals
are susceptible to re-infection and sickness as a result of
fresh exposure.Basic reproduction number was developed by
employing next generation matrix. Sensitivity analysis showed
that when the disease was widespread, a latent infected
individual was likely to contact an infectious individual.In

contrast, as the disease incidence declined, the likelihood that
a latently infected person would be exposed again depends
increasingly on the topology of the contact network.

Wangari, I. M. et al [36] developed a mathematical model
with an aim of investigating how re-infection mechanisms
influence covid 2019 dynamics in Kenya. The population
was divided into infected people who are asymptomatic,
symptomatic but only mildly symptomatic, and symptomatic
but very severely ill. The outcome showed that the
model’s infection-free equilibrium is locally asymptotically
stable whenever RO < 1 and unstable anytime RO >
1. Sensitivity analysis revealed that non-pharmaceutical
intervention techniques including face mask use and keeping
one’s distance from others were successful in reducing
the spread of the COVID 2019 re-infection. However
mathematical modelling on re-infection has not been explored
in the field of agriculture [36].

Uncertainty ridden agriculture requires reliable and well-
timed forecast [13]. Diseases are the prominent causes of
reduction in crop yield. To reduce the yield loss, prior
knowledge of time and severity of the disease is necessary.
Crop modelling provides reliable forecast of crop yield in
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advance and also forewarning of crop disease attack so that
suitable plant protection measure could be taken up to protect
the crops.

Rice (Oryzasativa L.) is a particularly distinctive crop since
it thrives well in wet conditions. Nearly 50% of the world’s
population relies on rice as a steady food source, which
accounts for 20% of all of the calories we consume as humans
[16]. It is Kenya’s third-most significant food crop after maize
and wheat. Small-scale farmers grow it mostly for commercial
and food purposes [16]. It is heavily consumed by both urban
and rural residents. For the best growth, rice needs soil with
a vertisol soil type, a high temperature of 28 degrees Celsius,
that is found below 1200 meters above sea level, as well as a
higher water holding capacity to hold the flooded water [1].

Among the several diseases affecting rice production in
Kenya, the most threatening is rice blast [11]. Sheath blight
(Thanatephorus cucumeris) and Pyriculariaoryzae are the two
organisms that produce rice blast. In farmers’ fields in western
Kenya, the illness is reported to result in output losses of up
to 50% [27]. Infected farms have reportedly suffered losses of
more than 70¨C80 percent [24]. A more recent epidemic of
the disease happened in 2009. It was initially discovered in the
Mwea irrigation scheme in 2006. This required action since
the disease poses a risk to the security of the food supply.

Entire areas of the shoot, stem, and panicle may develop
lesions as a symptom of the disease. All plant portions above
the infection site die when nodes become infected, and yield
losses are significant. Elongated diamond-shaped white to
grey lesions with dark green to brown borders and a yellowish
halo appear on the leaves as a result. The leaf collar, stem,
and occasionally the internodes are also killed by the disease.
Every country where rice is farmed has experienced rice blast,
and fungicide applications have been made in particular where
the environment is ideal for effective management. If the

disease strikes when the plant is heading, it may cause the stem
to break at the diseased node or to produce a white panicle.
The neck rot, neck blast, or panicle blast stage of the disease
is named after this damaging symptom [15]. Early infection
prevents the grains from filling and keeps the panicle upright.
However, late infection causes the grains to only partially fill,
and as a result of the weight, the panicle’s base splits and
droops.

This study developed a model to study the dynamics of blast
re-infections in rice.

2. Model Formulation

The model was developed from a system of ODEs .The
rice crop population was divided into four classes: S, the
susceptible rice crop which represent seedlings from the
nursery; I, the seedlings infected by blast for the first time;
R; the naturally recovered rice crops; X; the secondarily
infected rice crops by the blast. The recruitment rate is g(s)
which represents all seedlings transplanted from the nursery, h
represents the natural removal rate of all classes.

2.1. Assumptions of Model Development

i The fungal disease spread through one population
ii There is a simple density dependent growth of the host

up to a carrying capacity;
iii Primary and secondary infection does not occur at the

same time

2.2. Model Flow Chart

The flow diagram of the system is shown in Figure 1:

Figure 1. Model Flow Chart.

The seedling from the nursery represented by g(s) leads
to production of susceptible class, S. Primary infection takes
place when there is interaction between the susceptible and

the infected leading to the compartment of the infected (I).
Some may recover naturally from the blast hence class(R)
which can again be infected hence goes back to susceptible
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class. Primarily infected crops in class (I) may later have
the disease spread to other parts of the plant or inner tissues
of the plant. This result into secondary infection class(X) of
which the parts infected may decay hence class (cX) leading
to low produce of the infected plant. Natural death rate affect
all classes. Density of susceptible host, S is produced from
seedlings from nursery represented by g(s) and their number
also increased by naturally recovered infected host that are
susceptible to the disease again (µR). The susceptible class
is reduced by natural death rate(hS),the primary infection
brought by interaction between susceptible and the infected
crops (βpSI). Density of the infected host (I) is as a result of
interaction between susceptible and infected and the number
of infected class is reduced by natural death rate (hI) and
recovered initially infected crops (mI). Density of recovered
host is produced by naturally recovered infected rice crop

which may be susceptible to blast again and the number
minimized by death rate. Density of secondary infected crops
are as a result of blast attacking rice crop for the second
time since blast may attack the leaves and later the neck just
before heading which may result to decay of part infected (cX)
leading to low produce.

From the above description,we have the following
equations:

dS

dt
= g(s) + µR− βpSI − hS

dI

dt
= βpSI −mI − aI − hI

dR

dt
= mI − hR− µR

dX

dt
= aI − hX − cX

(1)

Table 1. Model parameters and Values.

Parameter Definition Source Source

µ co-efficient for R going to S 0.5 Aminiel et al(2015)

βs rate of secondary infection 0.075 Angriani(2018)

βp rate of primary infection 0.00005 Estimated

h rate of removal of all classes 0.00025 Estimated

c rate of decay of inoculum 0.8 Angriani(2018)

g(s) production of susceptible 0.95 Estimated

a rate of secondary infection 0.2 Estimated

m rate of recovery of infected host 0.9 Estimated

3. Positivity and Boundedness of
Solution

By demonstrating that the model’s solutions are positive
and bounded, this study shows the model’s well-posedness.
A system is well posed if the solutions of a system remain
non-negative for all non-negative initial conditions,the solution
exists, unique and depends on the model parameters and the
initial conditions [5].

3.1. Boundedness of Solution

The study shows that the solutions are bounded in invariant
region γ where γ = (S, I,R,X) : N ≤ g(s)

h
Theorem 1 The solutions of the model are contained in the

feasible region γ.
Proof
Adding the system of four equations , we have;

N = S + I +R+X

dN

dt
= [g(s) + µR− βpSI − hS]

+ [βpSI −mI − aI − hI]

+ [mI − hR− µR]

+ [aI − hX − cX]

dN

dt
= g(s)− h(S + I +R+X)− cX

dN

dt
= g(s)− hN − cX

dN

dt
< g(s)− hN

dN

dt
+ hN < g(s)

Using the integrating factor eht to solve

N ≤ g(s)

h
+ Ce−ht

When t = 0

N(0)− g(s)

h
< C

Substituting
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N ≤ g(s)

h
+N(0)− g(s)

h
e−ut

Where N(0) is the beginning population as t −→∞
Which means

0 ≤ N ≤ g(s)

Therefore the solutions are bounded in the invariant region

γ = {S(t), I(t), R(t), X(t) ∈ R4
+ :

S(t) + I(t) +R(t) +X(t) ≤ 0}

3.2. Positivity of Solutions

Since the model considers a plant population, we assume
that all parameters are non-negative and that all the solutions
with positive initial values will remain positive for t ≥ 0

Theorem 2 Let the initial conditions be S(0) ≥ 0, I(0) ≥
0, R(0) ≥ 0andX(t) ≥ 0 ≥ 0, ∈ γ, then the solutions S(t),
I(t), R(t) and X(t) of system 1 are positive for all t ≥ 0

Proof
From the first equation of 1,

dS

dt
= g(s) + µR− βpSI − hS

dS

dt
≥ −(βpI + h)S

By separation of variables and integrating both sides,∫
dS

dt
≥
∫
−(βpI + h)dt

lnS(t) ≥ −(βpI + h)t+ C

S(t) ≥ exp−(βpI + h)t× expc

Taking expc to be A

S(t) ≥ A exp−(βpI+h)t

Using the initial conditions t = 0, S(0) = A ,
Substituting A

S(t) ≥ S(0) exp (−(βpI + h)t) (2)

Therefore
S(t) ≥ 0 for all t = 0 for all t ≥ 0
From the above it follows that from equations two,three and

four respectively that I(t) ≥ 0, R(t) ≥ 0 and X(t) ≥ 0 for all
t ≥ 0

4. Equilibria Analysis

According to [28], an equilibrium point is the constant
solution of a model system. Setting the right hand side
of differential equations to zero and solving each one to

produce a constant solution yields the equilibrium points
of a model system. The disease-free equilibrium and
the endemic equilibrium are the two equilibrium points
that epidemiological models typically have. The model’s
equilibrium points are identified in relation to the fundamental
reproduction number, which is obtained using a next-
generation matrix technique. To ascertain the circumstances
for the spread of blast re-infection, the model’s stability
analysis is conducted.

4.1. Disease Free Equilibrium (EO)

The disease free equilibrium (EO) is a point where
the disease is not present in the population and therefore
dI
dt ,

dR
dt ,

dX
dt and dP

dt = 0.
Considering system 1 when there is no blast, we get

ds

dt
= g(S)− h(S)

dI

dt
= 0

dR

dt
= 0

dX

dt
= 0

(3)

Solving the first equation 3

0 = g(S)− hS

S =
g(s)

h

Thus the disease free equilibrium of the system (EO) is
given by ( g(s)h , 0, 0, 0)

4.2. Basic Reproduction Number

According to [12], the Basic Reproduction Number,(R0),
is the typical number of secondary infections brought on by a
single infected person throughout the course of his or her entire
life as an infective when introduced into a population that is
just susceptible. In this study, blast re-infection is used to
describe secondary infection. The rice population’s potential
for blast re-infection spread is gauged by the fundamental
reproduction number [35]. If R0 < 1, the average number
of re-infected rice crops produced by each infected crop will
be fewer than one, preventing the spread of the rice blast virus.
On the other hand, if R0 > 1, each re-infected rice crop will,
on average, result in more than one re-infection throughout the
course of its lifetime, invading the entire population.In this
work, we want to find R0 < 1 in order to limit the spread
of blast re-infection in the rice population. This study uses
Next Generation Matrix to derive R0 [35]. Consider the next
generation matrix made up of matrices F and V, such that
G = FV 1, F = δfi

δxj(xo)
and V = δvi

xj(xo)
. Where xo is

DFE point, fi is the re-infection matrix(rate of appearance of
new re-infections in compartment I), vi is the transition matrix(
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rate of transfer of individuals from compartment i by all other
means).

The basic reproduction number is given as the dominant
eigenvalue RO = ρFV −1. The re-infection compartments
are I and X . We use second and the fourth equations of 1 to
compute RO.

dI

dt
= βpSI −mI − aI − hI

dX

dt
= aI − (c+ h)

Fi =

(
βpSI
aI

)

Vi =

(
(m+ a+ h)I

(c+ h)X

)
Calculating the Jacobian matrix at the disease free

equilibrium ( gh , 0, 0, 0, 0)

F =

(
βpg(s)
h 0
a 0

)

V =

(
m+ a+ h 0

0 c+ h

)
On solving the inverse of the matrix V, we get

V 1 =

( 1
m+a+h 0

0 1
c+h

)
Therefore

FV −1 =

(
βpg(s)

h(m+a+h) 0
a

m+a+h 0

)

=

(
βpg(s)

hm+ha+h2 0
a

m+a+h 0

)
Eigen values of FV −1 are(

0
βpg(s)

h2+ha+hm

)
R0 = ρFV −1

R0 =
βpg(s)

h2 + ha+ hm
(4)

5. Stability Analysis

5.1. Local Stability Analysis of Disease Free
Equilibrium (EO)

To determine the local stability of Disease Free Equilibrium
point, the variation Jacobian matrix at equilibrium point JEO
of the model system 7 is developed and is given by:

JEo =


−h −βpg

h µ 0
0 βp

g
h − (m+ a+ h) 0 0

0 m −(h+ µ) 0
0 a 0 −(h+ c)


By examining the behavior of JEO, it is possible to analyze

the stability of the Disease Free Equilibrium point. For local
stability of Disease Free Equilibrium, each of its eigenvalues
must contain negative components. The following eigenvalues
were obtained by using the mathematica software.

λ1 = −(c+ h)

λ2 = −h

λ3 = −(a+m+ h− βpg

h
)

λ4 = −(h+ µ)

Condition
For the root λ3 to be negative

a+m+ h > βp
g

h

The proof for the local stability of the disease-free
equilibrium is provided by the following finding, which
incorporates methods from [33].

Theorem 3 In order for disease-free equilibrium to be locally
stable R0 < 1

Proof
The proof applies [33] techniques. One of the eigen values of
the JEO is λ1 = −ch−h2

h
By examining the signs of the eigenvalues of the block

matrix provided by, we can identify additional eigen values.(
βpg(s)

h−m−a−h 0

a −c− h

)
Now let Tr be Trace of A and K be the determinant of A and

consider the linear system x‘(t) = Ax(t), where:

A =

(
a b
c d

)
The following conditions can be shown

a )If K < 0 , the characteristic roots of A will have
opposite signs

b ) If K > 0 and δ = Tr − 4K ≥ 0, the characteristic
roots of matrix A will have same sign.
The roots will be negative if Tr < 0 and positive if
Tr > 0

c ) If K > 0 ,δ < 0 and Tr 6= 0, then the characteristic
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roots of A will be imaginary with negative real part if
Tr < 0 and a positive real part if Tr > 0

d ) If K > 0 and Tr = 0, matrix A will have purely
imaginary roots.

The eigen values of matrix A are obtained from
characteristic equation

λ2 − (a+ d)Λ + (ad− bc) = 0

λ2 − Trλ+K = 0

λ = Tr ±
√
Tr2 − 4k

2

Thus
a ) If K < 0 , there exist two real eigen values of opposite

signs
b ) If K > 0 and δ ≥ 0, there exist two real eigenvalues

of the same sign as the Trace.

c ) If K > 0 ,δ < 0 and Tr 6= 0,there exist two complex
conjugate eigenvalues , Λ = P ± ir

d ) IfK > 0 and Tr = 0, there exist two purely imaginary
complex conjugate eigenvalues

Using condition b) we can now determine the signs of the
other eigenvalues. For the two remaining eigenvalues to be
negative, then K< 0 and Tr < 0 . We now find conditions that
make determinant and trace negative.

(βpg(s)

h
− (m− a− h)(−c− h)

βpg(s)

h
− (m+ a+ h)[−c− h]

−c(βpg(s)

h
− (m− a− h)− h(βpg(s)

h
− (m− a− h)

−cβpg(s)

h
+ cm+ ca+ ch− βpg(s) +mh+ma+ h2

= c[m+ a+ h] + h[m+ a+ h]− [
cβpg(s)

h
+ βpg(s)] (5)

For determinant to be greater than one

cβpg(s)

h
+ βpg(s) < c(m+ a+ h) + h(m+ a+ h)

cβpg(s)

h
+ βpg(s) < (c+ h)(m+ a+ h) (6)

Dividing both sides by (c+ h)(m+ a+ h)

Cβpg(s) + hβpg(s)

h(c+ h)(m+ a+ h)
< 1

βpg(s)(c+ h)

h(c+ h)(m+ a+ h)
< 1

βpg(s)

h2 + ha+ hm
< 1 (7)

Thus R0 < 1
The block matrix trace is given by

[
βpg(s)

h
−m− a− h] + (−c− h)

=
βpg(s)

h
−m− a− c− 2h

=
βpg(s)− hm− ha− hc− 2h2

h
(8)

If we make βpg(s) the subject of the formula from the basic
reproduction number we get

βpg(s)

h2 + ha+ hm
= R0

βpg(s) = RO(h2 + ha+ hm) (9)

Substituting 9 and 8 gives

R0(h+ a+m)−m− a− c− 2h

For us to have negative eigenvalues, the trace must be
negative. Therefore, Ro < 1, and 7 must be negative.

It can be seen that disease-free equilibrium is locally
asymptotically stable since JEO only has negative eigenvalues
when R0 < 1.

5.2. Global Stability Analysis of Disease Free
Equilibrium (EO)

We examine the global asymptotic stability of the disease-
free state using the Castillo-Chaves theorem [8]. We re-write
model system 1 as

dx

dt
= F (X,Z) (10)

dZ

dt
= G(X,Z), G(X, 0) = 0

Where X = (S,R) ∈ R3
+

denotes non-infectious compartments and Z = (I,X) ∈
R2

+ denotes infectious classes. The disease free equilibrium
of the system now becomes EO = (X∗, 0) , X∗ = g(s)

h g(S)
. To guarantee local asymptotic stability, the following two
conditions must be met.

1 dX
dt =F (X, 0), X∗ is globally asymptotically stable.

(GAS)

2 G(X,Z) = TZ − Ĝ(X,Z) ≥ 0 for (X,Z) ∈ T
Where T = DzG(X∗, 0) is an m matrix( the off element

diamond element of T are non-negative) and T is the region
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where the model is biologically meaningful.
If the system satisfies 1 and 2 then the following theorem

holds.
Theorem 4
The fixed point Eo = (X∗, 0) is globally asymptotic stable

equilibrium of 1 provided that R0 < 1 and assumptions 1 and
2 are satisfied.

Proof
Considering the model system 1, we have

F (X,Z) =

(
g(s) + µR− βpSI − hS

mI − hR− µR

)

G(X,Z) =

(
βpSI −mI − aI − hI

aI − hX − cX

)
Now

F (X, 0) =

(
g(s) + µR− hS
−hR− µR

)
It is clear that E0 is GAS of dX

dt = F (X, 0) Hence 1 is
satisfied

Now consider condition 2

G(X,Z) =

(
βpSI −mI − aI − hI

aI − hX − cX

)
G(X, 0) ≥ 0

T =

(
βpg(s)
h −m− a− h 0

a −c− h

)

Z =

(
I
X

)

TZ =

(
βpIg(s)

h −mI − aI − hI 0
aI − cX − hX

)

5.3. Existence of Endemic Equilibrium Point (E∗
a)

When the basic reproduction number is greater than 1,
the population reaches the endemic equilibrium point, which
causes blast re-infection to spread. According to this analysis,
the endemic equilibrium point is
E∗
a = (S∗, I∗, X∗).To determine this equilibrium, we

equate the right side of 1 to zero.

g(s) + µR∗ − βpS∗I∗ − hS∗ = 0

βpS
∗I∗ −mI∗ − aI∗ − hI∗ = 0 (11)

aI∗ − hX∗ − cX∗ = 0

For the existence and uniqueness of endemic equilibrium
point E∗

a = (S∗, I∗, X∗) the conditions S∗ > 0, or I∗ > 0, or
X∗ > 0 must be satisfied. Solving for S∗, I∗, X∗ we get

S∗ =
g(s) + µR∗

βpI∗ + h

I∗ = 0

X∗ =
aI∗

(h+ c)

Additive compound matrix approach [23] is used to analyse
the local stability of the endemic equilibrium given by E∗

a =
(S∗, I∗, X∗) in γ. Local stability of endemic equilibrium
is determined by variation matrix J(E∗

a) of the non linear
system.

J(E∗
a) =

 Q∗ −βpS∗ 0
βpI

∗ Q∗∗ 0
0 a −(h+ c)


where: Q∗ = −(βpI

∗ + h) and Q∗∗ = −(βpS
∗ +m+ a+ h)

Lemma 1. Let J(E∗
a) be the variational matrix corresponding

to E∗
a . If tr(J(E∗

a)), det(J(E∗
a)) and det(J [2](E∗

a)) are all
negative, then all the eigenvalues of J(E∗

a) have negative real
parts.

Theorem 5. If R0 > 1, the endemic equilibrium E∗
a of the

model 1 is locally asymptotically stable in γ
Proof
From Jacobian matrix J(E∗

a) we have tr(J(E∗
a)) =

−(βpI + βpS + 3h+m+ a+ c)¡0

det(J(E∗
a)) = −(c+h)(I∗S∗β2

p+(−h−I∗βp)(−a−h−m−βpS∗))

Hence the trace and determinant of the jacobian matrix
J(E∗

a) are all negative.
Lemma 2. Let M and N be subset of J (2)(E∗

a). The (M,N)
entry of Uij(J [2])(E∗

a) is the coefficient of K in the expansion
of the determinant of the sub-matrix of J(E∗

a) +KI index by
row in M and column in N

Proof
The sub- matrix of J(E∗

a) +KI is given by equation 12:

J(E∗
a) =

 Q4 −βpS∗ 0
βpI

∗ Q5 0
0 a Q6

 (12)

Where Q4 = −(βpI
∗ + h) +K, Q5 = −(βpS

∗ +m+ a+
h) +K and Q6 = −(h+ c) +K

The sub-matrix of J(E∗
a) + KI indexed by rows and

columns is given by:(
−(βpI

∗ + h) +K −βpS∗

βpI
∗ Q1

)
Where Q1 = −(βpS

∗ + m + a + h) + K The co-efficient
of K in the determinant of this matrix is

−βpI∗ − 2h− βpS∗ −m− a

and thus the (1,1) entry of Uij is
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−βpI∗ − 2h− βpS∗ −m− a

Other entries were obtained by same method. Entry (1,2) is
given by (

−(βpI
∗ + h) +K 0
βpI

∗ 0

)
The co-efficient of K in the determinant is

0
Entry (1,3)(

−βpS∗ 0
−(βpS

∗ +m+ a+ h) +K 0

)
The co-efficient of this matrix is

0
Entry (2,1) (

−(βpI
∗ + h) +K −βpS∗

0 a

)
The co-efficient of K is

a
Entry (2,2)(

−(βpI
∗ + h) +K 0

0 −(h+ c)

)
The co-efficient of K in the determinant of this matrix is
−h− c

Entry (2,3)

(
−βpS∗ 0
a −(h+ c) +K

)
The co-efficient of K in the determinant of this matrix is
−βpS

Entry (3,1)(
βpI

∗ −(βpS
∗ +m+ a+ h) +K

0 a

)
The co-efficient of K in the determinant of this matrix is

0
Entry (3,2) (

−(βpI
∗ 0

0 −(h+ c) +K

)
The co-efficient of K in the determinant of this matrix is

βpI
Entry (3,3) (

M1 0
a −(h+ c) +K

)
M1 = −(βpS

∗ +m+ a+ h) +K The co-efficient K in the
determinant of this matrix is −βpS −m− a− 2h− c

Therefore (J [2])(E2
a) isQ3 0 0
a −h− c −βpS
0 βpI Q2


Where Q2 = −βpS − m − a − c − 2h, and Q3 =
−βpI∗ − βpS − a−m− 2h

det(J [2])(E∗
a) = −(a+ 2h+m+ βpI + βpS)(ac+ c2 + ah+ 3ch+ 2h2 + cm+ hm+ cSβp + hSβp + ISβ2

p)

Thus according to Lemma 1, the disease Endemic
Equilibrium Point E∗

a of the model is locally asymptotically
stable.

5.4. Numerical Illustration of Stability Points of the Model

To illustrate the disease free equilibrium and endemic
equilibrium, numerical simulations of RO < 1 and RO > 1
are shown in the figures 2 and 3.

μ = 0.5, a = 0.2
μ = 0.6, a = 0.3

μ = 0.7, a = 0.5

20 40 60 80 100 120
Time (Days)

60000

70000

80000

Rice Production

Figure 2. Analysis ofRO < 1.

Figure 2 shows that when RO < 1, all trajectories of rice
blast re-infection converges to zero regardless of values of
π. Therefore, disease-free equilibrium EO is asymptotically
stable.

Figure 3. Numerical solutions whenRO > 0.

Figure 3 shows that when RO > 1, all trajectories of rice
blast re-infection converges to (M∗

a ) regardless of values of π.
Therefore the endemic equilibrium is asymptotically stable.
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6. Sensitivity Analysis of Model
Parameters

In the effort needed to remove a disease, the basic
reproduction number is crucial. To determine the relative
impact of each parameter on the disease, we do a sensitivity
analysis of the basic reproduction number with regard to the
model parameters. By doing so, we will be able to decide
which intervention technique is most successful in preventing
blast re-infection. Sensitivity indices are computed using the
normalized forward sensitivity index. The basic reproduction
number’s normalized forward sensitivity index with regard to
parameter A is defined as follows,

SRO

A =
δR0

δA
× A

R0

Therefore , the sensitivity index of R0 on parameter βp is
given by:

SRO

βp =
δR0

δβp
× βp
R0

=
g(s)

h2 + ha+ hm
× βp(h

2 + ha+ hm)

βpg(s)

= 1 > 0

The sensitivity index of g(s) is similarly given by,

Sg(s)
RO =

δR0

δg(s)
× g(s)

R0

=
βp

h2 + ha+ hm
× g(s)(h2 + ha+ hm)

βpg(s)

= 1 > 0

The sensitivity index of a is similarly generated by,

SRO
a =

δR0

δa
× a

R0

δR0

δa
=

0[h2 + ha+ hm]− h[βpg(s)]

(h2 + ha+ hm)2

= −hβpg(s)

(h2 + ha+ hm)2

δR0

δa
× a

R0
=

−hβpg(s)

(h2 + ha+ hm)2
× a(h2 + ha+ hm)

βpg(s)

=
−ha

h2 + ha+ hm

=
−a

h+ a+m

Substituting parameters values in table 1

−0.2

1.10025

= −0.18178

The sensitivity index of m is similarly generated by,

SRO
m =

δRO
δm
× m

RO

δRO
δm

=
0(h2 + ha+ hm)− h(βpg(s))

(h2 + ha+ hm)2

=
−hβpg(s)

(h2 + ha+ hm)2

=
−hβpg(s)

(h2 + ha+ hm)2

δRO
δm
× m

RO
=

−hβpg(s)

(h2 + ha+ hm)2
× m(h2 + hahm)

βpg(s)

=
−hm

(h2 + ha+ hm)

=
−m

h+ a+m

Substituting the parameter values in table 1,

−0.9

1.10025

= −0.8180

The sensitivity index of h is similarly generated by,

SRO

h =
δRO
δh
× h

RO

δRO
δh

=
0(h2 + ha+ hm)− βpg(s)[2h+ a+m]

(h2 + ha+ hm)2

=
−βpg(s)[2h+ a+m]

(h2 + ha+ hm)2

δRO
δh
× h

δRO
=
−βpg(s)[2h+ am]

(h2 + ha+ hm)2
× h(h2 + ha+ hm)

(βpg(s))

=
−(2h+ a+m)

h2 + ha+ hm

Substituting the parameter values in table 1,

−1.1005

0.0002750625
= −4000.91
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Table 2. Sensitivity indices of model parameters toR0.

Parameter Index

βp +1.000

g(s) +1.000

a -0.18178

m -0.8180

h -4000.91

The table above shows that parameters βp, g(s) increases
the value of R0 when they are increased as they have positive
indices , implying they increase the rate of blast re-infection
in rice population. The parameters a, m and h decrease the
value of R0 when they are increased as they have negative
indices implying that they reduce blast re-infection rate in rice
population.

Figure 4. Effect of parameters with negative indices on re-infection of blast on rice
population when their values are high. (a=0.2, m= 0.9 , h= 0.025).

Figure 4 shows that when the parameter values of a( Rate
of secondary infection), m (rate of recovery of infected host)
and h(rate of removal) are increased the production increases.
This implies that they reduce the values of R0 when they are
increased hence increasing the production.

Figure 5. Effect of parameters with negative indices on blast re-infection on rice
production when their values are low.( a= 0.01, m= 0.1 , h= 0.00025).

Figure 5 shows that when the parameter values of a (Rate of
secondary infection), m( rate of recovery of infected host) and
h( rate of removal) are decreased, the production reduces. This
implies that they increase the values reproduction number RO
when they are reduced leading to a decrease in rice production.

Figure 6. Effect of parameters with positive indices on rice production when their values
are low. (βp = 0.0000005, g(s) = 0.1).

Figure 6 shows that when parameter values of βp(rate of
primary infection) and g(s) (production of susceptible host)
are decreased , the rice production increases. This implies that
they reduce the value of reproduction number RO when they
are reduced hence increased production.

Figure 7. Effects of parameters with positive indices on rice production when their values
are high. (βp = 0.5, g(s) = 0.95).

Figure 7 shows that when the parameter values of βp (rate
of primary infection) and g(s)(production of susceptible host)
are increased the production reduces. This implies that they
increase the value of reproduction number RO hence reducing
the production.

7. Numerical Simulations

Numerical simulations in this study involved a computer
ran calculation of model equations. The simulations are
significant in understanding the behaviour of the system whose
mathematical solutions are too complex as in most nonlinear
systems. The parameter values were got from existing
literature or estimated.
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Figure 8. Rice production in the absence of rice blast re-infection (µ = 0, a = 0).

Figure 8 shows that in the absence rice blast re-infection,
rice production increases with time since blast interfere with
rice growth and thus production

Figure 9 shows that in the presence of blast re-infection, the
production of rice goes down with time since the blast affects
plants¡¯ growth and development.

Figure 9. Rice production in the presence of both secondary infection and recovery class
going back to susceptible.(a= 0.2 and µ= 0.3).

8. Conclusion

In order to investigate the impact of rice blast re-infection
on rice production, a mathematical model built on a system
of ordinary differential equations and including a study of
blast re-infection has been developed and studied. The
next generation matrix approach was used to compute the
basic reproduction number R0, which serves as the threshold
parameter. It was discovered that if R0 < 1, the blast re-
infection does not occur in the population of rice crops, and
that if R0 > 1, it does and spreads throughout the entire rice
population. The disease-free equilibrium is both locally and
globally asymptotically stable when the basic reproduction is
less than one, according to the stability analysis of the rice
blast re-infection model. This suggests that one method of
preventing rice blast re-infection is to maintain R0 below one.
Analysis of endemic equilibrium demonstrates that it exists
and is asymptotically stable when R0 > 1.

This demonstrates that the rice blast re-infection survives
and spreads throughout the entire population when Ro >
1. The parameters a (rate of secondary infection), m (rate
of recovery of infected host), and h (rate of removal of
all classes) should be increased, according to the model’s
sensitivity analysis, in order to lower the basic reproduction

number and, as a result, reduce the risk of rice blast re-
infection for the entire rice population. To decrease the basic
reproduction number, the parameters betap (rate of primary
infection) and g(s) (production of susceptible host) should be
increased.Both the stability of endemic equilibrium and the
disease-free equilibrium are supported by numerical analysis
of the model. It also demonstrates how a decrease in rice blast
re-infection significantly raises rice productivity.
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