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Abstract: Numerical differentiation has been widely applied in engineering practice due to its remarkable simplicity in the
approximation of derivatives. Existing formulas rely on only three-point interpolation to compute derivatives when dealing with
irregular sampling intervals. However, it is widely recognized that employing five-point interpolation yields a more accurate
estimation compared to the three-point method. Thus, the objective of this study is to develop formulas for numerical
differentiation using more than three sample points, particularly when the intervals are irregular. Based on Lagrange
interpolation in matrix form, formulas for numerical differentiation are developed, which are applicable to both regular and
irregular intervals and can use any desired number of points. The method can also be extended for numerical integration and for
finding the extremum of a function from its samples. Moreover, in the proposed formulas, the target point does not need to be at
a sampling point, as long as it is within the sampling domain. Numerical examples are presented to illustrate the accuracy of the
proposed method and its engineering applications. It is demonstrated that the proposed method is versatile, easy to implements,
efficient, and accurate in performing numerical differentiation and integration, as well as the determination of extremum of a
function.
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1. Introduction
Differentiation is a well-studied subject, see, e.g. [1–3];

however, there are still a number of challenging problems
in this field. Numerical differentiation refers to methods of
approximating or computing the rate of change of a function
or process at a specific point using the sampling data. It
is widely applied in many engineering disciplines, such as
determining deflections, strains, bending moments, shears in
structural analysis, and responses and reactions in dynamic
analysis.

Besides numerical differentiation, there are two other
methods that are popular in the computation of derivatives
using computer programs, i.e., symbolic differentiation and
the so-called automatic differentiation. It is challenging to
determine which method is the most superior method as each

approach has its own distinct advantages.
Symbolic differentiation involves the automated

manipulation of expressions to compute derivatives [4]. This
method uses established rules of differentiation along with the
known derivatives of common functions to derive a symbolic
expression for the derivative of a given function. Symbolic
computational software, such as Mathematica [5] and Maple
[6], has been extensively developed to implement symbolic
differentiation. Although symbolic differentiation can provide
exact solutions, which could be particularly useful in many
applications, it has some drawbacks. The essential problem is
that computing the full analytical expression can sometimes
result in expression swelling, which can produce very large
symbolic expressions due to the application of the product
rule and chain rule in differentiation [7]. Furthermore,
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in most engineering applications, only the evaluation of
derivatives at several points is needed [8]; hence, symbolic
differentiation is not favoured for efficiency considerations in
these applications.

With the rapid development of Artificial Intelligence and
deep learning, automatic differentiation has gained great
popularity in computing derivatives. In contrast to symbolic
differentiation, automatic differentiation excels in efficiency
while maintaining accuracy [9, 10]. Automatic differentiation
computes the partial derivatives of a sequence of elementary
arithmetic operations for which derivatives are known. These
derivatives are then combined through the chain rule to obtain
the derivative of the main function [11]. As a result, it allows
for finding the derivatives of more general functions than
symbolic differentiation. Additionally, the computations can
be significantly simplified because it stores only the numerical
values of intermediate sub-expressions in memory.

Unlike symbolic differentiation and automatic
differentiation which rely on fundamental differentiation
rules, numerical differentiation is the finite difference
approximation of derivatives using values of the main function
evaluated at some sample points [8]. Despite the inherent
errors in truncation and rounding errors in finite difference
approximation, numerical differentiation is still widely used
due to its convenience [12]. The most important advantage
of numerical differentiation is that it can deal with situations
when the main function is unavailable or, in other words,
when the function is defined by a set of discrete samples.
This flexibility sets it apart from the other two methods
that require the explicit expression of the main function.
Furthermore, numerical differentiation plays a crucial role

in solving differential equations [13], making it particularly
advantageous in certain engineering applications, such as
dynamic vibration analysis.

In numerical differentiation, the derivative of a function
y(x) can be approximated by

y′(x) =
y(x+ h)− y(x)

h
+O(h), (1)

where h > 0 is a small step size, and O(h) is known
as the truncation error. Equation (1) is also known as
the forward finite difference approximation [14]. Various
techniques have been developed to reduce the truncation errors
in numerical differentiation, such as using a central difference
approximation

y′(x) =
y(x+ h)− y(x− h)

2h
+O(h2). (2)

In equation (2), the truncation error is reduced from first-
order to second-order in h. The corresponding second-order
derivative based on equation (2) is

y′′(x) =
y(x+ h)− 2 y(x) + y(x− h)

h2
+O(h2). (3)

It should be mentioned that equations (2) and (3) are based
on three-point approximation, which means that three points
are used to compute the derivatives.

Estimations of y′ and y′′ by using five points or samples
are known to be more accurate than by using three points or
samples. If five points are used, the first-order and second-
order derivatives can be evaluated as

y′(x) =
−y(x+ 2h) + 8 y(x+ h)− 8 y(x− h) + y(x− 2h)

12h
, (4)

and

y′′(x) =
−y(x+ 2h) + 16 y(x+ h)− 30 y(x) + 16 y(x− h)− y(x− 2h)

12h2
. (5)

Equations (2) to (5) are based on the assumption that the intervals between sample points are consistent. However, in practice,
the intervals could be unevenly spaced. In this case, the existing formulas use only three points (x− δ, x, x+ ∆), for example,

y′(x) =

[
y(x+ ∆)− y(x)

∆

]
·
(

δ

∆ + δ

)
+

[
y(x)− y(x− δ)

δ

]
·
(

∆

∆ + δ

)
, (6)

y′′(x) =

[
y(x+ ∆)− y(x)

∆

]
·
(

2

∆ + δ

)
−
[
y(x)− y(x− δ)

δ

]
·
(

2

∆ + δ

)
. (7)

Although five points give a better estimate than three points,
there are no five-points formulas available when the intervals
are irregular.

Numerical integration is a fundamental mathematical
technique employed to approximate definite integrals, offering
a practical and versatile approach for solving problems
where analytical solutions are challenging or impossible to
obtain [15, 16]. By discretizing the integration process
into manageable steps, numerical integration methods enable
the efficient calculation of areas under curves, cumulative

sums, and other essential mathematical operations. Most
importantly, in some practical engineering problems, the
direct measurement of a certain parameter might be not
available. Instead, the derivative of it can be easily collected.
In such cases, numerical integration can be applied to
determine the required parameter approximately.

For example, the measurement of deflection of some
structures, such as long-span bridges and transmission towers,
may be sometimes challenging. It is more practical to measure
the slope using inclinometers or tilt censors than directly
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measuring the deflection at certain locations. Subsequently,
numerical integration can be used to integrate the slope
with respect to the position along the building to obtain the
deflection at any positions. The intervals can be irregular when
the tilt censors are not equally spaced.

In the field of structural engineering, the measurement
of bending moment is important. However, the direct
measurement of it requires specialized instrumentation such
as bending moment sensors or transducers, which is more
complex and less common than sensors used for shear force
measurement. Consequently, a preferred approach involves
obtaining the bending moment by numerically integrating

shear force data.
Another example of the application of numerical integration

is to determine material hardness through indentation. To
conduct the indentation test, a variable load is applied to
the material, and the resulting indentation depth under each
load step is recorded. Using the acquired force-displacement
data, the total work done during the indentation process can
be calculated through numerical integration, which is further
used together with the indentation depth to obtain material
hardness.

When the intervals are regular, a definite integral is
computed by using the trapezoidal rule or Simpson’s rule as

∫ b

a

y(x) dx =
h

2

(
y0 + 2

k=n−1∑
k=1

yk + yn

)
, (8)

∫ b

a

y(x) dx =
h

3

(
y0 + 4

k=n/2∑
k=1

yk + 2

k=n/2−1∑
k=1

yk + yn

)
, (9)

where the interval (a, b) of integration is divided into n
sub-intervals of equal length h = (b − a)/n: y0 =
a, y1, y2, . . . , yn = b. However, a formula is not available
when the intervals are irregular.

A possible approach for performing numerical
differentiation and integration with irregular intervals using

five points stencil is the Lagrange’s interpolation formula,
because it can be differentiated or integrated. For a given
set of n samples at x1, x2, . . . , xn, Lagrange’s interpolation
formula is

y(x) =

n∑
k=1

[
n∏

j=1
j 6=k

(
x− xj
xk − xj

)
yk

]
. (10)

Differentiating equation (10) with respect to x once and twice gives the first-order and second-order derivatives:

y′(x) =

n∑
k=1

d
dx

[
n∏

j=1
j 6=k

(
x− xj
xk − xj

)
yk

]
, y′′(x) =

n∑
k=1

d2

dx2

[
n∏

j=1
j 6=k

(
x− xj
xk − xj

)
yk

]
. (11)

Integrating equation (10) with respect to x from a to b gives the definite integral:∫ b

a

y(x) dx =

n∑
k=1

∫ b

a

[
n∏

j=1
j 6=k

(
x− xj
xk − xj

)
yk

]
dx. (12)

However, it is obvious that each process is very tedious and
such an operation is seldom applied.

As estimates of derivatives based on five points have better
accuracy than those by using three points, the objective of
this study is to derive a formula for numerical differentiation
which can use any desired number of sample points when
the intervals are irregular. In Section 2, the formulation of
the method based on Lagrange interpolation in matrix form is
presented. The method can be applied in performing numerical
differentiation and numerical integration, and finding extreme
values of a function from its samples. In the proposed formula,
the target point need not be at a sampling point, insofar as it
is within the sampling domain. Four numerical examples are

presented in Section 3 to illustrate the proposed method, and
some conclusions are drawn in Section 4.

2. Formulation

2.1. Lagrange Interpolation in Matrix Form

Let y(x) be a single-valued smooth function of variable x.
n samples are taken at n distinct points x1 < x2 < · · · <
xn to obtain the corresponding values y1, y2, . . . , yn of the
function. A polynomial of degree (n − 1) is used to match
function y(x) in the interval x1 ≤ x ≤ xn:
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y(x) =

n−1∑
i=0

ai x
i =

{
1 x x2 . . . xn−1

}


a0
a1
a2
...

an−1


. (13)

y(x) is to be matched at the n sampling points (x1, y1), (x2, y2), . . . , (xn, yn). By collocation, the coefficients ai of the
polynomial of degree (n− 1) can be determined as

y1
y2
...
yn

 = Vs


a0
a1
...

an−1

 =⇒


a0
a1
...

an−1

 = V−1s ys (14)

where Vs is the Vandermonde matrix of dimension n × n that depends on the x values of the sampling points, and ys denotes
the column vector of dimension n of values of y at the sampling points given by

Vs =


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12

...
...

... · · ·
...

1 xn x2n · · · xn−1n

 , ys =



y1

y2

...

yn


, (15)

where the subscript “s” stands for “sample”.
Substituting equation (14) into equation (13), function y(x) is given by

y(x) =
{

1 x x2 · · · xn−1
}
V−1s ys, (16)

in which x is the target point and it can be any value satisfying x1 ≤ x ≤ xn. Equation (16) is Lagrange interpolation in matrix
form.

2.2. Numerical Differentiation

The derivatives of y(x) can be easily obtained by differentiating equation (16) with respect to x:

y′(x) =
{

0 1 2x 3x2 · · · (n− 1)xn−2
}
V−1s ys, (17)

y′′(x) =
{

0 0 2 6x · · · (n− 1)(n− 2)xn−3
}
V−1s ys. (18)

It should be emphasized that equations (16) to (18) are applicable for any n ≥ 3. For numerical differentiation, n = 5 offers
great efficiency and sufficient accuracy.

If only three sampling points are used, equations (17) and (18) reduce to

y′(x) =
{

0 1 2x
}
V−1s ys, y′′(x) =

{
0 0 2

}
V−1s ys, (19)

where

Vs =


1 x1 x21

1 x2 x22

1 x3 x23

 , ys =


y1

y2

y3

 . (20)

Equation (19) can be easily evaluated to give

y′(x) =
(2x− x2 − x3) y1

(x1 − x2)(x1 − x3)
+

(2x− x1 − x3) y2
(x2 − x1)(x2 − x3)

+
(2x− x1 − x2) y3

(x3 − x1)(x3 − x2)
. (21)
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At the point x = x2, the derivative of y(x) is

y′(x2) =
∆ · y3

(∆ + δ) δ
− δ · y1

(∆ + δ) ∆
− (∆− δ) y2

(∆ + δ) ∆
, (22)

where ∆ = x2 − x1 and δ = x3 − x2. Equation (22) can be further simplified to

y′(x2) =

(
∆

∆ + δ

)
·
(
y3 − y2

δ

)
+

(
δ

∆ + δ

)
·
(
y2 − y1

∆

)
. (23)

Therefore, the proposed method reproduces equation (6)
when only three points are selected.

Similarly, for the second-order derivative, evaluating
equation (20) at x = x2 yields

y′′(x2) =
2y1

(∆ + δ) ∆
− 2y2

∆ δ
+

2y3
(∆ + δ) δ

. (24)

Equation (24) can be expressed as

y′′(x2) =
2

∆ + δ

(
y3 − y2

δ
− y2 − y1

∆

)
, (25)

which is the same as equation (7).

2.3. Numerical Integration

To evaluate the definite integral of y(x) between a and b,
the interval [a, b] is divided into sub-intervals. Interpolate
the function y(x) in each sub-interval by a polynomial as in
equations (13) and (16), and then sum the results over all
sub-intervals. For example, considering a typical sub-interval
[x1, xn] with n sampling points (x1, y1), (x2, y2), . . . ,
(xn, yn), function y(x) is given by equation (16). Integrating
equation (16) with respect to x from x1 to xn yields

∫ xn

x1

y(x) dx =
{
xn − x1

x2
n−x

2
1

2
x3
n−x

3
1

3 · · · xn
n−x

n
1

n

}
V−1s ys. (26)

Similar to numerical differentiation, the case when n = 5 offers great efficiency and sufficient accuracy in numerical
integration.

2.4. Extrema of a Function

Equations (17) and (18) can be used to find the extremum of a function from its sample values. The critical points of function
y(x) given by equation (16) can be determined by setting equation (17) to zero:

y′(x) =
{

0 1 2x 3x2 · · · (n− 1)xn−2
}
V−1s ys = 0, (27)

which is a polynomial equation of degree (n − 2). The roots
of equation (27) in the interval [x1, xn] are the critical points.

In our context, a critical point is a location where the slope
is equal to zero. The nature of a critical point x∗ depends on
the value y′′(x∗), which can be evaluated using equation (18).
If y′′(x∗) < 0, then y(x∗) is a relative maximum; whereas if
y′′(x∗) > 0, then y(x∗) is a relative minimum.

3. Numerical Examples
In this section, four examples are presented to illustrate the

superiority of the proposed method.

3.1. Example 1 – Numerical Differentiation

Consider function y(x) =
√
x. Sample the function at five

points with irregular intervals as listed in Table 1.

Table 1. Five sampling points with irregular intervals.

x 1.0 1.2 1.5 1.9 2.4

y 1.00000 1.09545 1.22475 1.37841 1.54919

The point x = 1.5 is chosen as the target; the exact
derivatives are y′(1.5) = 0.40825 and y′′(1.5) = −0.13606.
These values will be used to check the accuracy of the results
using the proposed method.

Using Three Sampling Points
When three sampling points are used at x = 1.2, 1.5, 1.9,

the corresponding vector ys and the Vandermonde matrix Vs
are

ys =


1.09545

1.22475

1.37841

 , Vs =

1 1.2 1.44

1 1.5 2.25

1 1.9 3.61

 =⇒ V−1s ys =


0.457779

0.611707

−0.066929

.
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Applying equation (19), the first-order and second-order derivative can be computed

y′(1.5) =
{

0 1 3
}
V−1s ys = 0.41092,

y′′(1.5) =
{

0 0 2
}
V−1s ys = −0.13386.

If equations (6) and (7) are used, then the first-order and second-order derivatives are obtained as

y′(1.5) =

(
1.37841− 1.22475

0.4

)
·
(

0.3

0.7

)
+

(
1.22475− 1.09545

0.3

)
·
(

0.4

0.7

)
= 0.41092.

y′′(1.5) =

(
1.37841− 1.22475

0.4

)
·
(

2

0.7

)
−
(

1.22475− 1.09545

0.3

)
·
(

2

0.7

)
= −0.13386.

Therefore, the proposed method agrees with the existing formula for computing the first and second derivatives using three
points when intervals are irregular.

Using Five Sampling Points
When five sampling points are used at x = 1.0, 1.2, 1.5, 1.9, 2.4, the corresponding vector ys and the Vandermonde matrix Vs

are

ys =



1.00000

1.09545

1.22475

1.37841

1.54919


, Vs =


1 1 1 1 1

1 1 1.44 1.728 2.0736

1 1.5 2.25 3.375 5.0625

1 1.9 3.61 6.859 13.0321

1 2.4 5.76 13.824 33.1776

 =⇒ V−1s ys =



0.33111

0.89787

−0.29707

0.07671

−0.00862


.

Applying equations (17) and (18), the first-order and
second-order derivatives can be determined

y′(1.5) =
{

0 1 3 6.75 13.5
}
V−1s ys = 0.40803,

y′′(1.5) =
{

0 0 2 9 27
}
V−1s ys = −0.13661.

The relative errors between the estimated first-order and
second-order derivatives using 5 sampling points and the exact
values are 0.054% and 0.386%, respectively; whereas the
corresponding errors using 3 sampling points are 0.655% and
1.635%, respectively, which are significantly higher. This
indicates that the estimates from five-point interpolation are
more accurate as expected.

3.2. Example 2 – Numerical Integration

This example is used to show that the definite integral of the
error function is

erf(1) =
2√
π

∫ 1

0

e−x
2

dx = 0.8427007929.

The integrand is y(x) = e−x
2

. The domain of integration
[0, 1] is divided into two sub-intervals [0, 0.5] and [0.5, 1].

Sub-Interval [0, 0.5]
Select five sampling points in this interval: x =

0, 0.125, 0.25, 0.375, 0.5. The corresponding vector ys of
sampling values of the integrand and the Vandermonde matrix
Vs are

ys =



1

0.9844964

0.9394131

0.8688151

0.7788008


, Vs =


1 0 0 0 0

1 0.125 0.015625 0.0019531 0.0002441

1 0.250 0.062500 0.0156250 0.0039063

1 0.375 0.140625 0.0527344 0.0197754

1 0.500 0.250000 0.1250000 0.0625000

 ,
which gives

V−1s ys =



0

0.0010648

−1.0169995

0.0866474

0.3469972


.

Hence, the integral in the first sub-interval [0, 0.5] can be found using equation (26)

I1 =

∫ 0.5

0

e−x
2

dx =

{
0.5

0.52

2

0.53

3

0.54

4

0.55

5

}
V−1s ys = 0.4612807.
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Sub-Interval [0.5, 1]
Select five sampling points in this interval: x = 0.5, 0.625, 0.75, 0.875, 1. The corresponding vector ys of sampling values of

the integrand and the Vandermonde matrix Vs are

ys =



0.7788008

0.6766338

0.5697828

0.4650432

0.3678794


, Vs =


1 0.500 0.250000 0.1250000 0.0625000

1 0.625 0.390625 0.2441406 0.1525879

1 0.750 0.562500 0.4218750 0.3164063

1 0.875 0.765625 0.6699219 0.5861816

1 1 1 1 1

 ,

which gives

V−1s ys =



0.9581345

0.3048297

−1.8724796

1.2045461

−0.2271513


.

Hence, the integral in the second sub-interval [0.5, 1] can be found using equation (26)

I2 =

∫ 1

0.5

e−x
2

dx =

{
1− 0.5

1− 0.52

2

1− 0.53

3

1− 0.54

4

1− 0.55

5

}
V−1s ys = 0.2855434.

Therefore, the definite integral of the error function is

erf(1) =
2√
π

∫ 1

0

e−x
2

dx =
2√
π

(I1 + I2) = 0.8427008,

which is the same as the exact solution to the 7th decimal.

3.3. Example 3 – Extrema of a Function

Consider function y(x) = ex/3 sinx. In the interval [0, 7],
the maximum value is ymax = 1.78277 at x = 1.89255, and
the minimum value is ymin = −5.08028 at x = 5.034140.
These results are used to assess the efficiency and accuracy of
the results obtained using the proposed method.

Sample the function at ten points with irregular intervals as
listed in Table 2 and shown in Figure 1.

Table 2. Ten sampling points with irregular intervals.

x 0.1 0.8 1.5 2.3 3.0

x 0.1 0.8 1.5 2.3 3.0

x 3.6 4.1 4.6 5.5 6.4

y −1.4692196 −3.2094912 −4.6043631 −4.4129437 0.9840206

Underlying Function

10 Sampling Points

Using the First 5 Sampling Points

Using the Last 5 Sampling Points

y(x)= sin xe
x/3

1 2 3 4

x

y

5 6 7

2

1

0

–1

–3

–5

–2

–4

Figure 1. Finding extremum of a function.
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Using the First Five Sampling Points
When the first five sampling points are used, i.e, x = 0.1, 0.8, 1.5, 2.3, 3.0, the corresponding vector ys of sampling values

and the Vandermonde matrix Vs are

ys =



0.1032173

0.9365838

1.6445912

1.6051894

0.3836040


, Vs =


1.0 0.1 0.01 0.001 0.0001

1.0 0.8 0.64 0.512 0.4096

1.0 1.5 2.25 3.375 5.0625

1.0 2.3 5.29 12.167 27.9841

1.0 3.0 9.00 27.000 81.0000

=⇒V−1s ys =



0.0122629

0.8459374

0.6736215

−0.3780205

0.0244134


.

Equations (27) becomes

y′(x) =
{

0 1 2x 3x2 4x3
}
V−1s ys

= 0.8459374 + 1.3472430x− 1.1340615x2 + 0.0976538x3 = 0,

which has one root x = 1.8902812 in the interval [0.1, 3.0]. The second-order derivative is given by equation (18)

y′′(x) =
{

0 0 2 6x 12x2
}
V−1s ys = 1.3472430− 2.2681230x+ 0.2929614x2.

The value of the second-order derivative at the critical point is

y′′(1.8902812) = −1.8933487 < 0 =⇒ relative maximum.

The value of y(x) is given by equation (16)

y(x) =
{

1 x x2 x3 x4
}
V−1s ys

= 0.0122629 + 0.8459374x+ 0.6736215x2 − 0.3780205x3 + 0.0244134x4.

The relative maximum is then obtained:

ymax = y(1.8902812) = 1.7767229,

with a relative error of 0.339%, which is very small, as compared to the exact result.
Using the Last Five Sampling Points
When the last five sampling points are used, i.e, x = 3.6, 4.1, 4.6, 5.5, 6.4, the corresponding vector ys of sampling values

and the Vandermonde matrix Vs are

ys =



−1.4692196

−3.2094912

−4.6043630

−4.4129437

0.9840206


, Vs =


1.0 3.6 12.96 46.656 167.9616

1.0 4.1 16.81 68.921 282.5761

1.0 4.6 21.16 97.336 447.7456

1.0 5.5 30.25 166.375 915.0625

1.0 6.4 40.96 262.144 1677.7216

 ,

which gives

V−1s ys =



−70.7709347

66.5021899

−21.3663164

2.6754802

−0.1073216


.

Equations (27) becomes

y′(x) =
{

0 1 2x 3x2 4x3
}
V−1s ys

= 66.5021899− 42.7326328x+ 8.0264407x2 − 0.4292866x3 = 0,
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which has one root x = 5.0298711 in the interval [3.6, 6.4]. The second-order derivative is given by equation (18)

y′′(x) =
{

0 0 2 6x 12x2
}
V−1s ys = −42.7326328 + 16.0528815x− 1.2878597x2.

The value of the second-order derivative at the critical point is

y′′(5.0298711) = 5.4289529 > 0 =⇒ relative minumum.

The value of y(x) is given by equation (16)

y(x) =
{

1 x x2 x3 x4
}
V−1s ys

= −70.7709347 + 66.5021899x− 21.3663164x2 + 2.6754802x3 − 0.1073216x4.

The relative maximum is then obtained:

ymax = y(5.0298711) = −5.061298,

with a relative error of 0.374%, which is very small, as compared to the exact result.

3.4. Example 4 – Deformation, Bending Moment, and
Shear Force of a Beam-Column

Consider an Euler-Bernoulli beam-column AB, which is clumped at end A and supported by a pin at end B, as shown in
Figure 2. The beam-column is subjected to an axial compressive load P at end B and a parabolically distributed lateral load
q(x) = q0 x

2. The length of the beam-column is L, the moment of inertia is I , and the Young’s modulus is E.

x

A

Bq(x)=q
0
x2

L

y

P

Figure 2. Clamped-pinned beam-column.

The differential equation that governs the transverse deflection y(x) is

d4y(x)

dx4
+ α2 d2y(x)

dx2
=

q0 x
2

EI
, α2 =

P

EI
. (28)
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The transverse deflection y(x), which is the general solution of differential equation (28), is

y(x) = C0 + C1x+A cosαx+B sinαx+
q0
P

( x4
12
− x2

α2

)
, (29)

where A, B, C0, and C1 are determined from the boundary conditions.
The bending moment and shear force are given by

M(x) = EI
d2y(x)

dx2
, V (x) = −dM(x)

dx
− P dy(x)

dx
. (30)

The boundary conditions are

At the clamped support A, x = 0: y(0) = 0, y′(0) = 0,

At the pin support B, x = L: y(L) = 0, M(L) = 0.

Using the boundary conditions, the constants are obtained as

A = −C0 = −
q0
(
α4L4 sinαL− 12α3L3 + 24αL− 24 sinαL

)
12α4P

(
αL cosαL− sinαL

) ,

B = − C1

α
=

q0
(
α4L4 cosαL− 12α2L2 + 24− 24 cosαL

)
12α4P

(
αL cosαL− sinαL

) .

As a numerical example, the following parameters are used: Young’s modulus E = 100 GPa, the thickness, width, and height
of the beam-column are b = 1 m, h = 10 m, L = 20 m. The moment of inertia is I = 1

12bh
3. The loadings are P = 2 GN and

q = 2 MN/m2. Note that very large loadings are applied to create substantial deflection of the beam-column for the purpose of
illustration.

The exact transverse deflection y(x) (m) is given by

y(x) = 31.6105067− 0.9815670x− 0.1125x2 +
x4

12000
(31)

− 31.6105067 cos(0.0942809x) + 10.4110902 sin(0.0942809x). (32)

It is found that the maximum deflection is 1.3349 m
occurring at x = 12.2006 m. The relative maximum bending
moment is M(13.9206) = −11.003 GN·m at critical point
x = 13.9206 m, and the bending moment at the base x = 0
is M(0) = 12.5960 GN·m; hence, the maximum bending
moment is Mmax = M(0) = 12.5960 GN·m. There is no
critical point for the shear force, and the shear forces at x = 0
and x = 20 m are V (0) = 1.9631 GN and V (20) = −3.3702
GN; hence, the maximum shear force (absolute value) is
Vmax = V (20) = −3.3702 GN.

In an experiment, five sensors are placed at x =
4, 7, 10, 13, 16 m, and the measured deflections of the beam-
column are listed in Table 3. The purpose of the experiment
is to determine the maximal deflection, bending moment, and

shear force in the beam-column.

Table 3. Measured deflections of the beam-column.

x (m) 4 7 10 13 16

y (m) 0.3503 0.8374 1.2312 1.3200 0.9895

To applied the Lagrange interpolation in matrix form
presented in Section 2, the boundary conditions have to
be supplemented to cover the deflections of the entire
beam-column at x = 0, 4, 7, 10, 13, 16, 20 m. The
corresponding vector ys of sampling values of deflection and
the Vandermonde matrix Vs are

ys =



0.

0.3503

0.8374

1.2312

1.3200

0.9895

0.


, Vs =



1 0 0 0 0 0 0

1 4 16 64 256 1024 4096

1 7 49 343 2401 16807 117649

1 10 100 1000 10000 100000 1000000

1 13 169 2197 28561 371293 4826809

1 16 256 4096 65536 1048576 16777216

1 20 400 8000 160000 3200000 64000000


,
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which gives

V−1s ys =



0.

0.0004527

0.0276852

−0.0013747

−3.0959× 10−5

1.3274× 10−6

9.6731× 10−9


.

The deflection (m) of the beam-column given by equations (16) is

y(x) =
{

1 x x2 x3 x4 x5 x6
}
V−1s ys

= 0.0004527x+ 0.0276852x2 − 0.0013747x3 − 0.0000310x4 + 1.3277× 10−6 x5 + 9.6731× 10−9 x6.

Using equation (30), the bending moment (GN·m) and shear force (GN) are given by

M(x) = 12.4583429− 1.8558023x− 0.0835903x2 + 0.0059746x3 + 6.5394× 10−5 x4,

V (x) = 1.8548970 + 0.0564398x− 0.0096759x2 − 1.3490× 10−5 x3 − 1.3277× 10−5 x4 − 1.1608× 10−7 x5.

To find the maximum deflection, equation (27) becomes

y′(x) =
{

0 1 2x 3x2 4x3 5x4 6x5
}
V−1s ys

= 0.0004527x+ 0.0553704x− 0.0041240x2 − 0.0001238x3 + 6.6385× 10−6 x4 + 5.8039× 10−8 x5 = 0,

which has one root x = 12.2008 in the interval (0, 20). The value of maximum y(x) at the critical point is obtained as

ymax = y(12.2008) = 1.3348 m.

with a relative error of 0.0008%, which is negligible in engineering problems, as compared to the exact result.
Set the first-order derivative of the bending moment to zero

M ′(x) = −1.8558023− 0.1671807x+ 0.0179239x2 + 0.0002612x3 = 0,

which has a root x = 13.9313 m. The bending moments at the critical point and at the base x = 0 are

M(13.9313) = −11.0050 GN ·m, M(0) = 12.4583 GN ·m,

with relative errors of 0.019% and 1.093%, respectively, as
compared to the exact result. Hence, the maximum bending
moment occurs at the base of beam-column Mmax = M(0) =
12.4583 GN ·m.

The exact shear force does not have a critical point in
(0, 20); however, the shear force from Lagrange interpolation
has a critical point at x = 2.8352 m, with the shear force
being V (2.8352) = 1.9359 GN. The shear forces at x = 0
and x = 20 are

V (0) = 1.8549 GN, V (20) = −3.4904 GN,

with relative errors of 5.513% and 6.124%, respectively, as
compared to the exact result. The maximum shear force

(absolute value) occurs at the top of beam-column Vmax =
V (20) = −3.4904 GN.

The deflection, bending moment, and shear force of the
beam-column are shown in Figure 3, in which the red solid
lines are the exact results, while the blue dashed lines are the
results from Lagrange interpolation. It is seen that the results
obtained from Lagrange interpolation agree very well with
the exact results. Note that, from equation (30), the bending
moment M(x) is related to the second-order derivative of
the deflection y(x), while the shear force V (x) depends on
the third-order derivative of the deflection. As a result, the
accuracy of the bending moment from Lagrange interpolation
is less than that of the deflection, and the accuracy of the shear
force is worse than that of the bending moment.
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Figure 3. Deflection, bending moment, and shear force of the beam-column.

3.5. Discussions

Lagrange interpolation in matrix form, as given by
equation (16) for the case of n points, is universal because
differentiating the formula once and twice yield the first-
order and the second-order derivatives, respectively, whereas
integrating it gives the definite integral. The formulation
is applicable to both regular and irregular intervals, it can
accommodate any n ≥ 3 sampling points, and it is easy to
implement. Because a target point x does not need to be a
sampling point, it can be used to determine the extrema of a
function from its samples with excellent accuracy, which is
essentially a problem of fitting of a set of sampling points using
a polynomial and then find the extrema.

Numerical stability and numerical accuracy are first and
foremost concerns in numerical analysis. For this reason,
it is advisable that the following caveats be adhered to in

application:
1. No large discrepancy in the size of the intervals. The

intervals are to be as evenly spaced as possible.
2. No large discrepancy in the sample values. The samples

are to be more or less of the same order of magnitude.
3. No outlying target point. The target point is to be around

the midpoint of the domain.
Although the formulation of Lagrange interpolation in

matrix form is applicable for any n ≥ 3 points, in practice an
appropriate (not too large) number of points are to be used for
numerical differentiation and integration. This is to minimize
roundoff and truncation errors to ensure numerical stability
and numerical accuracy. As demonstrated in the numerical
examples, the case when n = 5 offers great efficiency and
accuracy.
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4. Conclusions
In this paper, formulas for numerical differentiation based

on Lagrange interpolation in matrix form are developed. The
formulas derived are applicable to both regular and irregular
intervals, and can use any desired number of points. The
formulas can be also used for numerical integration and
for finding the extremum of a function from its samples.
Numerical examples are presented to illustrate the accuracy
of the proposed method and its engineering applications. It
is demonstrated that the proposed method is versatile, easy to
implements, efficient, and accurate.
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