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Abstract 

To predict bread wheat genetic potential across environments and adaption in low moisture stress wheat growing areas of 

Ethiopia. Multi-location trials were conducted in Ethiopia from 2020 to 2021 in main seasons. A total of advanced genotypes 

including the checks were arranged in randomized complete block design in a rectangular (row x column) array of plots with two 

replications. The results showed that, under the linear mixed model, the spatial and factor analytic models were efficient methods 

of data analysis for this study. By ranking average best linear unbiased prediction (BLUPs) within clusters, the 13 bread wheat 

environments were clustered into three mega environments (C1, C2, and C3) for the trait grain yield. This method used as a 

selection indicator, assisting in the selection of superior and adaptable types. The predicted performance of genotypes based on 

BLUP values averaged across correlated settings of C1 and C2, eliminating C3 due to low genetic correlation with the other trials 

and low genetic variation. Based on these clusters, the genotypes with the highest potential EBW192350 and EBW192369 were 

selected for a subsequent verification study that might potentially use them as a released variety. For genetic variance, the 

estimates for variance component parameters ranged from 0.069 to 2.896 and error variance, they ranged from 0.175 to 1.002. 

Therefore, increasing the application of this efficient analysis method will improve the selection of superior bread wheat 

varieties. The two genotypes can be further verified using national performance trials/ or verified in farmers’ fields for 

registration and commercialization. 

Keywords 

Average Yield, BLUPs, Cluster, Factor Analytic, Genetic Variation, Spatial, Target Environment 

 

 
 

http://www.sciencepg.com/journal/ajbes
http://www.sciencepg.com/journal/375/archive/3751003
http://www.sciencepg.com/
https://orcid.org/0009-0000-4867-9890
https://orcid.org/0009-0000-4867-9890
https://orcid.org/0009-0000-4867-9890


American Journal of Biological and Environmental Statistics http://www.sciencepg.com/journal/ajbes 

 

77 

1. Introduction 

The global wheat (Triticum species) production during 

2022 was 2019 MHa while its total production was 808 MT 

with average productivity of 3.69 t/ha [9]. In the same year in 

Ethiopia it was produced on 2.30 MHa with total production 

of 7.0 MT with average productivity of 3.0 t/ha. Wheat is an 

essential component of the human diet, providing 20% of 

daily calories and protein. An estimated 80 million peasants 

depend on for survival making it the second most important 

food crop in developing nations behind rice in terms of en-

suring food security [11]. Wheat is the sources of starch, 

protein, vitamins, minerals, dietary fiber, and phytochemicals 

[13, 17]. 

Due to natural and human selection, wheat is adapted to 

wide environments as compared to other cereal crops [7, 9, 20] 

and the modern wheat varieties have high yield potential 

despite their susceptibility to biotic and abiotic stresses as 

compared to the landraces and wild relatives [3]. The modern 

varieties have good yield potential, food making qualities; 

efficient use of nutrients due to human selection. Over 95% of 

the wheat grown in the world is common wheat, which is 

mostly used as whole flour and refined flour to produce a wide 

variety of flat and fermented breads and for the manufacture 

of a wide variety of other bakery products. The remaining 5% 

is mostly durum wheat used to produce semolina (coarse 

flour), the main raw material for the manufacture of a wide 

variety of different baking products [8, 14]. 

G×E interaction reduces the efficiency of selection and 

accuracy of varietal recommendation. Due to it is necessary to 

test genotypes in the target environments before introducing 

new high-yielding varieties [12, 16]. Combining traits for 

adaptability and high-yielding in the genotypes are and with 

minimum GxE interaction is important [19]. A genotype is 

stable if its performance is constant across diverse environ-

ments and its contribution to G×E interaction is small [2, 4, 

10]. Therefore, estimating genotypic values is breeding efforts 

is paramount important [19]. 

About 43% of the arable land for wheat cultivation lay in 

the low moisture stress areas in Ethiopia (ref??). Therefore, 

low moisture adaptable varieties are important for the areas. 

Plant breeders use information from the analysis of mul-

ti-environment trial (MET) data to select superior varieties 

and an advanced and broadly used method of analysis for 

multi-environment trial data involves a linear mixed model 

with factor analytic (FA) variance structures for a variety of 

environmental effects [1]. According to the same authors; the 

model can accommodate unbalanced data, that is, not all 

varieties in all environments, it allows the use of pedigree 

information and appropriate accommodation of individual 

trial experimental designs, and most importantly the FA 

structure for the variety by environment effects is parsimo-

nious and regularly results in a good fit to the data. It provides 

accurate predictions of the variety effects for every environ-

ment in the data set but this constitutes a large and unwieldy 

amount of information to process for variety selection. Both 

the development of new cultivars as well as the recommen-

dation of newly released varieties requires a selection to be 

made among a larger set of candidate genotypes, so the esti-

mation of genotypic values is at the heart of any breeding 

effort [15]. The primary goal of this study was to estimate 

bread wheat genetic potential across environments and im-

prove selection strategies by modeling the interactions of 

spatial field trends and GEI. 

2. Materials and Methods 

2.1. Description of Eco-location and Genotypes 

In the present study 75 bread wheat advanced genotypes in-

cluding check varieties (Table 2) were evaluated for two seasons 

(2020 and 2021) at different locations (Asasa, Alem Tena, Ambo, 

Dhera, Kulumsa, Melkasa, Goro, and Sirinka) and at 13 envi-

ronments. The genotypes arranged in randomized complete 

block design (RCBD) in a rectangular (row x column) array of 

plots with two replications. Each genotype was planted on plot 

size of 6 rows of 2.5m long in 20cm between row spacing. The 

trials were conducted under rain-fed conditions. 

Table 1. Descriptions of test locations. 

Locations Latitude Longitude Altitude 

Asasa 07°07'09"N 39°11'50"E 2340 

Alem Tena 08°18'N 38°57'E 1611 

Dhera 08°19'10"N 39°19'13"E 1650 

Kulumsa 08°01'10"N 39°09'11"E 2200 

Melkasa 08°24′N 39°21′E 1550 

Sirinka 12°15′N 39°12′E 1468 
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Locations Latitude Longitude Altitude 

Ambo 08°59′N 37°51′E 2101 

Goro 09°11′0"N 38°43′0"E 1650 

Table 2. List of advanced bread wheat genotypes evaluated in 13 environments and their pedigrees. 

No Genotype Pedigree 

1 Atlas Atlas 

2 Balcha Balcha 

3 EBW120086 DASHEN/HW5216#6 

4 EBW120101 KAKABA/HD3075 

5 EBW120104 KAKABA/HW5216#6 

6 EBW120105 KAKABA/HW5216#6 

7 EBW120106 KAKABA/HW5216#6 

8 EBW120109 KAKABA/HW5216#6 

9 EBW120110 KAKABA/HW5216#6 

10 EBW120111 KAKABA/HW5216#6 

11 EBW120115 KAKABA/HW5216#6 

12 EBW120116 DANDA'A/JEFFERSON 

13 EBW120118 DANDA'A/JEFFERSON 

14 EBW120125 SHORIMA/KWS CHAMSIN 

15 EBW120126 SHORIMA/KWS CHAMSIN 

16 EBW120135 SHORIMA/HW5216#6 

17 EBW120137 SHORIMA/HW5216#6 

18 EBW120149 KAKABA/HW5216#6 

19 EBW120152 SHORIMA/KERN1552 

20 EBW172060 
WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2*WBLL1*2/6/WBLL1*2/4/YACO/PBW65/3/KAUZ*2/TRAP//K

AUZ/5/KACHU #1 

21 EBW172600 FRANCOLIN #1/YANAC/5/KIRITATI/4/2*BAV92//IRENA/KAUZ/3/HUITES 

22 EBW172604 KFA/2*KACHU/4/WBLL1*2/KURUKU//KRONSTAD F2004/3/WBLL1*2/BRAMBLING 

23 EBW172608 
WHEAR//2*PRL/2*PASTOR/5/UP2338*2/SHAMA/3/MILAN/KAUZ//CHIL/CHUM18/4/UP2338*2/SHAM

A/6/UP2338*2/KKTS*2//YANAC 

24 EBW172619 
WBLL1*2/KKTS//PASTOR/KUKUNA/3/KINGBIRD #1//INQALAB 91*2/TUKURU/5/KAUZ//ALTAR 

84/AOS/3/MILAN/KAUZ/4/SAUAL 

25 EBW172620 
WBLL1*2/KKTS//PASTOR/KUKUNA/3/KINGBIRD #1//INQALAB 91*2/TUKURU/5/KAUZ//ALTAR 

84/AOS/3/MILAN/KAUZ/4/SAUAL 

26 EBW172627 FRET2*2/SHAMA//PARUS/3/FRET2*2/KUKUNA*2/4/KINGBIRD #1//INQALAB 91*2/TUKURU 

27 EBW172709 NADI/3/ATTILA*2/PBW65//MURGA 

28 EBW172713 MUCUY//MUTUS*2/TECUE #1 

29 EBW172714 MUCUY//MUTUS*2/TECUE #1 

30 EBW172771 PARUS/FRANCOLIN #1/3/PBW343*2/KUKUNA*2//FRTL/PIFED/4/PAURAQ/SUP152 
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No Genotype Pedigree 

31 EBW172779 BECARD/AKURI/3/KINGBIRD #1//INQALAB 91*2/TUKURU/4/BECARD/AKURI 

32 EBW172797 KFA/2*KACHU*2//QUELEA 

33 EBW172803 MEX94.27.1.20/3/SOKOLL//ATTILA/3*BCN/4/2*SOKOLL//SUNCO/2*PASTOR 

34 EBW172827 
W15.92/4/PASTOR//HXL7573/2*BAU/3/WBLL1/5/GK ARON/AG SECO 

7846//2180/4/2*MILAN/KAUZ//PRINIA/3/BAV92 

35 EBW172828 
MEX94.27.1.20/3/SOKOLL//ATTILA/3*BCN/5/CHRZ//BOW/CROW/3/WBLL1/4/CROC_1/AE.SQUARRO

SA (213)//PGO 

36 EBW172831 
MEX94.27.1.20/3/SOKOLL//ATTILA/3*BCN/5/GK ARON/AG SECO 

7846//2180/4/2*MILAN/KAUZ//PRINIA/3/BAV92 

37 EBW174102 HUBARA-1/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR 

38 EBW174116 CHAM-4/MUBASHIIR-9 

39 EBW174302 ATTILA*2/CROW/3/VEE#5/SARA//DUCULA 

40 EBW174334 HUBARA-16/4/PASTOR/3/KAUZ*2/OPATA//KAUZ 

41 EBW174371 SERI 82/SHUHA'S'//GRU90-204782/3/MUNIA/CHTO//MILAN 

40 EBW174374 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/HUBARA-13 

43 EBW174388 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7 

44 EBW174389 SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/SHIHAB-7 

45 EBW174413 SERI.1B//KAUZ/HEVO/3/AMAD/4/ESDA/SHWA//BCN 

46 EBW174425 SERI.1B//KAUZ/HEVO/3/AMAD/4/TNMU/MILAN/5/WATAN-12 

47 Deka Deka 

48 EBW192349 ATTILA/3*BCN*2//BAV92/3/KIRITATI/WBLL1/4/DANPHE*2/5/KACHU/DANPHE 

49 EBW192350 MUTUS*2/HARIL #1/3/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU/4/MUTUS*2/HARIL #1 

50 EBW192351 MUTUS*2/HARIL #1/3/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU/4/MUTUS*2/HARIL #1 

51 EBW192352 
FRNCLN/3/KIRITATI//HUW234+LR34/PRINIA/4/FRANCOLIN 

#1*2/5/KACHU*2/3/ND643//2*PRL/2*PASTOR 

52 EBW192353 
WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2*WBLL1*2/4/KENYA SUN-

BIRD*2/5/ATTILA/3*BCN*2//BAV92/3/KIRITATI/WBLL1/4/DANPHE 

53 EBW192357 SUP152*2/TINKIO #1/4/FRET2*2/SHAMA//KIRITATI/2*TRCH/3/BAJ #1/5/SUP152*2/TINKIO #1 

54 EBW192360 KACHU*2/3/ND643//2*PRL/2*PASTOR/4/2*KACHU/DANPHE 

55 EBW192361 KACHU*2/3/ND643//2*PRL/2*PASTOR/4/2*KACHU/DANPHE 

56 EBW192363 FRNCLN/NIINI #1//FRANCOLIN #1/3/BORL14 

57 EBW192364 PAURAQ/NELOKI/3/WBLL1*2/BRAMBLING*2//BAVIS 

58 EBW192369 MUCUY/3/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU 

59 EBW192370 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

60 EBW192371 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

61 EBW192375 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

62 EBW192377 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

63 EBW192380 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

64 EBW192382 KACHU/DANPHE/3/KACHU//KIRITATI/2*TRCH 

65 ETBW9080 KACHU//WHEAR/SOKOLL 
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No Genotype Pedigree 

66 ETBW9172 ND643/2*WBLL1//KACHU 

67 ETBW9396 BOUSHODA-1/4/CROC-1/AE.SQUARROSA (205)//KAUZ/3/SASIA 

68 ETBW9452 REBWAH-19/HAAMA-14 

69 ETBW9578 NAVJ07/SHORTENED SR26 TRANSLOCATION/3/ATTILA/BAV92//PASTOR 

70 ETBW9581 KSW/SAUAL//SAUAL/3/REEDLING #1= KASUKO 

71 Hawi Hawi 

72 Kakaba Kakaba 

73 Kingbird Kingbird 

74 Ogolcho Ogolcho 

75 Tesfa Tesfa 

 

2.2. Statistical Analysis 

The mixed linear model’s matrix structure was used for the 

statistical analysis with R software. When utilizing a linear 

mixed model and the standard structure to analyze mul-

ti-environment trial (MET) data analysis, there are many 

possible forms of genetic variance matrix structures. This 

implies that all environments have constant genetic variance 

and all pairs of environments have the same genetic covari-

ance. In this scenario, due to inefficient estimation, consider 

using an alternative variance structure model which is known 

as the Factor Analytic model which is analogous to the AMMI 

model. Furthermore, this model explains the nature of heter-

ogeneous variance-covariance structures. To build a linear 

mixed model in this study, spatial field trend was first fitted 

for each environment and tested for the potential existence of 

field trend between the neighbor plots. Moreover, global 

variability and extraneous variation have been checked and 

included in the standard linear mixed model. Finally, trials 

across environments are combined keeping their specific trial 

information like spatial field trends, and included in a linear 

mixed model through a factor analytic model. The compari-

son of means was carried out using the BLUP predictors (best 

linear unbiased prediction) that represent the predicted value 

for each genotype concerning the general means [5]. The 

BLUP pair grain yields were ordered in descending order to 

identify the genotypes or superior lines. This methodology 

allowed comparing free genetic values of environmental ef-

fects and not the phenotypic means to improve genetic gain in 

the subsequent election cycle. 

3. Results and Discussion 

Multi-location trial analysis of this study identified the 

relative genetic merits of different genotypes where trials are 

correlated. According to the summary data (Table 6), the 

average performance of all genotypes at 20BWNE1DR is 

greater (5.93 t/ha) than in other trials, whereas the potential of 

the 21BWNE2GR trial is lower (1.88 t/ha). Looking at the 

performance of each genotype and the rank change across 

testing conditions is critical for selection in a mul-

ti-environmental breeding program. When trials are correlated 

(similar response of genotypes in one environment), choosing 

the best material in one environment is the same as choosing 

the best material in another. The information from numerous 

environments may then be integrated to increase the accuracy 

of genetic gains in specific experiments. In this scenario, MET 

analysis can also aid in comprehending the wide and partic-

ular adaptation of genotypes across a variety of target popu-

lations. As a result, the reaction of these genotypes in their 

various environments is used to decide genotype selection for 

the next trial or release. The predicted GxE variance may be 

used to identify correlated environments, and breeders can 

choose genotypes using BLUPs averaged over associated 

environments. 

3.1. Factor Analysis 

Genetic parameter estimates increased significantly when 

GE interactions were modeled using FA models in combina-

tion with models accounting for regional differences, ac-

cording to MET data. Not only were the FA models effective 

for estimating and forecasting GEI effects, but they were also 

beneficial for calculating GEI variance and doing bi-plot 

analysis. Table 2 displays the factor analysis's results. It 

comprises the total percentage of (GEI) variance explained by 

the model's factor components for each environment. FA 

model implies that the trial is not as well correlated as some of 

the other trials [6]. The environment 20BWNE1SK poorly 

contributed to the GEI variance and poorly correlated with the 

rest of the environments. 

These groupings helped pick superior bread wheat varieties 
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within each cluster. These groupings helped pick superior 

bread wheat varieties within each cluster. Utilizing average 

BLUPs as a selection indicator, assuming that the formed 

clusters were sufficiently justified for carrying out genotype 

selection separately for each of the clusters, genotype selec-

tion was carried out independently for each of the clusters 

using average BLUPs as a selection indicator. Because it 

formed with a relatively high correlation and covered more 

environments, just one cluster was chosen for the complete 

variety selection. The second and third clusters, on the other 

hand, have been found with fewer environments. 

The largest clusters for the 12 environments are clustering 

one and two (Figure 1). Utilizing average BLUPs as a selec-

tion indicator, assuming that the formed clusters were suffi-

ciently justified for carrying out genotype selection separately 

for each of the clusters. Because it formed with a relatively 

high correlation and covered more environments, just one 

cluster was chosen for the complete variety selection. 

Table 3. Results from fitting the FA model. 

SN Environments Factor1 Factor2 Factor3 Factor4 Total 

1 20BWNE1AA 89.28 0.64 1.64 0.02 91.58 

2 20BWNE1AT 24.02 38.4 1.24 0.63 64.28 

3 20BWNE1DR 33.87 65.70 0 0.43 100 

4 20BWNE1KU 62.68 4.25 0.87 2.04 69.85 

5 20BWNE1MK 16.76 66.21 0.14 0.49 83.6 

6 20BWNE1SK 0.18 0.47 0.01 5.24 5.90 

7 20BWNE2AA 82.80 5.60 7.84 3.76 100 

8 20BWNE2AB 3.42 43.85 6.13 46.6 100 

9 20BWNE2AT 31.77 15.98 43.84 8.40 100 

10 20BWNE2DR 37.19 1.04 47.87 1.32 87.42 

11 20BWNE2GR 0.28 50.03 0.83 48.86 100 

12 20BWNE2KU 99.69 0.14 0.07 0.10 100 

13 20BWNE2MK 38.74 43.35 13.03 4.89 100 

 

 
Figure 1. Dendrogram of the dissimilarity matrix. 

 
Figure 2. Heat map representation of the genetic correlation matrix. 
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In addition to the dendrogram, a heat map showing the genetic 

relationship among all trials was another popular feature analysis 

summary. The correlations between environments varied from -1 

to 1. Figure 2 indicates the various correlation patterns between 

environments. The heat map shows that there were some trials 

with positive genetic correlations, such as 20BWNE1AA having a 

positive correlation with 20BWNE2AA and 20BWNE2KU and 

also 20BWNE2KU has a positive correlation with 20BWNE1KU 

and 20BWNE2AA. This showed that genotype selection may be 

achieved by averaging genotype means in the first two trials in the 

first red cluster. There were also some trials with negative genetic 

correlations, such as 20BWNE2GR, having a negative correlation 

with 20BWNE1KU and 20BWNE2DH and 20BWNE1SK hav-

ing a negative correlation with 20BWNE2AB. These suggest that 

there may have been a reversal effect in genotype ranks among 

these negatively associated trials. Based on the closeness in terms 

of discriminating the genotypes, the 13-bread wheat environments 

were clustered into three mega environments (C1, C2, and C3) for 

trait yield, where 20BWNE2KU, 20BWNE1AA, 20BWNE2AA, 

20BWNE1KU, 20BWNE2AT and 20BWNE2DR were in C1; 

20BWNE1AT, 20BWNE1DRH, 20BWNE1MK, 20BWNE2MK, 

20BWNE2AB and 20BWNE2GR in C2; 20BWNE1SK in C3. 

3.2. Variance Components 

Table 5 displays the genetic variance and error variance for 

each environment from the final fitted Spatial +FA models. For 

genetic variance, the estimates for variance component param-

eters ranged from 0.069 to 2.896 and error variance ranged 

from 0.175 to 1.002. Except one trial, all trials had a larger 

genetic variance for yield. This suggested that the genotype 

discriminating capacity of 20BWNE2GR was not lower. This 

environment highly low moisture stress area and all genotypes 

performed poorly or equally. Thus, we removed the BLUPs 

from this environment when averaged over others to choose 

superior genotypes. In general, using spatial and FA models to 

analyze MET data improved genotype evolution precision and 

accuracy by capturing non-genetic variation associated with 

agricultural field experiments and appropriately exploiting the 

information stored in the MET dataset [6, 18]. 

Table 4. Genetic correlation between environments. 

 

20AA 20AT 20DR 20KU 20MK 20SK 21AA 21AB 21AT 21DR 21GR 21KU 21MK 

20AA 
 

            

20AT 0.40             

20DH 0.49 0.79 
 

          

20KU 0.76 0.28 0.30           

20MK 0.33 0.70 0.89 0.14 
 

        

20SK 0.03 0.05 0.07 -0.01 0.09         

21AA 0.84 0.32 0.33 0.77 0.18 0.07 
 

      

21AB 0.10 0.58 0.69 0.13 0.56 -0.10 -0.05       

21AT 0.42 0.62 0.67 0.47 0.51 -0.01 0.55 0.73 
 

    

21DR 0.50 0.32 0.28 0.59 0.13 0.00 0.75 0.30 0.79 
 

   

21GR 0.00 0.40 0.56 -0.21 0.65 0.21 -0.01 -0.02 0.05 -0.18    

21KU 0.95 0.47 0.55 0.80 0.38 0.03 0.90 0.18 0.54 0.60 0.01 
  

21MK 0.49 0.74 0.88 0.36 0.79 0.13 0.56 0.49 0.79 0.54 0.62 0.58 

 

Table 5. Variance component results in MET analysis using spatial and FA models. 

SN Environments Mean GYD (t/ha) Genetic Variance Error Variance 

1 20BWNE1AA 4.726 2.896 0.743 

2 20BWNE1AT 3.101 0.206 0.257 

3 20BWNE1DR 5.92 0.417 0.379 

4 20BWNE1KU 2.212 0.239 0.189 
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SN Environments Mean GYD (t/ha) Genetic Variance Error Variance 

5 20BWNE1MK 2.929 0.599 0.305 

6 20BWNE1SK 3.786 0.088 0.19 

7 20BWNE2AA 4.089 0.875 0.175 

8 20BWNE2AB 3.925 0.095 0.305 

9 20BWNE2AT 2.891 0.069 1.002 

10 20BWNE2DR 3.178 0.254 0.556 

11 20BWNE2GR 1.82 0.114 0.838 

12 20BWNE2KU 4.175 1.987 0.237 

13 20BWNE2MK 2.282 0.11 0.924 

Where GYD: Grain Yield 

3.3. BLUPs for Genotypes Mean Values Across 

Environments 

Best linear unbiased prediction (BLUP) is a typical ap-

proach for estimating random effects in a mixed model that 

has the feature of least mean square error of prediction and 

can produce a more accurate assessment of the underlying 

effects. In a plant breeding environment where genotype 

ranking accuracy is critical for the selection of superior gen-

otypes, genotype effects are generally fitted as random vari-

ables. This is especially important in the early phases of gen-

otyping trials with a high number of entries. BLUP values of 

averaged across correlated environments graded C1 and C2 

can be used to score genotype performance; C3 is eliminated 

due to low genetic variation and genetic correlation with the 

other environments. Table 5 shows that among the 75 geno-

types, more than 57.33% (43) had average grain yields more 

than 3.44 t/ha (grand mean). Eight candidate genotypes with 

mean grain yields of more than 4 t/ha were identified by the 

predicted mean grain yield, however two of these, genotypes 

(EBW192350 and EBW192369) have been advanced to va-

riety verification trials for further testing before release as 

new variety (Table 6). Additionally, 20BWNE1DR and 

20BWNE1AA environments and 20BWNE2KU and 

20BWNE2AA environments produced high grain yields, 

according to BLUP analysis. This implies that these sites are 

the best testing locations for distinguishing between bread 

wheat genotypes and the best-suited agro-ecologies for bread 

wheat production in general. 

Table 6. BLUPs for genotype means across two clusters (C1 and C2) of correlated environments. 

Genotype 20AA 20AT 20DR 20KU 20MK 21AA 21AB 21AT 21DR 21GR 21KU 21MK Mean 

Atlas 3.98 3.06 6.32 1.79 3.63 3.24 4.16 2.88 2.99 2.15 3.09 2.36 3.30 

Balcha 8.00 2.87 5.84 3.11 2.35 6.00 3.87 3.04 4.02 1.37 6.89 2.25 4.13 

EBW120086 4.68 2.91 5.59 2.33 2.64 4.31 3.61 2.66 3.09 1.96 4.15 2.13 3.34 

EBW120104 2.59 3.07 5.45 2.01 2.46 3.65 3.69 2.74 3.15 2.07 2.61 2.17 2.97 

EBW120105 2.15 3.00 5.20 1.79 2.03 3.26 3.76 2.68 2.95 1.79 2.28 1.94 2.74 

Deka 7.09 2.83 5.81 2.52 2.58 5.05 3.59 2.71 3.25 1.92 5.47 2.22 3.75 

EBW120101 4.21 2.43 5.04 2.04 1.77 2.84 3.48 2.12 1.82 1.64 3.15 1.45 2.67 

EBW120106 3.31 2.70 4.95 2.00 1.83 3.78 3.66 2.71 3.29 1.61 2.78 1.89 2.88 

EBW120109 2.34 2.80 5.67 1.71 2.82 2.52 4.00 2.66 2.71 1.97 1.84 2.01 2.75 

EBW120110 5.75 3.15 5.82 2.75 2.39 5.00 3.82 2.95 3.69 1.79 5.04 2.31 3.71 

EBW120111 6.23 3.21 6.05 2.72 3.23 4.71 3.82 2.81 3.27 1.90 5.22 2.27 3.79 

EBW120115 3.48 2.53 5.43 1.70 2.37 2.48 3.85 2.38 2.12 1.69 2.58 1.66 2.69 
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Genotype 20AA 20AT 20DR 20KU 20MK 21AA 21AB 21AT 21DR 21GR 21KU 21MK Mean 

EBW120116 1.45 2.52 4.67 1.59 1.41 2.54 3.74 2.53 2.85 1.51 1.23 1.60 2.30 

EBW120118 2.26 3.28 5.79 1.82 2.59 2.72 4.28 2.93 3.21 1.75 2.01 2.10 2.90 

EBW120125 1.89 2.62 5.11 1.56 2.15 2.89 3.88 2.67 3.00 1.62 1.93 1.82 2.60 

EBW120126 2.58 2.88 5.43 2.14 2.34 3.11 4.16 2.87 3.24 1.45 2.59 1.91 2.89 

EBW120135 4.89 3.18 6.41 2.49 3.57 3.68 4.03 2.72 2.74 2.09 4.39 2.26 3.54 

EBW120137 2.43 2.80 5.30 1.87 2.19 2.96 3.91 2.65 2.92 1.64 2.37 1.84 2.74 

EBW120149 2.07 2.68 5.27 1.67 2.45 2.59 3.86 2.52 2.55 1.71 2.04 1.76 2.60 

EBW120152 3.59 2.56 4.77 1.98 1.17 2.89 3.90 2.51 2.79 1.04 2.73 1.40 2.61 

EBW172060 5.64 3.25 6.16 2.15 2.83 4.15 4.07 2.94 3.40 1.88 4.35 2.32 3.60 

EBW172600 6.46 3.37 6.64 2.32 3.80 3.95 4.11 2.79 2.78 2.08 5.00 2.34 3.80 

EBW172604 5.48 3.06 6.05 2.07 3.60 4.02 3.79 2.65 2.95 2.06 4.43 2.19 3.53 

EBW172608 6.70 4.06 7.23 2.25 4.60 4.67 4.25 3.11 3.49 2.39 5.67 2.81 4.27 

EBW172619 5.71 3.40 6.35 2.39 3.41 4.25 3.97 2.83 3.08 2.06 4.81 2.36 3.72 

EBW172620 5.92 3.29 6.32 2.57 3.00 4.35 4.17 2.96 3.29 1.74 5.10 2.29 3.75 

EBW172627 5.52 3.13 5.97 2.18 2.69 4.36 3.83 2.83 3.36 2.00 4.37 2.30 3.55 

EBW172709 5.37 2.98 6.08 2.30 3.09 4.09 3.75 2.62 2.67 2.08 4.62 2.19 3.49 

EBW172713 4.97 2.68 5.48 1.93 2.39 3.97 3.60 2.57 2.82 1.90 3.83 2.00 3.18 

EBW172714 5.09 3.09 5.79 2.02 2.78 4.46 3.70 2.75 3.21 2.00 4.41 2.24 3.46 

EBW172771 5.85 3.61 6.31 2.13 3.47 4.09 3.88 2.73 2.88 2.15 4.62 2.32 3.67 

EBW172779 5.87 3.84 6.98 2.31 3.90 4.62 4.43 3.27 3.67 2.05 5.32 2.73 4.08 

EBW172797 5.23 3.32 6.57 1.95 3.62 4.57 4.00 2.99 3.43 2.28 4.84 2.61 3.78 

EBW172803 5.52 3.55 6.95 2.74 4.06 3.83 4.41 3.00 3.03 2.02 4.94 2.47 3.88 

EBW172827 6.10 3.65 6.61 2.27 3.76 4.45 4.22 3.07 3.52 1.98 5.07 2.51 3.93 

EBW172828 5.58 3.18 6.47 2.58 3.62 4.59 4.17 3.06 3.50 1.90 5.17 2.46 3.86 

EBW172831 6.68 3.52 6.47 2.67 3.28 4.31 4.09 2.81 3.00 1.85 5.51 2.26 3.87 

EBW174102 5.07 3.65 6.53 2.26 3.21 3.88 4.30 3.03 3.27 1.96 4.30 2.43 3.66 

EBW174116 7.04 3.85 7.12 2.33 4.39 4.29 4.13 2.89 2.92 2.42 5.47 2.65 4.13 

EBW174302 3.63 3.30 6.27 1.99 3.13 3.10 4.40 2.97 3.15 1.77 3.23 2.22 3.26 

EBW174334 4.49 3.42 6.43 1.72 3.10 4.68 4.13 3.10 3.50 1.98 4.96 2.54 3.67 

EBW174371 3.51 3.05 5.97 2.04 2.99 3.28 4.00 2.74 2.81 2.00 3.15 2.16 3.14 

EBW174374 2.56 2.75 6.04 1.55 3.31 2.79 4.05 2.76 2.79 2.20 2.23 2.24 2.94 

EBW174388 3.19 2.60 5.90 1.76 2.76 3.15 3.96 2.73 2.84 2.06 2.78 2.16 2.99 

EBW174389 4.62 3.06 5.63 2.12 2.48 3.84 3.81 2.72 3.03 1.82 3.68 2.07 3.24 

EBW174413 3.84 3.00 5.61 1.93 2.71 3.54 3.95 2.81 3.16 1.79 3.08 2.08 3.13 

EBW174425 2.20 3.06 6.39 1.61 3.84 3.01 3.90 2.75 2.59 2.71 2.27 2.53 3.07 

EBW192349 5.55 3.44 6.68 2.37 3.88 5.10 4.04 3.17 3.64 2.30 5.26 2.79 4.02 

EBW192350 7.54 3.37 6.52 2.86 3.55 6.08 3.91 3.17 4.00 2.02 6.78 2.71 4.38 

EBW192351 6.06 3.04 6.10 2.94 3.01 5.29 3.84 2.98 3.65 1.88 5.69 2.42 3.91 

EBW192352 5.44 3.24 6.14 2.52 2.99 4.86 4.02 3.07 3.73 1.86 4.99 2.44 3.78 
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Genotype 20AA 20AT 20DR 20KU 20MK 21AA 21AB 21AT 21DR 21GR 21KU 21MK Mean 

EBW192353 7.26 3.09 6.04 2.73 2.71 4.81 3.87 2.78 3.27 1.70 5.78 2.16 3.85 

EBW192357 5.01 2.38 5.00 2.67 1.86 4.86 3.56 2.75 3.64 1.45 4.50 1.92 3.30 

EBW192360 6.65 2.91 5.46 3.04 2.28 5.15 3.75 2.84 3.61 1.40 5.56 2.02 3.72 

EBW192361 5.55 2.94 5.54 2.13 2.25 4.61 3.63 2.71 3.23 1.79 4.65 2.09 3.43 

EBW192363 3.91 3.56 6.37 2.42 3.31 3.70 4.30 3.08 3.40 1.97 3.60 2.44 3.51 

EBW192364 5.53 3.03 6.09 2.62 2.76 4.70 4.14 3.13 3.84 1.71 4.80 2.39 3.73 

EBW192369 6.08 3.72 6.47 3.12 3.32 5.75 3.98 3.21 4.00 2.02 6.11 2.72 4.21 

EBW192370 6.26 2.73 5.51 2.72 2.20 5.02 3.64 2.85 3.64 1.77 4.81 2.21 3.61 

EBW192371 5.77 2.46 5.34 2.70 1.68 4.70 3.82 2.82 3.50 1.33 4.89 1.94 3.41 

EBW192375 5.81 2.85 5.36 2.48 2.10 4.95 3.61 2.80 3.55 1.66 4.77 2.10 3.50 

EBW192377 5.81 2.50 4.88 2.54 1.47 4.90 3.50 2.69 3.52 1.37 4.64 1.83 3.30 

EBW192380 5.65 2.90 5.62 2.31 2.45 4.94 3.71 2.89 3.69 1.81 4.71 2.26 3.58 

EBW192382 6.07 2.69 5.28 2.65 1.79 5.05 3.57 2.74 3.39 1.56 5.09 2.01 3.49 

ETBW9080 6.33 3.52 6.47 3.02 3.33 5.26 4.26 3.30 4.04 1.77 5.69 2.61 4.13 

ETBW9172 5.74 3.15 6.39 2.83 3.27 4.72 4.07 3.02 3.58 1.96 5.18 2.47 3.87 

ETBW9396 6.76 3.50 6.47 2.16 3.04 4.46 4.01 2.86 3.24 2.02 5.31 2.38 3.85 

ETBW9452 5.85 3.80 6.57 2.29 3.48 4.35 4.02 2.92 3.02 2.21 4.85 2.51 3.82 

ETBW9578 6.38 3.12 6.53 2.98 3.71 4.68 4.14 2.97 3.33 1.85 5.70 2.40 3.98 

ETBW9581 5.91 3.38 6.05 2.66 3.56 4.99 3.74 2.88 3.54 2.08 5.10 2.43 3.86 

Hawi 1.48 2.89 5.57 1.50 2.95 2.93 3.86 2.79 3.09 2.20 1.50 2.22 2.75 

Kakaba 3.25 3.39 6.18 1.66 3.46 3.17 4.24 2.94 3.13 2.00 2.86 2.30 3.22 

Kingbird 4.81 3.05 5.61 2.26 2.51 4.10 3.76 2.75 3.34 1.85 3.85 2.12 3.33 

Ogolcho 0.65 1.86 4.13 0.92 1.45 2.15 2.89 1.88 1.72 2.16 0.29 1.40 1.79 

Tesfa 3.34 2.90 5.97 1.73 3.26 3.04 4.11 2.78 2.85 1.91 2.90 2.12 3.08 

Mean 4.84 3.08 5.93 2.25 2.87 4.09 3.92 2.83 3.20 1.88 4.15 2.22 3.44 

Where 20AA: 2020 Asasa, 20AT: 2020 Alemtena, 20DR: 2020 Dhera, 20KU: 2020 Kulumsa, 20MK: 2020 Melkasa, 21AA: 2021 Asasa, 21AB: 

2021 Ambo, 21AT: 2021 Alemtena, 21DR: 2021 Dhera, 21GR: 2021 Goro, 21KU: 2021 Kulumsa, 21MK: 2021 melkasa. 

4. Conclusion 

Multi-location trials of genotype × environmental interaction 

are an important consideration for crop breeding that combines 

both yield and stability attributes. High-yielding genotypes 

should be chosen in the environment. The production of newly 

released varieties requires a selection from a larger range of 

candidate genotypes, therefore evaluating genotypic values is 

crucial to every breeding effort. Depending on the purpose, this 

allows for the isolation of the genetic influence or a deeper 

investigation of the GEI effect. From 75 tested genotypes, 43 

(57.33%) genotypes average grain yields showed more than 

grand mean (3.44 t/ha). The genotypes with the highest poten-

tial for future verification and release as a variety may be iden-

tified. As a result, the ETW192350 and ETW192369 genotypes 

were superior yielding and stable from the others. Thus, these 

two genotypes are advanced to variety verification trials for 

further testing and release as new varieties. 
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