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Abstract: This paper introduces a finite difference scheme derived from the classical Crank-Nicolson method. The proposed
scheme offer an improved spatial accuracy while maintaining the second-order temporal accuracy of the original Crank-Nicolson
scheme. The higher order of spatial accuracy leads to improved convergence properties. The consistency and stability of the new
scheme are analyzed using Taylor series expansion and von Neumann stability analysis, respectively. To validate the efficiency
of the proposed scheme, it is implemented in MATLAB to solve the one-dimensional heat equation. To explore the versatility of
the scheme, it is further extended to solve the advection-diffusion equation. Numerical experiments demonstrated on diffusion
equation show that the new scheme compares favorably with existing methods in terms of convergence and accuracy. The results
of the numerical solutions are presented in tabular form to highlight the accuracy and rates of convergence of the method. In
addition, graphical plots of the numerical solutions are provided at different time levels to visualize the behavior of the solution
over time and to illustrate the consistency between the numerical and analytical results. These visual and numerical comparisons
further emphasize the reliability and precision of the proposed scheme. The combination of improved spatial resolution, solid
theoretical foundation, and practical implementation demonstrates the schemeâs potential for solving time-dependent partial
differential equations efficiently and accurately. This makes the scheme a valuable contribution to the field of numerical methods
for parabolic-type equations.

Keywords: Finite Difference Method, Convergence, Taylor’expansion, von-Newmanns Stability, Heat Equation,
Advection-diffusion Equation

1. Introduction

Partial differential equations (PDEs) are fundamental
tools in modeling a wide range of physical phenomena.
Numerical methods such as finite difference and finite
element methods, are essential for obtaining approximate
solutions to these equations, especially when analytical
solutions are not available. The Crank-Nicolson method
is a popular choice for solving parabolic PDEs due to its
second order accuracy in both space and time. However, it
can be computationally expensive, particularly for large-scale

problems. Recent advancement in numerical methods have led
to the development of more efficient and accurate schemes.

In this work, we present a high order finite difference
scheme derived from the classical Crank-Nicolson method.
This scheme leverages a specific spatial discretization
technique to achieve a higher order accuracy, surpassing
other finite difference methods. By carefully analyzing
the dispersion and dissipation properties of the scheme,
its potential to accurately capture other problems such as
advection-diffusion problems is also demonstrated, which are
commonly used to capture transport phenomena.
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To evaluate the performance of the proposed scheme, it is
compared with the results obtained by [1]. By applying both
schemes to a one-dimensional heat equation and advection-
diffusion equation respectively, it is shown that the scheme
offers an improvement in terms of accuracy, convergence
and computational efficiency. Recently, different authors
have worked on some interesting aspect of this method.
[1], worked on finite difference method and finite element
method that uses the Crank-Nicolson method to solve one
dimensional heat equation. They compare the results of both
methods and discovered that the finite element method that
uses Crank-Nicolspn performs better than the other. [2] proves
the stability of modified Crank-Nicoldon scheme derived by
[1], they shows that the method is stable. [3], worked on
the a practical method for the evaluation of the solution of
partial differential equations. The results performed better and
converges faster. Convergence of finite difference methods
for partial differential equation was considered under temporal
refinement was considered in [4], the results obtained shows
that the method is effective and accurate. [5] proved the
convergence and stability of a finite difference scheme, they
results obtained shows that the scheme is stable and converges.
[6] worked on the convergence of a finite difference method
for convection-diffusion equations using singular solutions,
results obtained shows the method converges faster. Modified
Iterated Crank-Nicolson was used to solve parabolic partial
differential equations, there method results into an improved
accuracy. [8], worked on Crank-Nicolson and their modified

scheme to find the solution of the Convection-Reaction-
Diffusion Equation. There method proves to be accurate and
efficient for the problem. [9-14] are interesting and relevant
texts on finite difference methods.

2. Problem Definition and Methodology

The following heat and advection-diffusion equations given
by

∂ψ

∂t
− α∂

2ψ

∂x2
= 0 (1)

together with
∂ψ

∂t
+ v

∂ψ

∂x
=
∂2ψ

∂x2
(2)

with initial conditions

ψ(x, 0) = ψ(x)

and the boundary conditions

ψ(0, t) = 0 = ψ(1, t)

are considered. The time derivative is approximated using
forward difference, the first order spatial derivative is
approximated using central difference as well as the second
order spatial derivatives. The generalized variable-weighted
implicit approximation given by

ψi,j+1 − ψi,j
k

− 1

h2
[
θ(δ2ψ)i,j + (1− θ)(δ2ψ)i,j+1

]
= 0, 0 ≤ θ ≤ 1 (3)

is employed, where

(δ2ψ)i,j+1 =
ψi+1,j+1 − 2ψi,j+1 + ψi−1,j+1

h2

and
(δ2ψ)i,j =

ψi+1,j − 2ψi,j + ψi−1,j
h2

is considered. In equation (3), the following special cases
arises when θ = 0, 12 and 1, it becomes explicit, Crank-
Nicolson and Implicit respectively, this cases has been
considered by different authors. For the purpose of this work,
the case where θ =

(
1
2 −

1
12r

)
will be considered.

2.1. Derivation of the Proposed Finite Difference Scheme I

Substituting θ = ( 12 −
1

12r ) into equation (3) gives

ψi,j+1 − ψi,j = r

[(
1

2
− 1

12r

)
(ψi+1,j − 2ψi,j + ψi−1,j)

]
+ r

[(
1

2
+

1

12r

)
(ψi+1,j+1 − 2ψi,j+1 + ψi−1,j+1)

]
(4)

On simplifying we get

ψi,j+1 − ψi,j =
1

2
rψi+1,j − rψi,j +

1

2
rψi−1,j −

1

12
ψi+1,j +

1

6
ψi,j −

1

12
ψi−1,j

+
1

2
rψi+1,j+1 − rψi,j+1 +

1

2
rψi−1,j+1 +

1

12
ψi+1,j+1 −

1

6
ψi,j+1 +

1

12
ψi−1j + 1 (5)

separating terms with future steps and present time steps gives(
7

6
+ r

)
ψi,j+1 −

1

2
rψi+1,j+1 −

1

12
ψi+1,j+1 −

1

2
rψi−1,j+1
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=

(
7

6
− r
)
ψi,j +

1

2
rψi+1,j −

1

12
ψi+1,j +

1

2
rψi−1,j −

1

12
ψi−1,j (6)

re-arranging equation (7) gives (
7

6
+ r

)
ψi,j+1 −

(
1

2
r +

1

12

)
(ψi+1,j+1 + ψi−1,j+1)

=

(
7

6
− r
)
ψi,j +

(
1

2
r − 1

12

)
(ψi+1,j + ψi−1,j) (7)

Equation (7) is our proposed finite difference scheme and can be written in the following matrix form

7
6 + r −( 12r +

1
12 ) 0 . . . 0

−( 12r +
1
12 )

7
6 + r −( 12r +

1
12 ) . . . 0

0 −( 12r +
1
12 )

7
6 + r

. . . 0
...

...
. . . . . . −( 12r +

1
12 )

0 0 0 0 7
6 + r




ψ1,j+1

ψ2,j+1

ψ3,j+1

...
ψi,j+!



=



7
6 − r ( 12r +

1
12 ) 0 . . . 0

( 12r +
1
12 )

7
6 − r ( 12r +

1
12 ) . . . 0

0 −( 12r +
1
12 )

7
6 − r

. . . 0
...

...
. . . . . . ( 12r +

1
12 )

0 0 0 ( 12r +
1
12 )

7
6 − r




ψ1,j

ψ2,j

ψ3,j

...
ψi,j

 (8)

2.2. Derivation of the Proposed Finite Difference Scheme
II

For the derivation of the advection-diffusion equation, we
consider the following equation

∂ψ

∂t
+ v

∂ψ

∂x
= α

∂2ψ

∂x2
(9)

using the generalized equation (3), and substituting the value
of θ into it gives

ψi,j+1 − ψi,j
k

=(
1

2
− 1

12r

)
(ψi+1,j − 2ψi,j + ψi−1,j)

+

(
1

2
+

1

12r

)
(ψi+1,j+1 − 2ψi,j+1 + ψi−1,j+1)

+v
ψi+1,j − ψi−1,j

2h
(10)

On simplifying gives

2h(ψi,j+1 − ψi,j) + v(ψi+1,j − ψi−1,j)
2hk

=
1

2
ψi+1,j − ψi,j+

1

2
ψi−1,j −

1

12
ψi+1,j +

1

6r
ψi,j

− 1

12r
ψi−1,j +

1

2
ψi+1,j+1 − ψi,j+1

+
1

2
ψi−1,j+1+

1

12r
ψi+1,j+1−

1

6r
ψi,j+1+

1

12r
ψi−1,j+1 (11)

simplifying equation (11) further using r = k
h2 and α = v kh

gives

ψi,j+1−ψi,j+
α

2
ψi+1,j−

α

2
ψi−1,j =

1

2
ψi+1,j−ψi,j+

1

2
ψi−1,j

− 1

12
ψi+1,j +

1

6r
ψi,j

− 1

12r
ψi−1,j +

1

2
ψi+1,j+1 − ψi,j+1+

+
1

2
ψi−1,j+1+

1

12r
ψi+1,j+1−

1

6r
ψi,j+1+

1

12r
ψi−1,j+1 (12)

separating terms with future steps and present time steps gives(
7

6
+ r

)
ψi,j+1 −

(
r

2
+

1

12

)
[ψi+1,j+1 + ψi−1,j+1]

=

(
7

6
− r
)
ψi,j +

(
r

2
+

1

12

)
[ψi+1,j + ψi−1,j ]

+
(
−α
2
ψi+1,j +

α

2
ψi−1,j

)
(13)

Equation (13) is the proposed finite difference scheme for
the advection-diffusion equation.

2.3. Order and Consistency of Finite Difference Scheme I

The derivation of the order of finite difference scheme I
employs Taylor’s series expansion for the local truncation
error. The procedure follows from the approximation of the
following:
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1. ψi+1,j = ψi,j + h∂ψ∂x + 1
2h

2 ∂
2ψ
∂x2 + 1

6h
3 ∂

3ψ
∂x3 + ...

2. ψi−1,j = ψi,j − h∂ψ∂x + 1
2h

2 ∂
2ψ
∂x2 − 1

6h
3 ∂

3ψ
∂x3 + ...

3. ψi,j+1 = ψi,j + k ∂ψ∂t + 1
2k

2 ∂
2ψ
∂t2 + 1

6k
3 ∂

3ψ
∂t3 + ...

4. ψi+1,j+1 = ψi,j + h∂ψ∂x + k ∂ψ∂t + 1
2h

2 ∂
2ψ
∂x2 + 1

2k
2 ∂

2ψ
∂t2 + 1

6h
3 ∂

3ψ
∂x3 + 1

6k
3 ∂

3ψ
∂t3 + ...

5. ψi−1,j+1 = ψi,j − h∂ψ∂x + k ∂ψ∂t −
1
2h

2 ∂
2ψ
∂x2 + 1

2k
2 ∂

2ψ
∂t2 −

1
6h

3 ∂
3ψ
∂x3 + 1

6k
3 ∂

3ψ
∂t3 + ...

substituting the Taylor’s expansion into equation (4), on simplifying and canceling common terms, the leading order truncation
error becomes

Tij =

(
∂ψ

∂t
− ∂2ψ

∂x2

)
+

1

2
k
∂2ψ

∂t2
+

1

6
k2
∂2ψ

∂t3
− 1

12
h2
∂4ψ

∂x4
− 1

180
h4
∂6ψ

∂x6
(14)

comparing with the original equation (1) and taking limit as
h, k → 0 equation (14) gives

∂ψ

∂t
− ∂2ψ

∂x2
= 0

showing that the scheme is consistent.
Considering the generalized scheme (3) with the condition

0 ≤ r ≤ 1, then equation (14) can be written as

Tij =
1

12
h2
(
6
k

h2
∂2ψ

∂t2
− ∂4ψ

∂x4

)
+O(k2) +O(h4)

showing that the order of the scheme is O(k2) +O(h4)

2.3.1. Stability of the Proposed Finite Difference Scheme I
Using von-Newmann Method

The stability of the method is investigated using von-
Newmann’s method. von-Newmann’s stability method is the
most widely used procedure for determining stability of a
finite difference approximation. The method introduces an
initial line of errors as represented by finite Fourier series and
considers the growth of these errors as x increases.

Given equation (7), let

Ei,j = eγihezβjk = ξezβjk (15)

substituting (15) into (7) gives

(
7

6
+ r

)
ξi+1ezβjk −

(
r

2
+

1

12

)
(ξi+1ezβ(j+1)k + ξi+1ezβ(j−1)k)

=

(
7

6
− r
)
ξiezβjk +

(
r

2
− 1

12

)
(ξiezβ(j+1)k + ξiezβ(j−1)k) (16)

using some basic mathematics principles and factoring common terms, equation (16) results to[(
7

6
+ r

)
−
(
r

2
− 1

12

)
(ezβk + e−zβk)

]
(17)

Applying the following trigonometry identities

ezβk + e−zβk = 2 cosβk

and

1− cosβk = 2 sin2
(
βk

2

)
in equation (17) gives(

7

6
+ r

)
+

[
−r − 1

6
+

(
6r + 1

3

)
sin2

(
βk

2

)]
ξ =

[(
7

6
− r
)
+ r − 1

6
−
(
6r − 1

3

)
sin2

(
βk

2

)]
(18)

from algebra we have that

ξ =
1−

(
6r−1

3

)
sin2

(
βk
2

)
1 +

(
6r+1

3

)
sin2

(
βk
2

) (19)

Equation (19) shows that the proposed scheme is
unconditionally stable.

2.4. Order of the Proposed Finite Difference Scheme II

The derivation of the order of finite difference scheme II
employs also Taylor’s series expansion for the local truncation
error. The procedure follows is the same as that described for
the proposed finite difference scheme I. Expanding expand ψ
in Taylor series about the point (xi, tj), time expansion gives
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ψi,j+1 = ψi,j + kut +
k2

2
ψtt +O(k3),

ψi±1,j+1 = ψi,j ± hψx +
h2

2
ψxx ±

h3

6
ψxxx +

h4

24
ψxxxx + kψt +O(k2, h5).

Similarly, spatial expansion gives

ψi±1,j = ψi,j ± hψx +
h2

2
ψxx ±

h3

6
ψxxx +

h4

24
ψxxxx +O(h5),

ψi+1,j + ψi−1,j = 2ψi,j + h2ψxx +
h4

12
ψxxxx +O(h6),

ψi+1,j − psii−1,j = 2hpsix +
h3

3
ψxxx +O(h5).

On substituting into the scheme we get

LHS =

(
7

6
+ r

)(
ψi,j + kψt +

k2

2
ψtt

)
−
(
r

2
+

1

12

)(
2ψi,j + h2ψxx +

h4

12
ψxxxx + 2kψt

)
+O(k2, h4).

Also,

RHS =

(
7

6
− r
)
ψi,j +

(
r

2
+

1

12

)
(
2ψi,j + h2ψxx +

h4

12
ψxxxx

)
− αhψx −

αh3

6
ψxxx +O(h4).

Simplifying and canceling of common terms, the leading
order truncation error becomes:

LHS− RHS = kψt − h2ψxx + αhψx +O(k2, h2),

Hence, the scheme approximates the advection-diffusion
equation with truncation error of the form:

O(k2) +O(h2),

Showing that it is second order accurate both in time and
space.

2.4.1. Stability of the Proposed Finite Difference Scheme
II Using von-Newmann Method

Following the procedure in section (2.3.1), the amplification
factor is given by

ξ =
1−

(
6r−1

3

)
sin2

(
βk
2

)
− αsinbk

1 +
(
6r+1

3

)
sin2

(
βk
2

) (20)

Showing that the amplification factor is unconditionally
stable.

3. Numerical Experiment
In order to demonstrate the efficiency and accuracy of

scheme I, equation (1) together with the initial condition
ψ(x, 0) = x2 + x and boundary conditions ψ(0, t) = 0 =
ψ(1, t) are considered. For the problem, mesh size h =
0.1, and time step k = 0.01 are considered. To test for

convergence, the time step is refined to be k = 0.001. The
numerical solutions of the problem are presented in table 1 for
k = 0.01, table 2 is the numerical solutions at k = 0.001 while
table 3 and 4 present the exact solutions for both k = 0.01 and
k = 0.001 respectively.

3.1. Solutions Using the Proposed Finite Difference
Methods

Figure 1. Solution of temperature distribution at k = 0.001.
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Figure 2. Solution of proposed scheme I at t = 1 for t = 0.001. Figure 3. Solution graph at different time.

Table 1. Numerical solutions at k = 0.01, h = 0.1.

t x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 0 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900 0.0000

0.01 0 0.0758 0.1417 0.1905 0.2202 0.2301 0.2202 0.1905 0.1417 0.0758 0.0000

0.02 0 0.0708 0.1329 0.1800 0.2089 0.2187 0.2089 0.1800 0.1329 0.0708 0.0000

0.03 0 0.0663 0.1250 0.1700 0.1981 0.2076 0.1981 0.1700 0.1250 0.0663 0.0000

0.04 0 0.0623 0.1177 0.1607 0.1877 0.1969 0.1877 0.1607 0.1177 0.0623 0.0000

0.05 0 0.0587 0.1110 0.1519 0.1778 0.1866 0.1778 0.1519 0.1110 0.0587 0.0000

0.06 0 0.0553 0.1048 0.1437 0.1683 0.1768 0.1683 0.1437 0.1048 0.0522 0.0000

0.07 0 0.0522 0.0990 0.1359 0.1593 0.1674 0.1593 0.1359 0.0990 0.0522 0.0000

0.08 0 0.0493 0.0935 0.1285 0.1508 0.1584 0.1508 0.1285 0.0935 0.0493 0.0000

0.09 0 0.0465 0.0884 0.1215 0.1427 0.1500 0.1427 0.1215 0.0884 0.0465 0.0000

Table 2. Numerical solutions for refined time step size at k = 0.001, h = 0.1.

t x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 0 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900 0.0000

0.01 0 0.0882 0.1580 0.2080 0.2380 0.2480 0.2380 0.2080 0.1580 0.0882 0.0000

0.02 0 0.0860 0.1554 0.2053 0.2353 0.2453 0.2353 0.2053 0.1554 0.0860 0.0000

0.03 0 0.0840 0.1529 0.2027 0.2327 0.2427 0.2327 0.2027 0.1529 0.0840 0.0000

0.04 0 0.0821 0.1504 0.2001 0.2300 0.2400 0.2300 0.2001 0.1504 0.0821 0.0000

0.05 0 0.0804 0.1480 0.1975 0.2274 0.2373 0.2974 0.1975 0.1480 0.0804 0.0000

0.06 0 0.0788 0.1456 0.1949 0.2247 0.2347 0.2247 0.1949 0.1456 0.0788 0.0000

0.07 0 0.0773 0.1434 0.1923 0.2221 0.2320 0.2221 0.1923 0.1434 0.0773 0.0000

0.08 0 0.0759 0.1411 0.1898 0.2194 0.2294 0.2194 0.1898 0.1411 0.0759 0.0000

0.09 0 0.0746 0.1390 0.1873 0.2168 0.2267 0.2168 0.1873 0.1390 0.0746 0.0000

3.2. Exact Solutions

Applying the variable separable method on equation (1) together with the initial and boundary conditions given, we get

ψ(x, t) =

∞∑
n=1

(
−4
n3π3

)
(−1n − 1)sin(nπx)e(−n

2π2t)

The values of u(xi, tj), i = 1, 2, 3, ..., 10 for k = 0.01 and k = 0.001 is given in tables 3 and 4 respectively.
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Table 3. Exact Solutions at k = 0.01.

t x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 0 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900 0.0000

0.01 0 0.0756 0.1411 0.1902 0.2200 0.2300 0.2200 0.1902 0.1411 0.0756 0.0000

0.02 0 0.0668 0.1260 0.1718 0.2005 0.2102 0.2005 0.1718 0.1260 0.0668 0.0000

0.03 0 0.0598 0.1134 0.1554 0.1821 0.1912 0.1821 0.1554 0.1134 0.0598 0.0000

0.04 0 0.0539 0.1024 0.1407 0.1652 0.1736 0.1652 0.1407 0.1024 0.0539 0.0000

0.05 0 0.0488 0.0927 0.1275 0.1497 0.1574 0.1497 0.1275 0.0927 0.0488 0.0000

0.06 0 0.0441 0.0839 0.1155 0.1357 0.1427 0.1357 0.1155 0.0839 0.0441 0.0000

0.07 0 0.0400 0.0760 0.1046 0.1230 0.1293 0.1230 0.1046 0.0760 0.0400 0.0000

0.08 0 0.0362 0.0689 0.0948 0.1114 0.1171 0.1114 0.0948 0.0689 0.0362 0.0000

0.09 0 0.0328 0.0624 0.0859 0.1009 0.1061 0.1009 0.0859 0.0624 0.0328 0.0000

Table 4. Exact Solutions at k = 0.001.

t x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 0 0.0900 0.1600 0.2100 0.2400 0.2500 0.2400 0.2100 0.1600 0.0900 0.0000

0.01 0 0.0880 0.1580 0.2080 0.2380 0.2480 0.2380 0.208- 0.1580 0.0880 0.0000

0.02 0 0.0861 0.1560 0.2060 0.2360 0.2460 0.2360 0.2060 0.1560 0.0861 0.0000

0.03 0 0.0845 0.1540 0.2040 0.2340 0.2440 0.2340 0.2040 0.1540 0.0845 0.0000

0.04 0 0.0829 0.1520 0.2020 0.2320 0.2420 0.2320 0.2020 0.1520 0.0829 0.0000

0.05 0 0.0815 0.1501 0.2000 0.2300 0.2400 0.2300 0.2000 0.1501 0.0815 0.0000

0.06 0 0.0802 0.1482 0.1980 0.2280 0.2380 0.2280 0.1980 0.1482 0.0802 0.0000

0.07 0 0.0789 0.1464 0.1960 0.2260 0.2360 0.2260 0.1960 0.1464 0.0789 0.0000

0.08 0 0.0778 0.1446 0.1941 0.2240 0.2340 0.2240 0.1941 0.1446 0.0778 0.0000

0.09 0 0.0767 0.1428 0.1921 0.2220 0.2230 0.2220 0.1921 0.1428 0.0767 0.0000

Table 5. Absolute Error.

Numerical Solutions Exact Solutions Absolute Error

0.2500 0.2500 0.0000

0.2480 0.2480 0.0000

0.2453 0.2460 0.0007

0.2427 0.2440 0.0013

0.2400 0.2420 0.0020

0.2373 0.2400 0.0027

0.2347 0.2380 0.0033

0.2320 0.2360 0.0040

0.2294 0.2340 0.0046

4. Discussion

Here, the proposed finite difference scheme is compared
with [1]. The comparison was conducted for k = 0.001.
Clearly from table 5, it is observed that the numerical solutions
demonstrate convergent behavior towards the exact solution.
The error are minimal and increases gradually, suggesting a
consistent and stable numerical scheme. We also display the
temperature distributions graph at specific time in figure (3).
The results of the numerical solutions are presented in tables
(1) and (2) at k = 0.01 and k = 0.001 respectively. Similarly,
the exact solutions are presented in tables (3) and (4) also for
k = 0.01 and k = 0.001. Figures (1) and (2) presents the 3D

graphical solutions of the scheme at k = 0.01 and k = 0.001
respectively. The smoothness of the solution confirms that the
numerical solutions approximate the analytical solutions.

5. Conclusion
From the results, it is observed that the scheme gives a good

approximates solution and converges faster when compared
with other implicit schemes in literature. Also, comparing
with [1], it is observed that the proposed scheme performs well
and also converges faster to the exact solutions. Hence, we
conclude that the scheme can be used for solving problems
on heat equations, advection-diffusion equations and other
engineering problems.
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