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Abstract: This paper is mainly concerned with the symmetry and monotonicity of solutions to a fractional parabolic Kirchhoff
equation. We first establishes the asymptotic narrow region principle, the asymptotic maximum principle near infinity, the
asymptotic strong maximum principle and the Hopf principle for antisymmetric functions in bounded and unbounded domains.
By the method of moving plane, it then derives the symmetry of positive solutions on the unit sphere and in the entire space.
Next, we point out how to apply these tools and methods to obtain asymptotic radial symmetry and monotonicity of positive
solutions in a unit ball and on the whole space. By some researches, we find that no matter how we set the initial value, it will
not affect the property of the solution approaching a radially symmetric function as t approaches infinity. Throughout the paper,
establishing the maximum principle plays a central role in exploring and studying the fractional parabolic Kirchhoff equation.
After establishing different maximum principles, one can study the properties of a solution to the parabolic equation under
different conditions. Finally, the novelty of this article is that it is the first time to apply method of moving plane to fractional
parabolic Kirchhoff problems and the ideas and methods presented in this article are applicable to studying different non local
parabolic problems, various operators and the symmetry of solutions in different regions.
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1. Introduction

This article studies the symmetry of the positive solutions of
the fractional parabolic Kirchhoff equation

∂u
∂t (x, t)

+

(
a+ b

∫
Rn

∣∣∣(−∆)
s
2u(x, t)

∣∣∣2dx) (−∆)
s
u(x, t)

= f(t, u(x, t)), u > 0 (1)

on the unit sphere and the entire space where a ≥ 0, b > 0, s ∈
(0, 1) is a constant and∫

Rn

∣∣∣−∆
s
2u(x, t)

∣∣∣2dx
=
∫ ∫

R2n

|u(x,t)−u(y,t)|2

|x−y|n+2s dydx (2)

holds for every fixed t > 0. In this article, for each fixed t >

0, the fractional Laplacian operator is defined as

(−∆)
s
u(x, t) = Cn,sPV

∫
Rn

u(x, t)− u(y, t)

|x− y|n+2s dy (3)

where Cn,s is the standardized constant and PV represents the
Cauchy principal value.

The Kirchhoff equation originated from Krichhoff-type
problems. Krichhoff-type problems have been developed for
many years in various physical and biological models. In
order to extend the vibration of elastic ropes for this
classic D’Alembert’s wave equation, Kirchhoff [1] studied the
following wave equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2
)
∂2u

∂x2
= 0 (4)

Where u = u(x, t) is the lateral displacement of
coordinates x and time t, ρ is the mass density, P0 is the initial
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axial tensile, h is the cross-sectional area, E is the Young’s
modulus, L is the length. Moreover, Pohozaev [2] also studied
the Kirchhoff equation mentioned above. Afterwards, Lions
[3] studied an abstract functional model of the following
equation.

utt +

(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u). (5)

In the following years, Alves [4], Spagnolo [5]
and Li [6] have studied a lot of research in this
area. Pucci and Saldi [7] established the existence and
multiplicity of non trivial and non negative global solutions
for a class of Kirchhoff eigenvalue problems involving
critical nonlinearity and fractional Laplacian operators. For
more fractional Kirchhoff problems, we can refer to
He [8] and Zhang [9]. This paper investigates the radial
symmetry of positive solutions to a class of fractional order
Kirchhoff equations for parabolic systems.

The study of non locality of fractional Laplacian operators
is quite difficult. Caffarelli and Silvestre [10] use the extension

method to transform non local problems into local ones in high
dimensions. This extension method can be effectively used to
study equations involving fractional Laplacian operators. In
paper of Chen, Li and Ou [11], the author proved that if u ∈
H

α
2 (Rn) is the positive weak solution of

(−∆)
α
2 u = up(x), x ∈ Rn, (6)

then it satisfies the integral equation

u(x) = C

∫
Rn

1

|x− y|n−α
up(y)dy. (7)

Thus, by using the integral form of the moving plane
method, the radial symmetry of the positive solution under
critical conditions and the non existence of the positive
solution under subcritical conditions can be obtained. Both
extension methods and integral equations need additional
conditions to be added to the solution. But this is not necessary
for directly studying pseudo differential equations such as
equation.

Cn,s lim
ε→0

∫
Rn\Bε(x)

a(x− z)(u(x)− u(z))

|x− z|n+α dz = f(x, u) (8)

which involves consistent non local elliptical operators where 0 < c0 ≤ a(y) ≤ C1 and equation

Fα(u(x)) ≡ Cn,α lim
ε→0

∫
Rn\Bε(x)

G(u(x)− u(z))

|x− z|n+α dz = f(x, u) (9)

which involves completely nonlinear non local operators. Few
extension methods and integral equation studies are used
for these operators such that it is necessary for applying
direct methods necessary about studying typical non local
operators. Jarohs and Weth [12] studied direct methods
for non local operators. They introduced the maximum
principle of antisymmetric functions and proved the radial
symmetry of positive solutions through the moving plane
method. However, they only focused on the maximum
principle of bounded domains and only studied weak solutions
defined by the inner product of H

α
2 (Ω).

Due to the work of Chen and Li [13, 14], they have
developed a series of methods whether bounded or unbounded
for using the moving plane method on non local problems. For
example, we know fractional Laplace and p-Laplace which
no longer use extension methods and integral equations to
obtain the symmetry, monotonicity and non existence of
positive solutions for various semilinear equations involving
non local operators. Inspired by the use of the moving
plane method in [14], [15] and [16] to prove the symmetry
and monotonicity of the positive solutions of fractional
parabolic Kirchhoff equations containing non local operators

and non local term
∫
Rn

∣∣∣(−∆)
s
2u
∣∣∣2dxdt, this paper studies

the asymptotic symmetry of solutions to fractional parabolic

Kirchhoff equations which is a trend that the initial solution
of the parabolic equation has no symmetry and becomes
symmetric as time approaches infinity.

Here are some symbols that will be used in the following of
this article.

The ω-limits set of u:

ω(u) :=

{
$| $ = lim

tk→∞
u(·, tk)

}
,

Tκ = {x ∈ Rn|for some κ ∈ R , x1 = κ}

are the moving planes,

Σκ = {x ∈ Rn|x1 > κ}

is the right area of plane Tκ and

xκ = (2κ− x1, x2, . . . , xn)

is the reflection area of Tκ for x.
To make (2) and (3) meaningful, it is assumed that

u ∈ Hs(Rn)
⋂
L2s

⋂
C1,1
loc (Rn),

where
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Hs(Rn) =

{
u(·, t) ∈ L2(Rn) :

|u(x, t)− u(y, t)|
|x− y|

n
2 +s

∈ L2(Rn × Rn)for every fixed t

}
,

L2s =

{
u(·, t) ∈ L1

loc(Rn)|
∫
Rn

|u(x, t)|
1 + |x|n+2s dx < +∞

}

and C1,1
loc (Rn) is the usual Hölder space on each V ⊂⊂ Rn. For any function u that satisfies (1.1), let

I(u(x, t)) = a+ b

∫
Rn

∣∣∣(−∆)
s
2u(x, t)

∣∣∣2dx,
uκ(x) = u(xκ),

wκ(x) = uκ(x)− u(x),

wκ(x) = −wκ(xκ).

The Dirichlet problem on the unit ball is as followsµ{
∂u(x,t)
∂t + I(u(x, t))(−∆)

s
u(x, t) = f(t, u(x, t)), (x, t) ∈ B1(0)× (0,+∞),

u(x, t) = 0, (x, t) ∈ Bc1(0)× (0,+∞).
(10)

Theorem 1.1. (Radial symmetry of solutions on a unit
sphere)

Assuming that function
u(x, t) ∈

(
C1,1
loc (B1(0)) ∩ C(B1(0))× C1(0,+∞)

)
is a positive uniformly bounded solution of (1.1) whereB1(0) is
a open ball with center 0 and radius 1, B1(0) is the closure
of B1(0), C(B1(0)) is the space composed of continuous
functions in B1(0) and C1(0,+∞) is the space composed of
1-times continuously differentiable functions in (0,+∞).

Let α ∈ (0, 1) and α
2s ∈ (0, 1). Assume f(t, u) ∈ L∞(R+×

R) isC
α
2s

loc for any t andL∞(R+×R) whereL∞(R+×R) is the
space composed of Lebesgue measurable functions in R+ ×

R with ess supR+×R |f(t, u)| < +∞. For t, f is Lipschitz
continuous with respect to u and

f(x, t, 0) ≥ 0, ∀t ≥ 0.

For any $(x) ∈ w(u), either

$(x) ≡ 0,

or $(x) ∈ w(u) is radially symmetrical and strictly
decreasing about the origin.

The following section introduces the asymptotic symmetry
of the solution of equation KIRCHHOFF.

∂u(x, t)

∂t
+ I(u(x, t))(−∆)

s
u(x, t) = f(t, u(x, t)), (x, t) ∈ Rn × (0,+∞) (11)

in the entire space. Firstly, the following assumptions are made
for the nonlinear termµ

(G): Let α ∈ (0, 1), α
2s ∈ (0, 1), f(t, u) belongs to C

α
2s

loc for
time t and it is uniformly Lipschitz continuous with respect
to t for u. we also need

f(t, 0) = 0, fu(t, 0) < −δ, t > 0

where δ > 0 is a constant. But fu ≡ ∂f
∂u is continuous

near u = 0.
Theorem 1.2. (Radial symmetry of solutions in Rn )

Let u(x, t) ∈
(
C1,1
loc (Rn) ∩ L2s ∩Hs(Rn)× C1(0,+∞)

)

be the positive uniformly bounded solution of (11). It satisfies

lim
|x|→+∞

u(x, t) = 0, (12)

for sufficiently large twhere f satisfies (G). Then either for
all $(x) ∈ w(u), it is always equal to 0, either $(x) ∈
w(u) is radially symmetrical and decreases for some points
in Rn which means there exists x̃ ∈ Rn and x ∈ Rn such that

$ (x− x̃) = $ (|x− x̃|) .
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2. Some Maximum Principles

This section mainly establishes some maximum principles
related to fractional parabolic Kirchhoff operators involving
antisymmetic functions. These play a key role in applying
the moving plane method to solve the radial symmetry of the
positive solution of equations.

Theorem 2.1. (Asymptotic narrow region principle)

Let Ω be a subset contained within a narrow area

{x|κ− l < x1 < κ} ⊂ Σκ

where l is sufficiently small. For a sufficiently large t̄,Assume
for any x, wκ(x, t) ∈

(
C1,1
loc (Ω) ∩ L2s

)
× C1 ([t̄,+∞]) is

uniformly bounded and semicontinous over region Ω̄. It also
satisfies


∂wκ
∂t (x, t) + I(u(x, t))(−∆)

s
wκ(x, t) = cκ(x, t)wκ(x, t), (x, t) ∈ Ω× [t̄,+∞),

wκ(x, t) ≥ 0, (x, t) ∈ (Σκ \ Ω)× [t̄,+∞),

wκ(x, t) = −wκ (xκ, t) , (x, t) ∈ Ω× [t̄,+∞),

(13)

where cκ(x, t) is bounded. The following conclusion holds:
(i)If Ω is bounded, then for sufficiently small l,

lim
t→∞

wκ(x, t) ≥ 0, ∀x ∈ Ω.

(ii)If Ω is unbounded, then for t ≥ t̄,

lim
|x|→∞

wκ(x, t) ≥ 0, ∀x ∈ Ω.

Proof: Let m be a constant to be selected. Let

w̃κ(x, t) = emtwκ(x, t),

then

∂w̃κ
∂t

= memtwκ + emt∂
wκ
∂t

and

I(u)(−4)sw̃κ(x, t) = I(u)(−4)
s
(emtwκ(x, t))

= I(u)emtCn,sP.V

∫
Rn

wκ(x, t)− wκ(y, t)

|x− y|n+2s dy

= I(u)emt(−4)
s
wκ(x, t).

Therefore,

∂w̃κ
∂t

+ I(u)(−4)sw̃κ = emt
(
mwκ +

∂wκ
∂t

+ I(u)(−4)swκ

)
= emt(mw

κ
+ cκwκ)

= w̃κ(m+ cκ).

The following will prove lim
t→+∞

wκ(x, t) ≥ 0 by proving for any ∀T > t̄, (x, t) ∈ Ω× [t̄, T ],

w̃κ(x, t) ≥ min{0, inf
Ω
w̃κ(x, t̄)}. (14)

If (14) is false, By observing the lower semicontinuity of (13) and wκ on Ω̄ × [t̄, T ], it can be concluded that the existence
of (x0, t0) ∈ Ω× (t̄, T ) such that

w̃κ(x0, t0) = min
Σκ×(t̄,T ]

w̃κ(x, t) < min{0, inf
Ω
w̃κ(x, t̄)}.
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Because (x0, t0) may reach its extremum inside the cylinder. Thus,

∂w̃κ
∂t

(x0, t0) ≤ 0

and

I(u)(−4)
s
w̃κ(x0, t0)

= I(u)Cn,sP.V

∫
Rn

wκ(x0, t0)− wκ(y, t0)

|x0 − y|n+2s dy

= I(u)Cn,sP.V

∫
Σκ

wκ(x0, t0)− wκ(y)

|x0 − y|n+2s dy + I(u)Cn,sP.V

∫
Rn\Σκ

wκ(x0, t0)− wκ(y)

|x0 − y|n+2s dy

= I(u)Cn,sP.V

∫
Σκ

wκ(x0, t0)− wκ(y)

|x0 − y|n+2s dy + I(u)Cn,sP.V Σκ
wκ(x0, t0)− wκ(yκ)

|x0 − yκ|n+2s dy

≤ I(u)Cn,sP.V

∫
Σκ

wκ(x0, t0)− wκ(y)

|x0 − yκ|n+2s dy + I(u)Cn,sP.V

∫
Σκ

wκ(x0, t0) + wκ(y)

|x0 − yκ|n+2s dy

= 2I(u)Cn,swκ(x0, t0)

∫
Σκ

1

|x0 − yκ|n+2s dy

≤ c

l2s
w̃κ(x0, t0)I(u)

where the proof of the last inequality is shown in the proof of Theorem 2.1 in [15]. we can conclude that

∂w̃κ
∂t (x0, t0) = −I(u)(−4)

s
w̃κ(x0, t0) + (m+ cκ(x0, t0))w̃κ(x0, t0)

≥
(
− c

l2s
I(u) +m+ cκ(x0, t0)

)
w̃κ(x0, t0).

Since cκ(x, t) is bounded for all (x, t), we can choose sufficiently small l such that

− c

l2s
I(u) + Cκ(x0, t0) < − c

2l2s
.

After this, we choose m = C
2l2s > 0 so that the right-hand side of the above equation is strictly greater than

0. Since w̃κ(x0, t0) < 0, it is a contradiction. Thus, using the boundedness of wκ, there is a c1 > 0 such that

w̃κ(x, t) ≥ min
{

0, inf
Ω
w̃κ(x, t̄)

}
≥ −C1, (x, t) ∈ Ω× [t̄, T ], ∀T > t̄.

We have

wκ(x, t) ≥ e−mt(−C1), ∀t > t̄.

Let t→ +∞, it can be derived that

lim
t→+∞

wκ(x, t) ≥ 0, x ∈ Ω.

As Ω is unbounded, the same conclusion can be drawn.
Theorem 2.2. (Asymptotic maximum of antisymmetric functions)
Let Ω be a bounded domain in Σκ. Assume v(x, t) ∈

(
C1,1
loc (Ω) ∩ L2s ∩Hs

)
× C1 ([0,+∞]) is semicontinuous on Ω̄ with

respect to x and satisfies
∂v
∂t (x, t) + I(v)(−∆)

s
v(x, t) ≥ cκ(x, t)v(x, t), (x, t) ∈ Ω× [0,+∞),

v(xκ, t) = −v(x, t), (x, t) ∈ (Σκ × [0,+∞),

v(x, t) ≥ 0, (x, t) ∈ (Σκ\Ω)× [0,+∞),

v(x, 0) ≥ 0, x ∈ Ω.

(15)
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If cκ(x, t) is bounded, then

v(x, t) ≥ 0, (x, t) ∈ Ω× [0, T ], ∀ T > 0.

Proof: Because cκ(x, t) is bounded, we can select m < 0 such that m+ cκ(x, t) < 0. Let

ṽ(x, t) = emtv(x, t),

then ṽ(x, t) satisfies

∂ṽ

∂t
+ I(v)(−∆)

s
ṽ ≥ (m+ cκ(x, t))v(x̃, t), (x, t) ∈ Ω× [0,+∞).

The following statement states that

ṽ(x, t) ≥ inf
Ω
ṽ(x, 0) ≥ 0

is established in region Ω× [0, T ]. If it is false, there exists (x0, t0) ∈ Ω× (0, T ) such that

ṽ(x0, t0) = inf
Rn×[0,T ]

ṽ(x, t) < 0.

Then

(m+ c(x0, t0))ṽ(x0, t0) > 0.

However

∂v

∂t
(x0, t0) ≤ 0

and

I(v)(−4)
s
ṽ(x0, t0) = I(v)Cn,sP.V

∫
Rn

ṽ(x0, t0)− ṽ(y, t0)

|x0 − y|n+2sdy
< 0

contradicts the previous statement. Therefore, the theorem is proven.
Theorem 2.3. (Asymptotic strong maximum principle for antisymmetric functions)
For sufficiently large t̄, assume wκ(x, t) ∈

(
C1,1
loc (Σκ) ∩ L2s

)
× C1 ([t̄,+∞)) is bounded and satisfies

∂wκ
∂t (x, t) + I(u)(−∆)

s
wκ(x, t) = cκ(x, t)wκ(x, t), (x, t) ∈ Σκ × [t̄,+∞),

wκ(x, t) = −wκ(xκ, t), (x, t) ∈ Σκ × [t̄,+∞),
lim

t→+∞
wκ(x, t) ≥ 0, x ∈ Σκ,

(16)

where cκ(x, t) is bounded. Assume Υκ > 0 in some areas in Σκ, then Υκ(x) > 0 in Σκ.
Proof: Due to the definition of $, for any $ ∈ w(u), there exists tk such that as tk → +∞, wκ(x, tk)→ Υκ(x). Let

wk(x, t) = wκ(x, t+ tk − 1),

we obtain that

∂wk
∂t

(x, t) + I(u)(−∆)
s
wk(x, t) = ck(x, t)wk(x, t), (x, t) ∈ Σκ × [t̄,+∞)

where ck(x, t) = cκ(x, t+ tk − 1). By using the standard parabolic regularity estimate in [17], we can deduce that there exists
a subsequence wk(x, t) of function w∞(x, t) that uniformly converges to region Σκ × [0, 2]. As k → +∞, we have

∂wk
∂t

(x, t) + I(u)(−∆)
s
wk(x, t)→ ∂w∞

∂t
(x, t) + I(u)(−∆)

s
w∞(x, t),
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ck(x, t)→ c∞(x, t).

Since cκ is bounded, it can be obtained that c∞ is bounded. It can be inferred from Fernández-Real, Ros-Oton
[17] that w∞(x, t) is Hölder continuous in x and t. Especially for k → +∞,

wκ(x, tk) = wk(x, 1)→ w∞(x, 1) = Υκ(x).

Choose m > 0 such that

c∞(x, t) +m > 0.

We establish a new function

w̃(x, t) = emtw∞(x, t).

By the third condition of Theorem 2.3,

w̃(x, t) ≥ 0, (x, t) ∈ Σκ × [0, 2].

Thus,

∂w̃

∂t
(x, t) + I(w)(−∆)

s
w̃(x, t) = (m+ c∞(x, t))w̃(x, t) ≥ 0, (x, t) ∈ Σκ × [0, 2]. (17)

Because there is Υκ > 0 on Σκ, through continuity, there exists a subset D ⊂⊂ Σκ such that

Υκ(x) > c > 0, x ∈ D (18)

where C is a constant. Through the continuity of w∞(x, t), there exists 0 < ε0 < 1,

w∞(x, t) >
c

2
, (x, t) ∈ D × [1− ε0, 1 + ε0].

For simplicity, assuming

w∞(x, t) >
c

2
, D × [0, 2]. (19)

For any point x̄ on Σκ\D, choose δ = min{dist(x̄, D), dist(x̄, Tκ)} > 0, then Bδ(x̄) ⊂ Σκ\D. Next, we construct the lower
solution on region Bδ(x̄)× [0, 2]. Let

w(x, t) = χD
⋃
Dκ(x)w̃(x, t) + εη(t)g(x)

where Dκ is the reflection plane of region D with respect to plane Tκ. η(t) ∈ C∞(0, 2) is defined as

η(t) =

{
1 t ∈

[
1− ε0

2 , 1 + ε0
2

]
,

0 t /∈
[
1− ε0

2 , 1 + ε0
2

]
.

and

g(x) =
(
δ2 − |x− x̄|2

)s
+
−
(
δ2 − |x− x̄|κ2

)s
+
.

It is obvious that g(xκ) = −g(x),

(−4)sg(x) ≤ c0. (20)

This prove can be found in Chen [15]. By using the fractional Laplacian operator and (19), we can obtain that for any
fixed t ∈ [0, 2] and any fixed x ∈ Bδ(x̄),

(−∆)s
(
χD

⋃
Dκ(x)w̃(x, t)

)
≤ −c1. (21)
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This prove can also be found in Chen [15]. From D ⊂⊂ Σκ, continuity, (20) and (21), it can be concluded that for region
(x, t) ∈ Bδ(x̄)× [0, 2],

∂w(x,t)
∂t + I(u)(−∆)

s
w(x, t) = εη

′
(t)g(x) + I(u)(−∆)

s
(χD

⋃
Dκw̃(x,t)) + εη(t)(−∆)

s
g(x)

≤ εη
′
(t)g(x)− c1 + εη(t)c0.

Choose ε > 0 to be sufficiently small such that for region (x, t) ∈ Bδ(x̄)× [0, 2],

∂w(x, t)

∂t
+ I(u)(−∆)

s
w(x, t) ≤ 0. (22)

Let v(x, t) = w̃(x, t)− w(x, t), we can derive that v(x, t) = −v(xκ, t). From (17) and (22), it can be concluded that

∂v(x, t)

∂t
+ I(u)(−∆)

s
v(x, t) ≥ 0

for region (x, t) ∈ Bδ(x̄)× [0, 2]. Because ∂v
∂t = ∂w̃

∂t −
∂w
∂t , I(u)(−∆)

s
v = I(w̃ − w)(−∆)

s
(w̃ − w). Then,

∂w̃

∂t
− ∂w

∂t
+ I(u)(−∆)

s
w̃ − I(u)(−∆)

s
w =

∂w̃

∂t
+ I(u)(−∆)

s
w̃ − (

∂w

∂t
+ I(u)(−∆)

s
w).

Similarly, according to the definition of w(x, t), there are

v(x, t) ≥ 0 and v(x, 0) ≥ 0, x ∈ Σκ

in region (Σκ\Bδ(x̄))× [0, 2].
By using asymptotic strong maximum principle for antisymmetric functions,

v(x, t) ≥ 0, (x, t) ∈ Bδ(x̄)× [0, 2].

It can be concluded that

v(x, t) = emtw∞(x, t)− εg(x)η(t) ≥ 0

in region (x, t) ∈ Bδ(x̄)× [0, 2]. Especially for

w∞(x, 1) ≥ e−mεg(x), x ∈ Bδ(x̄).

Since g(x̄) = δ2s,

Υκ(x̄) = w∞(x̄, 1) ≥ e−mεδ2s > 0. (23)

By considering the arbitrariness of x̄ in region Σκ\D, we can combine (18) and (23) to obtain

Υκ(x) > 0, x ∈ Σκ.

3. Asymptotic Symmetry of Solutions on the Unit Sphere
Let

Ωκ = Σκ
⋂
B1(0) = {x ∈ B1(0)|x1 < κ}.

Using

∂u

∂t
(x, t) +

(
a+ b

∫
Rn

∣∣(−∆)
s
2u(x, t)

∣∣2dx) (−∆)
s
u(x, t) = f(t, u(x, t)),
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and I(u) = I(uκ), we have

∂uκ(x, t)

∂t
(x, t) +

(
a+ b

∫
Rn

∣∣(−∆)
s
2uκ(x, t)

∣∣2dx) (−∆)
s
uκ(x, t) = f(t, uκ(x, t))

and

−∂u(x, t)

∂t
(x, t)−

(
a+ b

∫
Rn

∣∣(−∆)
s
2u(x, t)

∣∣2dx) (−∆)
s
u(x, t) = f(t, u(x, t)).

From the above, it can be inferred that

∂wκ(x, t)

∂t
(x, t) + I(u(x, t))(−∆)

s
wκ(x, t) = f(t, uκ(x, t))− f(t, u(x, t)).

Denote cκ(x, t) = f(t,uκ(x,t))−f(t,u(x,t))
uκ(x,t)−u(x,t) , then

∂wκ(x, t)

∂t
(x, t) + I(u(x, t))(−∆)

s
wκ(x, t) = cκ(x, t)wκ(x, t).

Therefore, {
∂wκ(x,t)

∂t + I(u(x, t))(−∆)
s
wκ(x, t) = cκ(x, t)wκ(x, t), (x, t) ∈ Ωκ × (0,+∞),

wκ(x, t) = −wκ(xκ, t), (x, t) ∈ Ωκ × (0,+∞).
(24)

Proof of theorem 1.1µ For any $ ∈ ω(u), if $(x) ≡
0, then this theorem is obvious. Without loss of generality, we
can assume that for any $ ∈ ω(u) in B1(0), $ 6≡ 0.

Step 1µFor κ > −1 and sufficiently close to −1, as well as
for all $ ∈ ω(u), x ∈ Ωκ. There is

Υκ(x) ≥ 0. (25)

The Lipschitz continuity of f makes cκ(x, t) bounded. For x ∈
Σκ\Ωκ and t ∈ (0,+∞),

wκ(x, t) ≥ 0.

Because u(x, t) = 0, we have (x, t) ∈ Bc1(0) ×
(0,+∞). For (x, t) ∈ Ωκ × (0,+∞). This combine (24) and
narrow region principles to derive (25).

Step 2µWe demonstrate that κ0 = sup{κ ≤ 0|Υu(x) ≥
0, ∀$ ∈ w(u), x ∈ Ωµ, µ ≤ κ} satisfies

κ0 = 0.

The following proves that Tκ0 can continue to move slightly
to the right when κ0 < 0. But it contradicts with the
definition κ0. Thus, κ0 ≥ 0. Since the definition κ0, for
any $ ∈ ω(u) and x ∈ Ωκ0

,

Υκ0
(x) ≥ 0.

Firstly, it is proven that there exists x$ ∈ Σκ0 such that

Υκ0(x$) > 0

for ∀$ ∈ ω(u). If it false, there is $̄ ∈ ω(u) such that

Ῡκ0
(x) = $̄κ0

(x)− $̄(x) ≡ 0

in Σκ0
. Similarly, through the external conditions of u, we

have $̄(x) ≡ 0 in Bc1(0) ∩ Σκ0
. Thus, there exists x0 ∈

B1(0) such that $̄(x0) = 0. For this $̄, there is tk such
that u(x, tk) → $(x̄) as tk → +∞. Through regularity
process,

∂u∞(x, t)

∂t
+ I(u)(−∆)

s
u∞(x, t) = f(t, u∞(x, t))

where u∞(x, 1) = $̄(x). Since u∞(x, t) ≥ 0, we conclude
that ∂u∞∂t (x0, 1) ≤ 0 and

(−∆)su∞(x0, 1) = Cn,sP.V

∫
B1(0)

−u∞(y, 1)

|x0 − y|n+2s dy < 0.

The last inequality holds because u∞(y, 1) 6≡
0 in B1(0). Thus, f̃(x, 1, u∞(x0, 1)) = f̃(x, 1, 0) < 0, This
contradicts the conditions of the Theorem. Thus, Υκ0(x$) >
0.

By applying the asymptotic strong maximum principle of
antisymmetric functions, for any $ ∈ ω(u), x ∈ Ωκ0

,

Υκ0
(x) > 0.

Therefore, for any small δ > 0 and any Υκ0 , there exists a
constant C$ > 0 such that

Υκ0(x) ≥ C$ > 0, x ∈ Ωκ0−δ. (26)

The following statement states that for all $ ∈ ω(u), there
exists a constant C0 such that

Υκ0
(x) ≥ C0 > 0, x ∈ Ωκ0−δ. (27)

Otherwise, there exists a sequence of function Υκk0
and a
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sequence of points xk ⊂ Ωκ0−δ such that

Υk
κ0

(xk) <
1

k
. (28)

Due to the compactness of C0(B1(0)), there
exists Υ0

κ0
and x0 ∈ Ωκ0−δ such that

Υk
κ0

(
xk
)
→ Υ0

κ0

(
x0
)

as k → +∞. By (28), we have

Υ0
κ0

(x0) = 0.

It contradicts with (26). Since $0 ∈ ω(u), (27) is true the
continuity of Υκ and κ. For any Υκ, there is ε$ > 0 such
that ∀κ ∈ (κ0, κ0 + ε$) in region x ∈ Ωκ0−δ ,

Υκ ≥
C0

2
> 0.

Through a compactness process similar to (27), we can
obtain that there exist consistent ε > 0 such that

Υκ(x) ≥ c0
2
> 0 (29)

for any Υκ in region x ∈ Ωκ0−δ , ∀κ ∈ (κ0, κ0 + ε). As a
result, for sufficiently large t,

wκ(x, t) ≥ 0

in region x ∈ Ωκ0−δ , ∀κ ∈ (κ0, κ0 + ε). Because δ > 0 is
small enough, by using (27), one can choose a sufficiently
small ε > 0 such that Ωκ\Ωκ0−δ .

Because κ ∈ (κ0, κ0 + ε) is a narrow region, we can obtain

Υκ(x) ≥ 0 (30)

for any x ∈ Ωκ\Ωκ0−δ by using asymptotic narrow region
principle. Combining (29) and (30), one can conclude that

Υκ(x) ≥ 0

for any x ∈ Ωκ, any κ ∈ (κ0, κ0 + ε) and any $ ∈ ω(u). It
contradicts with the definition κ0. Thus, we must have κ0 =
0. For any $ ∈ ω(u),

Υ0(x) ≥ 0, x ∈ Ω0

or for any $ ∈ ω(u)

$(−x1, . . . , xN ) ≤ $(x1, . . . , xN ) (31)

in region 0 < x1 < 1. Because the direction of x1 can
be chosen arbitrarily, (31) can deduce that $(x) is radially
symmetrical about the origin.

4. Asymptotic Symmetry of Solutions in
the Entire Space

In this section, we using moving plane method to prove
asymptotic symmetry of (1.5). Let Tκ, Σκ, xκ, uκ,wκ,$ and Υκ is
the symbol defined in the first section. By using the mean
value theorem,

cκ(x, t) = fu(t, ικ(x, t))

where ικ(x, t) is a value between uκ(x, t) and u(x, t). Then,

{
∂wκ(x,t)

∂t + I(u(x, t))(−∆)
s
wκ(x, t) = cκ(x, t)wκ(x, t), (x, t) ∈ Σκ × (0,+∞),

wκ(x, t) = −wκ(xκ, t), (x, t) ∈ Σκ × (0,+∞).
(32)

Proof of theorem 1.2µStep 1: we want to prove that

Υκ(x) > 0 (33)

for sufficiently small κ and ∀$ ∈ ω(u) in Σκ. The following
proof shows that

Υκ(x) ≥ 0 (34)

in Σκ for ∀$ ∈ ω(u).
Because (12), we have lim

|x|→+∞
u(x, t) = 0 for sufficiently

large t. Thus, by using the definition in (12), there exists R >
0 such that for sufficiently large t,

0 < u(x, t) < β.

Since the condition (G) : fu(t, 0) < −δ and fu is

continuous near u = 0, using the definition of continuous
function, there exists β

′
> 0 such that for any 0 ≤ η < β,

fu(x, t, η) < −δ. (35)

Choose β = β
′
, then for sufficiently large t,

0 < u(x, t) < β
′
. (36)

For points of wκ(x, t) < 0 and the definition of wκ,

uκ(x, t) ≤ ξ(x, t) ≤ u(x, t). (37)

Thus, for sufficiently large t and the points which
makewκ(x, t) < 0 in |x| > R, combining (35), (36) and (37), we
can conclude that

cκ(x, t) = fu(x, t, ξκ(x, t)) < −δ in|x| > R. (38)
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Due to (12), for sufficiently large t,

lim
|x|→+∞

wκ(x, t) = 0 (39)

for κ ∈ R. Therefore, let Ω = Σκ and we applying
asymptotic maximum principle near infinity forκ ≤ −R, one
can derive (34). Without loss of generality, assume there
exists $ ∈ ω(u) which is positive in some parts of Rn. For
all $ ∈ ω(u),

$(x) > 0

by using strong maximum principle.
To obtain (33), the strong maximum principle of

antisymmetric functions is required. We just need to prove
that Υκ is negative in some places. By the strong maximum
principle of antisymmetric functions, there exists Cr,$ >
0 such that for any r > 0(r < R), $ ∈ ω(u) andx ∈ Br(0),

$(x) ≥ Cr,$ > 0.

Since(12), for Cr,$ > 0, x ∈ Br(D
κ$ ), there is κ$ ≤

−R such that

$(x) ≤ Cr,$
2

.

Since the compactness of ω(u) in C0(Rn), one can
choose Cr,$ and κ$ are consistent regarding $. We denote
these as Cr and κ. Then for ∀$ ∈ ω(u),

Υκ(x) = $(x)−$κ(x) ≥ Cr
2
> 0, x ∈ Br(0κ). (40)

Because (33), (40) and cκ(x, t) is bounded, one can derive

that

Υκ(x) = $(x)−$κ(x) ≥ Cr
2
> 0

by using strong maximum principle. The first step has been
completed.

We will give the proof of asymptotic strong maximum
principle for antisymmetric function. For our aim, a lemma and
the proof of this lemma need to be provided in the following:

Lemma 4.1. Assume u is the positive solution of (11). It
also satisfies the condition (G) and lim

|x|→+∞
u(x, t) = 0 for

sufficiently large t. Assume for some $ ∈ ω(u) and$ 6≡ 0 or
we can assume

lim
t→+∞

‖ u(x, t) ‖L∞(Rn) > 0, (41)

then

lim
t→+∞

‖ u(x, t) ‖L∞(Rn) > 0. (42)

From the proof, it can be seen that if Rn in (42) and (41) are
replaced with any bounded field Ω or unbounded field, We can
also draw this conclusion.

By contradiction, if (42) is false, then there exists tk →
+∞ such that

‖u(x, tk)‖L∞(Rn) → 0.

Since (G), there is sufficently small ε0 > 0 such
that fu(t, η) < −δ for any 0 < η < ε0. In Rn, there
is k0 ∈ N for ε0 such that for any k ≥ k0,

u(x, tk) < ε0.

Now, we fix a tk(k ≥ k0) and let uk(x, t) = u(x, t +
tk). Then,

∂uk
∂t

+ I(uk)(−∆)
s
uk = f(x, t+ tk, uk), (x, t) ∈ Rn × (0,+∞).

If we can construct a supersolution ξ(t) such thatξ(t) ≥
u(x, t) and lim

|x|→+∞
ξ(t) = 0. Then it contradicts with (41).

We construct ξ(t). Let ξ(t) be the solution of the following
ordinary differential equation:{

dξ(t)
dt = f(t+ tk, ξ(t)) t ∈ (0,+∞)

ξ(0) = ε0.

Using mean value theorem,

f(t+ tk, ξ(t)) = fu(t+ tk, r(t))ξ(t), r(t) ∈ (0, ξ(t))

and f(t, 0) = 0. Since the solutions of the first order linear
homogeneous differential equation y

′
+ f(x)y = 0, ξ(t) =

ε0e
∫ t
0
fu(τ+tk,r(τ))dτ . Using (G) and t = 0, r(0) < ξ(0) =

ε0, one can conclude that

dξ

dt
(0) = fu(tk, r(0))ξ(0) < −σε(0) < −σε0.

Therefore, ξ(t) monotonically decreases near t = 0, and
for sufficiently small t > 0, 0 < r(t) < ξ(t) < ε0e

−σt <
ε0. Since F, Repeat the above steps for any t > 0, we have

0 < ξ(t) < ε0e
−σt, ∀t > 0.

Thus,

� t→ +∞, ξ(t)→ 0. (43)

Next, we compare ξ(t) and uk(x, t) in Rn ×
(0,+∞). Let v(x, t) = ξ(t)− uk(x, t), then
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{
∂v
∂t + I(u)(−∆)

s
v = cκ,k(x, t)v, (x, t) ∈ Rn × (0,+∞),

v(x, 0) ≥ 0, x ∈ Rn
(44)

where cκ,k(x, t) = f(t+tk,x,ξ(t))−f(t+tk,x,uk(x,t))
ξ(t)−uk(x,t) . Since

f(t, x, u) is Lipschitz continuous in the function uwith respect
to t and x, one can derive that cκ, k(x, t) is bounded. Using
maximum principle,

v(x, t) ≥ 0. (x, t) ∈ Rn × [0, T ], ∀T > 0.

Let T → +∞ and (43), we have u(x, T ) → 0. Thus, it
contradicts with (41).

The proof of the strong maximum principle is similar to
the proof of the strong maximum principle for antisymmetric
functions. Thus, it will not be proven here.

Step 2: Move the plane to its limit position. Let

κ−0 = sup{κ|Υµ(x) > 0, ∀$ ∈ ω(u), x ∈ Σµ, µ ≤ κ}.

Firstly, we prove
(i) At least some $(x) ∈ ω(u) are symmetric with the limit

plane Tκ− which means for some $(x) ∈ ω(u),

Υκ−0
(x) ≡ 0, x ∈ Σκ−0

. (45)

(ii) For any $ ∈ ω(u),

∂x1
$(x) > 0, x ∈ Σκ−0

.

By contradiction, if (45) is false, then one can prove that
there exists ε0 such that for all $ ∈ ω(u), x ∈ Σκ and ∀κ ∈
(κ−0 , κ

−
0 + ε0),

Υκ(x) > 0. (46)

For any $ ∈ ω(u), there is x$ ∈ Σκ−0
such

that Υκ−0
(x$) > 0. Since Υ−κ0

(x) ≥ 0 in Σκ−0
, we have

Υκ−0
> 0 (47)

for ∀x ∈ Σκ−0
and ∀$ ∈ ω(u) by using strong maximum

principle for antisymmetric function. Let R be R in (38).
Using (47) and the process of the second part for the
moving plane method in theorem (1.1), one can conclude
that there exists C0 > 0 and ε0 > 0 such that for x ∈
Σκ−0 −δ

∩BR(0), κ ∈ (κ0
−, κ0

− + ε0) and ∀$ ∈ w(u),

Υκ(x) ≥ C0

2
> 0 (48)

for sufficiently large t. Thus for x ∈ Σκ0
−−δ ∩BR(0), κ ∈

(κ0
−, κ0

− + ε0) and ∀$ ∈ ω(u),

wκ(x) ≥ 0.

By using (38), (39), κ ≤ −R, the boundness
of cκ(x, t), narrow theorem and comparison principle at
infinity. one have

Υκ(x) ≥ 0

for x ∈ Σκ0
−−δ ∩BR(0), κ ∈ (κ0

−, κ0
− + ε0) and ∀$ ∈

w(u). Combining (48) and (49),

Υκ(x) ≥ 0 (49)

for all $ ∈ ω(u), x ∈ Σκ, κ ∈ (κ0
−, κ0

− +
ε0) and ∀$ ∈ w(u). Then, Using strong maximum principle
for antisymmetric function, we have (46).

Next, we want to prove (ii). For any $ ∈ ω(u),

∂x1
$(x) > 0, x ∈ Σκ−0

.

We first give Hopf Lemma and proof for antisymmetric
function.

Lemma 4.2. Let wκ(x, t) ∈
(
C1,1
loc (Σκ) ∩ L2s ∩Hs

)
×

C1(0,+∞) is bounded and satisfies


∂wκ
∂t + I(u)(−∆)

s
wκ = cκ(x, t)wκ, (x, t) ∈ Σ̃κ × (0,+∞),

wκ(xκ, t) = −wκ(x, t), (x, t) ∈ Σ̃κ × (0,+∞),

lim
t→+∞

wκ(x, t) ≥ 0, x ∈ Σ̃κ

(50)

where for any sufficiently large t, lim
X→∂Σ̃κ

cκ(x, t) =

o

(
1

[dist(x,∂Σ̃κ)]
2

)
. If Υκ > 0 in some parts in Σκ, then

∂Υκ

∂v
(x) < 0

for any x ∈ ∂Σ̃κ where v is unit outer normal vector.

Proof: Analogous to the proof of the strong
maximum principle for antisymmetric function, without loss
of generality κ = 0, Σ̃κ = {x ∈ Rn|x1 > κ}, we only need
to prove

∂Υκ

∂x1
(0) > 0. (51)
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Let g(x) = x1ξ(x),

ξ(x) = ξ(|x|) =

{
1, |x| ≤ ε,
0, |x| ≥ 2ε

and 0 ≤ ι(x) ≤ 1, ι(x) ∈ C∞0 (B2ε(0)). Obviously, g(x) is an
antisymmetric function about plane T0 which means

g(−x1, x2, . . . xn) = −g(x1, x2, . . . , xn).

Let w(x, t) = χD
⋃
Dκ(x)w̃(x, t) + δη(t)g(x),

χD
⋃
Dκ(x) =

{
1, x ∈ D

⋃
Dκ,

0, x /∈ D
⋃
Dκ.

η(t) ∈ C∞0 ([1− ε0, 1 + ε0]) satisfies

η(t) =

{
1, t ∈ [1− ε0

2 , 1 + ε02],

0, t /∈ [1− ε0, 1 + ε0].

Since g(x) is C∞0 (B2ε(0)),

|(−∆)
s
g(x)| ≤ C0. (52)

For any t ∈ [0, 2] and any x ∈ B2ε(0)

⋂
Σ̃κ, using the

method in Chen [15],

(−∆)
s
(χD

⋃
Dκw̃(x, t)) ≤ −C1. (53)

By (52) and (53),

∂w(x, t)

∂t
+ I(u(x, t))(−∆)

s
w(x, t)

=
∂(χD

⋃
Dκ(x)w̃(x, t) + δη(t)g(x))

∂t
+ I(u(x, t))(−∆)

s
(χD

⋃
Dκ(x)w̃(x, t) + δη(t)g(x))

= δη
′
(t)g(x) + I(u(x, t))(−∆)

s
(χD

⋃
Dκ(x)w̃(x, t) + δη(t)g(x))

= δη
′
(t)g(x) + I(u(x, t))(−∆)

s
χD

⋃
Dκ(x)w̃(x, t) + I(u(x, t))(−∆)

s
(δη(t)g(x))

≤ δη
′
(t)g(x) + I(u(x, t))(−C1) + I(u(x, t))C0η(t)δ.

Because I(u) > 0, choose sufficiently small δ, then for
any (x, t) ∈ (B2ε(0)

⋂
Σ̃κ)× [0, 2],

∂w(x, t)

∂t
+ I(u(x, t))(−∆)

s
w(x, t) ≤ 0. (54)

Let v(x, t) = w̃(x, t) − w(x, t), then v(x, t) =
−v(xκ, t). Analogous to the proof of (3.34) in [18],

∂w̃

∂t
+ I(u)(−∆)

s
w̃ = (m+ c∞)w̃ ≥ 0 (55)

for (x, t) ∈ Σ̃κ × [0, 2]. Thus, by using(54) and (55),

∂v

∂t
+ I(u)(−∆)

s
ṽ ≥ 0

for (x, t) ∈ B̃2ε(0) ∩ Σ̃κ × [0, 2]. Since the definition
of w(x, t), v(x, t) ≥ 0 as (x, t) ∈

(
Σ̃κ\B2ε(0) ∩ Σ̃κ

)
×

[0, 2] and

v(x, 0) ≥ 0

for x ∈ Σ̃κ. Thus, applying the maximum principle for
antisymmetric function which means

v(x, 0) ≥ 0

for (x, t) ∈ (B2ε(0) ∩ Σ̃κ)× [0, 2]. We have

emtw∞(x, t)− δg(x)η(t) ≥ 0,

w∞(x, 1) ≥ e−mδg(x)

for (x, t) ∈
(
B2ε(0)

⋂
Σ̃κ

)
× [0, 2] and

w∞(x, 1) ≥ e−mδx1

for x ∈ Bε(0)
⋂

Σ̃κ. Since w∞(x, 1) ≡ 0, x ∈
T0 and w∞(0, 1) = 0.

w∞(x, 1)− 0

x1 − 0
≥ e−mδ > 0

for x ∈ Bε(0) ∩ Σ̃κ. We can derive that

∂Υκ

∂x1
(0) > 0.

Therefore,

∂Υκ

∂x1
(0) < 0

for x ∈ Σ̃κ.
Using Hopf lemma,

∂x1
Υκ(x)|x∈Tκ < 0

for ∀$ ∈ w(u). By

∂x1
Υκ(x)|x∈Tκ = ∂x1

$κ(x)|x∈Tκ − ∂x1
$(x)|x∈Tκ

= −2∂x1
$(x)|x∈Tκ ,
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one can derive that

∂x1
Υ(x)|x∈Tκ > 0, ∀$ ∈ w(u).

Thus, we have (51).
Step 3µAll w limit function are radially symmetric which

means for all $(x),

Υκ0
−(x) ≡ 0.

If we can prove

κ−0 = κ+
0 , (56)

then for all $(x), Υκ−0
(x) ≡ 0.

We prove (56) by contradiction in the following. Assume (56) is
false, then κ−0 < κ+

0 . For any κ ∈ (κ−0 , κ
+
0 ), we want to prove

Υ̂κ(x) > 0, x ∈ Σ̃κ (57)

for all ∀κ ∈ (κ−0 , κ
+
0 ) and

Ῡκ(x) < 0, x ∈ Σ̃κ. (58)

Since Ῡκ+
0
≡ 0, then Ῡκ(x) = $̄(xκ) − $̄(x) =

$̄(xκ+
0

) − $̄(x) < 0. The last inequality is known by Hopf
Lemma that on the set of x1 > κ+

0 , $̄ is decreasing with
respect to x1. Thus, one can conclude (58). Similarly, it can
be concluded that(57). By (58) and (57), for any compact
subset D ⊂⊂ Σ̃κ, there exists q > 0 such that

Υ̃κ(x) > q, x ∈ D̄, (59)

and

Ῡκ(x) < −q x ∈ D̄. (60)

Using $̂ and $̄ ∈ ω(u), there exists sequences {tn} and

{t̄n} of tn < t̄n such that

u(·, tn)→ $̂(·), u(·, t̄n)→ $̄(·).

By (59) and (60) , For sufficiently large n, x ∈ D̄, we
havewκ(x, tn) > q andwκ(x, t̄n) < −q in x ∈ D̄. Thus, there
is Tn ∈ (tn, t̄n) such that

wκ(x, t) > 0, x ∈ D̄, t ∈ [tn, Tn), (61)

and

wκ(·, Tn) has some points which are equal to 0 in ∂D. (62)

If it can be concluded that this contradicts with (62), then
we finish the third step of proof. Let

w̃(x, t) = e−m(t−tn)wκ(x, t),

then

L̃w̃ ≡ ∂w̃

∂t
+ I(u)(−∆)

s
w̃ − C̃(x, t)w̃

where C̃(x, t) = cκ(x, t)−m. We choose suitablem > 0 such
that

C̃(x, t) < 0.

By

∂u

∂t
+ I(u)(−∆)

s
u = f(x, t, u),

wκ
∂t

+ I(u)(−∆)
s
wκ = cκ(x, t)wκ.

Then,

L̃w̃ ≡ e−m(t−tn) ∂wκ
∂t

+ e−m(t−tn)(−m)wκ + I(u)(−∆)
s
(e−m(t−tn)wκ)− (cκ −m)e−m(t−tn)wκ

= e−m(t−tn) ∂wκ
∂t

+ I(u)(−∆)
s
(e−m(t−tn)wκ)− cκe−m(t−tn)wκ

= e−m(t−tn) ∂wκ
∂t

+ I(u)e−m(t−tn)−∆swκ − cκe−m(t−tn)wκ

= e−m(t−tn) ∂wκ
∂t

+ e−m(t−tn)(I(u)(−∆)
s
wκ − cκwκ)

= 0.

Thus Ĩw̃ = 0. Let

χD0(x) =

{
1, x ∈ D0,

0, x /∈ D0,

w = χD0(x)w̃(x, t) + 2(φδ − 1)εne
−(m+θ)(t−tn). Then,
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L̃w =
w

t
+ I(u)(−∆)

s
w − c̃(x, t)w

= χD0
(x)

∂w̃

∂t
+ (2φδ − 1)εne

−(m+θ)(t−tn) − (m+ θ)

+I(u)
(

(−∆)
s
(
χ∞(x)w̃ + (2φδ − 1)εne

−(m+θ)(t−tn)
))

−c̃(x, t)
(
χD(x)w̃ + (2φδ − 1)εne

−(m+θ)(t−tn)
)

= (2φδ − 1)εne
−(m+θ)(t−tn) − (m+ θ) + I(u)

(
(−∆)

s
(χ∞(x)w̃

+I(u)(−∆)
s
(

(2φδ − 1)εne
−(m+θ)(t−tn)

))
− c(2φδ − 1)εne

−(m+θ)(t−tn)

≤ (2φδ − 1)εne
−(m+θ)(t−tn) − (m+ θ) + I(u)(−∆)

s
(χ∞(x)w̃)

+I(u)2aδεne
−(m+θ)(t−tn) − C1εne

−(m+θ)(t−tn)

≤ I(u)(−∆)
s
(χ∞(x)w̃) + c1εne

−(m+θ)(t−tn).

By Chen [15], one can conclude

(−∆)
s
(χ∞(x)w̃) ≤ −C2e

−(m+θ)(t−tn)

and

I(u)(−∆)
s
(χ∞(x)w̃) ≤ −C2I(u)e−(m+θ)(t−tn).

Then,

L̃w(x, t) ≤ −C2I(u)e−(m+θ)(t−tn) + c1εne
−(m+θ)(t−tn) = (c1εn − c2I(u))e−(m+θ)(t−tn).

For sufficiently large n,

L̃w(x, t) ≤ 0.

Thus for (x, t) ∈ Bδ(x̄)× [tn, Tn], L̃(w(x, t)− w̃(x, t)) ≤ 0. By maximum principle, for (x, t) ∈ Bδ(x̄)× [tn, Tn],

w(x, t) ≤ w̃(x, t).

In the case of boundary,

w̃(x̄, Tn) ≥ w(x̄, Tn) = εne
−(m+θ)(Tn−tn).

Thus,

wκ(x̄, Tn) ≥ εne−θ(Tn − tn) > 0

contradict with (62).
In order to prove(ii)through the principle of maximum principle of antisymmetric function which means there exists D0 ⊂⊂

D and constant C0 > 0 such that

wκ(x, t) ≥ e−θ(t−tn)C0, tn ≤ t ≤ Tn, x ∈ D0.

It is required that

wκ(x, t) ≥ Υ(x, t) x ∈ D, tn ≤ t ≤ Tn

which means

(wκ −Υ) ≥ 0.

The key lies in verifying the conditions ∂v
∂t + I(u)−∆sv(x, t) ≥ cκ(x, t)v(x, t) for the maximum principle for antisymmetric
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functions. We can refer to Chen [15] for the verification of other conditions. Therefore, it is necessary to verify ∂(wκ−Υ)
∂t +

I(u)−∆s(wκ −Υ)− cκ(x, t)(wκ −Υ) ≥ 0 which means

Lκwκ(x, t)− LκΥ(x, t) ≥ 0.

Since Lκwκ(x, t) = ∂wκ
∂t + I(u)(−∆)swκ(x, t) − Cκ(x, t)wκ(x, t) = 0, it is necessary to verify LκΥ(x, t) ≤ 0 where

Υ(x, t) denote q ι(x,t)
‖ι(x,tn)‖L∞(D)

. Thus, we only need differential inequality

Lκι(x, t) ≤ 0, ∀x ∈ D, tn ≤ t ≤ Tn.

It will be proved in the following:

Lκι(x, t) =
∂ι

∂t
(x, t) + I(u)−∆sι(x, t)− cκ(x, t)ι(x, t)

= −θe−θ(t−tn) (w̃µ(x, t)− τh) + e−θ(t−tn) ∂w̃µ
∂t

+I(u)(−∆)
s
(
e−θ(t−tn)(w̃µ − τh)

)
− cκ(x, t)e−θ(t−tn)(w̃µ(x, t)− τh)

= −θe−θ(t−tn)

(
w̃µ(x, t)− τh+ e−θ(t−tn) ∂w̃µ

∂t

)
+I(u)e−θ(t−tn)(−∆)

s
((w̃µ − τ(−∆)

s
h))− cκ(x, t)e−θ(t−tn)(w̃µ(x, t)− τh)

= e−θ(t− tn)− θw̃µ + θτ +
∂wµ
∂t

+ I(u)−∆sw̃µ − I(u)(−∆)
s
wµ + I(u)(−∆)

s
wµ

−τ(−∆)
s
h(x)− cκwµ + τcκ

= e−θ(t− tn)− θw̃µ + θτ + I(u)[−∆sw̃µ − (−∆)
s
wµ]− τ(−∆)

s
h(x) + (cµ − cκ)wµ

+τcκ.

By Chen [15],

(−∆)sw̃µ − (−∆)
s
wµ < 0, x1 > µ, t > 0.

Thus I(u) ((−∆)
s
w̃µ − (−∆)

s
wµ) < 0 and

Lκι(x, t) ≤ e−θ(t−tn)[−θ + cµ − cκ]wµ + τ(θ + cκ)− τ(−∆)
s
h.

Finally, by Chen [15], one can derive that

Lκι(x, t) ≤ 0, µ < x1 < d, tn ≤ t ≤ Tn

and

Lκι ≤ 0, ∀x ∈ D, tn ≤ t ≤ Tn.

5. Conclusion

In this article, we establish different narrow region
principles and various maximum principles to apply moving
planes to study the symmetry of positive solutions on the
unit sphere and in the entire space. The ideas and methods
presented in this article have significant value in studying the
properties of solutions to partial differential equations.
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