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Abstract 

Drought poses a significant threat to essential resources like food, land, and public health. Machine Learning (ML) has emerged 

as a powerful tool in weather forecasting, leveraging algorithms to predict weather phenomena with remarkable accuracy. ML 

models excel in navigating complex atmospheric systems, including those affected by climate change, offering precision beyond 

traditional forecasting methods. However, predicting drought remains challenging due to its uneven distribution and varying 

degrees. To tackle this challenge, an exploration of a novel approach of combining K-means++ clustering and Gradient Boosting 

Algorithm (KGBA) with Principal Component Analysis (PCA) for dimensionality reduction was carried out. Using a dataset 

spanning from 2000 to July 2016, comprising 2,756,796 US Drought Monitor records, the study developed and evaluated the 

KGBA model's effectiveness in drought prediction. The results demonstrated the superiority of high precision and recall rates, 

particularly in forecasting extreme and exceptional drought periods. Specifically, KGBA attained precision accuracies of 33% 

and 74%, along with recall rates of 72% and 77% for predicting extreme and exceptional drought periods, respectively. The 

model had an overall accuracy of 46% in predicting all the multiple classes of droughts. A performance that is slightly better than 

other ensemble methods that had the closest performance. These findings underscore the potential of KGBA in enhancing the 

predictive capabilities for drought mitigation efforts, as it outperformed other models such as Gradient Boosting, Random Forest, 

Bayes Naive, and K-Nearest Neighbor. 
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1. Background of the Study 

Climate refers to the long-term patterns and variations in 

key atmospheric factors like temperature, precipitation, and 

wind. Essentially, climate represents a comprehensive sum-

mary of weather conditions over time. Drought, on the other 

hand, is a notable environmental occurrence that carries sub-

stantial consequences for agriculture, water resources, and 

natural habitats. Precise forecasting of drought events can 

play a crucial role in proactive planning and implementing 

strategies to alleviate the adverse effects of droughts. 

According to the National Oceanic and Atmospheric Ad-

ministration, US Commerce 2021 report. The world experi-

enced coronavirus pandemic shutdowns in 2020, yet there 

was a surge in the level of anthropogenic greenhouse gases; 

that is, CO2 rose to about 40% from 25% since 1953, and 

methanes also increased in its percentage (NOAA Science 

Report, 2021). Climate change is beyond rising in tempera-
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tures. However, Global temperatures continue to rise to about 

1.980 F (1.10C) between 1901 and 2020. The effect of Cli-

mate change is also reflected in the rise of sea level from 1.7 

mm/year, mostly in the twentieth century, to 3.2 mm/year. The 

shifting weather patterns brought about by climate change are 

causing both droughts and floods, adversely impacting es-

sentials for human and animal survival [1]. 

The adverse effects of climate change are obvious in various 

aspects of our society. However, drought can be devastating, 

where food production could be grossly affected, and human 

health could be highly degraded. In a similar vein, flooding can 

lead to the spread of diseases that can wipe out a complete 

community and cause damage to social amenities and ecosys-

tems. Climate change (CC) manifests its negative impact across 

various aspects of our world. It is also relevant that climate 

change differs from neighbourhoods or individuals to others. 

The world has been facing the challenges of adaptation and 

strategies to survive in the midst of climate change for dec-

ades. One of the key reasons for the failure of countries to 

tackle climate change vulnerability is the lack of appropriate 

steps in risk management. Mortuza observed that the gov-

ernment of countries like Bangladesh tends to prioritize re-

sponse and recovery efforts over monitoring, preparedness, 

and mitigation strategies [2]. Therefore, there is a need for 

accurate drought projection tools for the sustainable man-

agement of all aspects affected by CC, such as agriculture, 

health resources, and more. Given the unpredictable and di-

verse characteristics of drought, which can vary in intensity 

and occurrence across different locations, there's a critical 

need to develop swift, reliable, and accurate prediction mod-

els. These models are essential for quantifying the risks as-

sociated with drought events and for better understanding 

their potential impacts [2]. 

Traditional drought prediction systems frequently rely on 

meteorological indicators such as temperature and precipita-

tion. These approaches, however, may fail to capture the 

intricate linkages and patterns associated with drought [26]. In 

recent years, machine learning algorithms have shown 

promise in improving drought forecast accuracy by incorpo-

rating new data sources and recognizing non-linear connec-

tions. Khan reported the utilization of various machine 

learning (ML) models, including support vector machine 

(SVM), artificial neural networks (ANN), and Extreme 

Learning Machine (ELM) [3]. However, the most widely used 

model in the domain of drought prediction has been Support 

Vector Machine (SVM) along with other potent algorithms 

[4-7]. The algorithm is combined with SPEI to predict drought 

over Pakistan, Palmer Drought Severity Index (PDSI) to pre-

dict drought over Turkey. Some researchers have examined 

the performance of ANN in predicting the Standardized Pre-

cipitation Index (SPI) over Iran. 

1.1. Principal Component Analysis (PCA) 

This is a sophisticated statistical method for reducing the 

dimensionality of large data sets. It is widely used in data sci-

ence. The approach has its strength in managing complex and 

highly dimensional datasets without significant loss of infor-

mation. This methodology has taken a strong position in vari-

ous fields, from finance to genomics. These areas are known for 

massive amounts of data that require interpretation. It high-

lights different patterns in the dataset as well as any similarities 

among them, essentially converting the original features into 

new, uncorrelated features called principal components. The 

components are orthogonal axes of maximum variance that 

stand as datasets in a reduced-dimensional space [8].  

For instance, consider a data matrix, X, with column-wise 

zero empirical mean, a situation where each of the columns of 

the sample data has been shifted to zero. Each of the n rows 

stands as the repetition of the experiment, where each of the p 

columns generates a new feature. 

In mathematical terms, the transformation involves a col-

lection of weight vectors or coefficients, each of size p di-

mensions, which map every row vector of X is transformed 

into a new set of principal components. scores, denoted as t. 

These coefficients are structured to maximize the variance 

inherited from X across the individual variables of t in the 

dataset. Furthermore, each coefficient vector w is treated as a 

unit vector, typically leading to a reduction in the dimen-

sionality of the observations. 

When the First component is observed to maximize vari-

ance, the first weight vector w(1) must satisfy. In other word, 

expressing this in matrix form yields: 

x1 = ℷ11f1 +  ℷ21f2 + ……  ℷ1mfm + e1            (1) 

x2 = ℷ21f1 +  ℷ22f2 + ……  ℷ2mfm + e2 

… 

… 

Xp = ℷp1f1 +  ℷp2f2 + ……  ℷpmfm + ep 

where λjk, j = 1, 2,...,p; k = 1, 2,...,m are constants called the 

factor loadings, and ej , j = 1, 2,...,p are error terms, sometimes 

called specific factors (because ej is ‘specific’ to xj , whereas 

the fk are ‘common’ to several xj). 

Since w(1) has been defined as a unit vector, it also satisfies 

the equation. 

The Rayleigh quotient is the quantity to be maximized. The 

maximum possible value of the quotient, indicated by the 

largest eigenvalue of the matrix, is a standard result for posi-

tive semidefinite matrices like X
T
X. This maximum value is 

achieved when w corresponds to the eigenvector. 

The w(1) is the first principal component of a data vector x(i), 

that is 

score t1(i) = x(i) ⋅ w(1)                 (2) 

represented as the transformed co-ordinates, or could the seen 
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as the corresponding vector in the original variables, {x(i) ⋅ w(1)} 

w(1). 

The other components of the PCA can be deduced as: 

The k-th component is the subtraction of first k − 1 principal 

components from matrix X in (1): 

Then, the weight vector is subsequently found, which is the 

extraction from the maximum variance of the new data matrix. 

The above result in (2) extends to the remaining eigen-

vectors of X
T
X, with the maximum values for the quantity in 

brackets given by their corresponding eigenvalues. Hence, the 

weight vectors are eigenvectors of X
T
X. 

The k-th principal component of a data vector x(i) is defined 

as the 

score tk(i) = x(i)⋅w(k)                 (3) 

in the transformed coordinates, or as the corresponding vector 

in the space of the original variables, 

{x(i) ⋅ w(k)} w(k), where w(k) is the kth eigenvector of X
T
X. 

The entire principal components decomposition of X can be 

defined as follow: 

W represents a p-by-p matrix of weights, where each 

column corresponds to the eigenvectors of X
T
X. The trans-

pose of W, often referred to as the whitening or sphering 

transformation, is calculated by scaling the columns of the W 

matrix by the square root of the corresponding eigenvalues. 

This process, essentially multiplying the eigenvectors by their 

respective variances, results in loadings in PCA or Factor 

analysis, as described by Sidak in 2023 [9]. 

This can further be mathematically represented as follows: 

PCA_1 = a_11 * x_1 + a_12 * x_2 + ... + a_1p * x_p (4) 

PCA_2 = a_21 * x_1 + a_22 * x_2 + ... + a_2p * x_p 

... 

PCA_k = a_k1 * x_1 + a_k2 * x_2 + ... + a_kp * x_p 

where a_ij is the loading or weight of variable x_j on principal 

component PCA_i, and x_j is the jth variable in the data ma-

trix X. The principal components are ordered such that the 

first component PCA_1 captures the most significant varia-

tion in the data, the second component PCA_2 captures the 

second most significant variation, and so on as earlier de-

scribed. The number of principal components used in the 

analysis, k, determines the reduced dimensionality of the 

dataset [8, 9]. 

The PCA is useful in three major areas of model building, 

especially during the preprocessing stage. The areas are data 

reduction, an approach that simplifies model building in 

machine learning and statistical analysis by reducing the 

number of variables under consideration. Secondly, data 

analysis exploration; It uncovered hidden patterns in the pre-

liminary stages of data analysis and thirdly, multivariate 

Analysis that deal with observations of multiple interrelated 

features. 

1.2. Machine Learning Models 

According to Mokhtar et al, machine learning models are 

mathematical representations of sets of data where predictions 

can be made for decision-making [10]. The models are built 

from training machine learning algorithms to learn from his-

torical datasets, which are either labelled or unlabelled. Once 

the training is done, a generalized prediction can be made 

from unseen datasets. These models have revolutionalised 

several domains of interest, including security, health, finance, 

and the like. The model has the ability to uncover insights, 

including patterns and irregularities in data, in a more so-

phisticated way than the traditional statistical models [11]. 

Furthermore, Machine Learning Models (MLMs) exhibit 

portability, robustness, and flexibility, enabling them to per-

form effectively across diverse tasks, including assessing 

patient risk levels, making diagnoses, and predicting out-

comes [12]. However, most MLMs are black boxes, and ex-

plainability and interpretability are concerns [13, 14]. 

1.2.1. Gradient Boosting Algorithm (GBA) 

Gradient boosting is a versatile ensemble machine learning 

method suitable for regression and classification tasks. It 

combines the predictions of numerous weak learners, typi-

cally decision trees, sequentially. The primary aim is to en-

hance predictive accuracy by optimizing the model's weights. 

These weights are determined by the errors of previous itera-

tions, gradually reducing errors to refine the final model ac-

curacy. Employing an arbitrary differentiable loss function, 

the model is systematically constructed stage by stage, akin to 

other boosting algorithms. 

Similarly, the gradient boosting algorithm originated from 

Leo Breiman's idea that boosting can be conceptualized as an 

optimization algorithm on an appropriate cost function [15]. 

In the years 2001 and 2002, Jerome H Friedman developed a 

regression version of the gradient boosting algorithm. The 

algorithm uses the approach proposed by Mason et al. 

[16-18]. 

There are basically three family members of GBA: 

XGBoost, LightGBM, and CatBoost, with the aim of 

achieving better accuracy and speed optimization as the focus. 

Extreme Gradient Boosting Algorithm (XGBA) is known for 

its scalability, efficiency and reliability among the machine 

learning algorithms. However, LightGBM is extremely fast in 

model training with the use of selective samplings of 

high-gradient records. In a similar way, CatBoost places a 

premium on the accuracy prediction of the model by modi-

fying the computation of gradients [19]. 

The Gradient tree boosting algorithms are based on the 

derivation outlined by Friedman et al. with minor enhance-

ments made to the regularized objective function, which have 

proven to be beneficial in practical applications [20]. 

The Gradient Tree Boosting ensemble model can be illus-
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trated with Eq. (5). This involves functions being treated as 

parameters, a process that conventional optimization tech-

niques in Euclidean space cannot handle. Essentially, the 

model is trained in an additive manner, allowing for optimi-

zation through the inclusion of these functions as parameters. 

Assume 𝑦̂(t) as the value of prediction of the i-th tuple at the 

looping t-th. To minimize the objective, ft needs to be added. 

𝐿(∅) =  ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)𝑖 + ∑ Ω(𝑓𝑘)𝑘             (5) 

where Ω(𝑓) =  𝛾𝑇 +
1

2
𝜆 ω 

2
 

In this expression, l symbolizes a differentiable convex loss 

function, which evaluates the difference between the predicted 

value 𝑦̂𝑖and the actual target value prediction 𝑦̂𝑖. The subse-

quent term Ω penalizes the complexity of the model, particu-

larly focusing on the regression tree functions. Furthermore, the 

regularization term is incorporated to refine the final learned 

weights, effectively addressing the issue of overfitting. 

L(𝑡) = ∑ l (𝑦𝑖 , ŷ𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω
𝑛

𝑖=1
(𝑓𝑡)      (6) 

The equation in (6) implies that the ft that most improves it 

is greedily added. 

According to Friedman et al., 2000, the second-order ap-

proximation is speedily applied to optimize the objective as 

presented in (5). 

L(𝑡) ≃ ∑ [l(𝑦𝑖 , ŷ𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
hift

2(xi)] + Ω
𝑛

𝑖=1
(𝑓𝑡) (7) 

where gi = ∂yˆ(t−1)l(yi , yˆi (t−1)) and hi = ∂ 2 yˆ(t−1)l(yi , yˆi 

(t−1)), the first and second-order gradient statistics are com-

puted on the loss function. After removing the constant terms, 

the simplified objective at step t is obtained. 

L˜(t) = Xn i=1 [gift(xi) + 1 2 hif 2 t (xi)] + Ω(ft) (3) Define 

Ij = {i|q(xi) = j} as the instance of leaf j. We can rewrite (7) by 

expanding Ω as 

𝐿̃(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
hift

2(xi)] + Ω
𝑛

𝑖=1
(𝑓𝑡)     (8) 

The final prediction for a given group of samples is the sum 

of all the predictions from each tree as follows 

𝐿̃(𝑡) ≃ ∑ *𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
hift

2(xi)+ + γT
𝑛

𝑖=1
+  

1

2
𝜆 ∑ ωj

2
𝑇

𝑗=1
 (9) 

∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗
) 𝑤𝑗 +  

1

2
(∑ 𝑕𝑖 + 𝜆𝑖∈𝐼𝑗

) ωj
2] + 𝛾𝑇

𝑇

𝑗=1
  

The optimal weight wj* for a given structure q(x) can be 

calculated using (9). 

𝜔𝑗
𝑖 =  − 

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+ 𝜆𝑖∈𝐼𝑗

               (10) 

The corresponding optimal value can be determined by the 

following calculation: 

𝐿̃(𝑡)(𝑞) =  −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)

2

∑ ℎ𝑖+ 𝜆𝑖∈𝐼𝑗

𝑇
𝑗=1 + 𝛾𝑇       (11) 

The equation in (11) can serve as a scoring function to 

evaluate the quality of a tree structure q. This score functions 

similarly to the impurity score used in decision trees but is 

applicable to a broader range of objective functions. 

1.2.2. Random Forest (RF) 

The RF is a special model that is based on multiple decision 

trees that are called forest with controlled variance [13, 21]. 

This model, called Random Forest, has been potency to work 

with both continuous and discrete datasets. The classifiers are 

known as regression and classification models, respectively. A 

random forest regression is a bootstrap ensemble. It works 

with random binary trees that made use of a subset of the 

datasets through bootstrapping, from a random subset of the 

training dataset isolated to build the models [10]. 

2. Literature Review 

In the study "Applying Machine Learning for Threshold 

Selection in Drought Early Warning System" by Luo et al. 2022, 

the correlation between NDVI readings and drought categories 

is investigated across a 34-year timeframe in two distinct cli-

mate zones in Australia. The research aims to establish NDVI 

threshold values for different drought categories through a 

threshold selection approach. While the model provides valua-

ble insights into drought severity and lays the groundwork for 

future drought classification models, additional efforts are 

necessary to enhance the accuracy of the model. 

With a one-month lead time, artificial neural networks are 

used in "Applying machine learning for drought prediction 

using data from a large ensemble of climate simulations" [22]. 

This method predicts the onset of drought in two European 

domains. The paper addresses the application of explainable 

AI methods to acquire insights into the outcomes using data 

from a model of a large ensemble. Consequently, the models 

give chances to examine the impact of input variables on 

drought formation and serve as a foundation for the creation 

of future drought prediction models, but weak prediction 

accuracies are noted [23]. 

According to Jiang and Luo's article "An Evaluation of 

Machine Learning and Deep Learning Models for Drought 

Prediction Using Weather Data" [11]. An experiment was 

conducted to analyze different AI models both machine and 

deep learning models to predict drought using dataset from 

United State. It was reported that no one model performs best 
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for all the assessment criteria, due to the imbalanced nature of 

drought events, special attention was given to developing 

models capable of accurately predicting drought occurrences. 

The study "The global k-means clustering algorithm" by 

Likas, Vlassis, and Verbeek in 2011, suggested changes to the 

technique to lessen the computing effort without significantly 

reducing solution quality [24]. The evaluation took into ac-

count both the solution quality and computational complexity. 

It was discovered that the global k-means algorithm was quite 

effective. But there is a significant issue that needs more 

research, and that has to do with the potential creation of 

theoretical underpinnings for the method's underlying pre-

sumptions [24]. 

Tri et al. in the study titled "Application of Meteorological 

and Hydrological Drought Indices to Establish Drought 

Classification Maps of the Ba River Basin in Vietnam,". The 

aimed of this study was to generate maps illustrating the lack 

of discharge in the Ba River basin of Vietnam. They employed 

various indices, such as the Standardized Precipitation Index 

(SPI), the Drought Index (I), and the Ped Index (Ped), in 

conjunction with the Soil and Water Assessment Tool (SWAT) 

model and the hydrological drought index (KDrought), to 

create these maps [25]. 

The hydrological drought index for the study area was de-

rived by utilizing the simulation outcomes from the SWAT 

model. The impacts of the drought on both the spatial and 

temporal dimensions of the study area were assessed through 

drought classification maps generated from the calculated 

drought index (KDrought). While there were limited calibra-

tions and validations conducted on the SWAT model, the 

study identified a correlation between the moisture regime 

and drought occurrences in the Central region. 

3. Research Methodology 

This study was performed using the US drought dataset, 

which contains different drought levels by state in the US 

from 2000 to 2016. The size of the data was 18.28 MB. Sim-

ilarly, the total records in the dataset were 19,300,680, and 

16,543,884 out of the records had null values. Two million, 

Seven hundred and fifty-six, Seven hundred and ninety-six 

(2,756,796) were left as viable for the experiment. The dataset 

was obtained from data. World, it is a dataset containing dif-

ferent drought levels by state in the United States (US) [27]. 

The structure of the dataset is described in Tables 1 and 2, and 

the stages of the experiment can be viewed diagrammatically 

in Figure 1. 

Figure 1 shows the extreme skewness of the entire dataset, 

favouring more free drought seasons. The no drought, I mean 

class 0 dataset, was approximately 60% of the whole dataset, 

signifying 1,652,230 out of 2,756,796 rows. The other classes, 

such as abnormal dry (class 1), moderate drought (class 2), 

severe drought (class 3), and extreme drought (class 4), had 

17% (466,944), 11% (295,331), 7% (196,802) and 4% 

(106,265) of tuples respectively. The last class of the drought, 

that is, exceptional drought (class 5) had extremely lowest 

representation of 1% (39,224) observations. 

 
Figure 1. The Data Distribition according to the target variable. 

 
Figure 2. The Data Distribition according to the months of the year. 

 
Figure 3. The Data distribution according to the years. 

Further exploration of the dataset, as revealed in Figure 2, 

examined the distribution of the dataset according to the 

months of the years. The figure shows that the months of July 

and August were prevalent in the dataset, while observations 

from February and April were least represented. However, the 

state of the climate change looks similar bimonthly. 

Figure 3, reveals that non of the year had less that 140, 000 
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records in the whole dataset, although 2009 and 2014 had the lowest representations. 

Table 1. The Attributes of the drought’s tuples; Independent Variables. 

S/N Attributes Description 

1. WS10M_MIN Minimum Wind Speed at 10 Meters (m/s) 

2. QV2M Specific Humidity at 2 Meters (g/kg) 

3. T2M_RANGE Temperature Range at 2 Meters (C) 

4. WS10M Wind Speed at 10 Meters (m/s) 

5. T2M Temperature at 2 Meters (C) 

6. WS50M_MIN Minimum Wind Speed at 50 Meters (m/s) 

7. T2M_MAX Maximum Temperature at 2 Meters (C) 

8. WS50M Wind Speed at 50 Meters (m/s) 

9. TS Earth Skin Temperature (C) 

10. WS50M_RANGE Wind Speed Range at 50 Meters (m/s) 

11. WS50M_MAX Maximum Wind Speed at 50 Meters (m/s) 

12. WS10M_MAX Maximum Wind Speed at 10 Meters (m/s) 

13. WS10M_RANGE Wind Speed Range at 10 Meters (m/s) 

14. PS Surface Pressure (kPa) 

15. T2MDEW Dew/Frost Point at 2 Meters (C) 

16. T2M_MIN Minimum Temperature at 2 Meters (C) 

17. T2MWET Wet Bulb Temperature at 2 Meters (C) 

18. PRECTOT Precipitation (mm day-1) 

 
Figure 4. Generic Architecture of KGBA Model. 
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The Gradient Boosting Algorithm (GBA) is a popular 

technique in supervised machine learning used for regression 

and classification tasks, as depicted in Figure 4. It works by 

combining multiple weak individual models to create a 

stronger final model. This process involves iteratively ad-

justing the weak hypothesis or learning algorithm to enhance 

its predictive power. 

Among the various frameworks available for Gradient 

Boosting, LightGBM (LGBM) stands out due to its speed, 

memory efficiency, tunability, and flexibility. LightGBM 

utilizes tree-based learning algorithms and is designed to be 

distributed and efficient, offering advantages over traditional 

boosting methods. Another popular boosting method, 

XGBoost, is also notable for its high performance and can 

serve as a benchmark for comparison [27]. 

KMeans Gradient Boosting Algorithm (KGBA) 

Step 1: Clean the Data 

cleaned_data = clean(data) 

Step 2: Dimensionality Reduction using Principal Com-

ponent Analysis (PCA) 

reduced_data = re-

duce_dimensionality_using_PCA(cleaned_data) 

Step 3: Kmeans++ 

num_clusters = choose_num_clusters(reduced_data) 

centroids = initial-

ize_centroids_using_kmeans_pp(reduced_data, 

num_clusters) 

# Iterate until convergence 

while True: 

      # Assign data to closest centroids 

      cluster_assignments = as-

sign_data_to_closest_centroids(reduced_data, centroids) 

          # Update centroids 

      new_centroids = up-

date_centroids(cluster_assignments, reduced_data) 

   # Check for convergence 

      if centroids == new_centroids: 

          break; 

          centroids = new_centroids 

Step 4: Gradient Boosting 

X_train, X_test, y_train, y_test = 

split_data(cluster_assignments, cleaned_data) 

3.1. Data Preprocessing 

As per the United States Environmental Protection Agen-

cy's Climate Change Indicators report on Drought in 2023, 

this indicator assesses the drought status across U.S. territo-

ries. Various indices have been developed to gauge the sever-

ity of drought conditions, incorporating factors like precipi-

tation, soil moisture, stream flow, vegetation health, among 

others. However, the Palmer Drought Severity Index stands 

out as the most commonly utilized metric, deriving from 

measurements of precipitation and temperature collected at 

weather stations. The algorithm 1 provided serves as a pre-

liminary outline of the algorithm employed in this study. It 

delineates the sequential steps involved and elucidates how 

various processes interact with each other. 

There were 18 independent variables in the dataset with 5 

targets as dependent variables as shown in Tables 1 and 2, 

respectively. The preprocessing aspect is an important step 

due to the unstructured nature of the dataset. It is imperative to 

check the data for any errors, noise or missing values for a 

reliable outcome. Therefore, all uncompleted and duplicated 

records were removed, and the data were transformed to make 

it coherent and easy to read by machine learning algorithms. 

The machine learning algorithms such as K-means++, Prin-

cipal Component and Gradient Boosting algorithms do not 

work with string data. Hence, a data encoding function of 

scikit library of Python was employed to translate the data into 

a numerical dataset. 

 
Figure 5. US Drought Map [28]. 

Table 2. The Map Key Description. 

S/N Label Description 

a. None Drought Absent 

b. D0 Abnormally dry 

c. D1 Moderate drought 

d. D2 Severe drought 

e. D3 Extreme drought 

f. D4 Exceptional drought 

Table 2 and Figure 5 show the Drought areas and the major 

keys description of the map. The U.S. Drought Monitor is 

jointly produced by the National Drought Mitigation Center at 

the University of Nebraska-Lincoln, the United States De-

partment of Agriculture, and the National Oceanic and At-

mospheric Administration. Map courtesy of NDMC. 

Dependent and Independent Variables Analysis 
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The Univariate Analysis as shown in Figures 6 and 7 de-

scribed each of the independent variables to determine the 

level of skewness and noise in the dataset. 

 

 
Figure 6. The univariant Features’ Outlier Analysis. 

 

 
Figure 7. The Univariant Features’ Outlier Analysis. 

Any data point that significantly deviates from the typical 

range of values within a dataset is known as outlier. These 

outliers can represent exceptional cases that fall well outside 

the norm for individual samples or entire populations. They 

are distinct data points that stand out due to their extreme 

values. Similarly, Figures 3 and 4 illustrate the status of each 

independent variable, serving the purpose of identifying and 

removing irrelevant sets or features. The dataset initially 

contained 2,756,796 records, among which 65,933 (2.39%) 

were identified as outliers for Precipitation (mm day-1) 

(PRECTOT). Similarly, surface pressure (kPa) (PS) exhibited 
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73,197 outlier records, approximately 2.65%. Conversely, 

Specific Humidity at 2 Meters (g/kg) (QV2M) showed ex-

ceptional consistency with only one outlier, which was ex-

tremely impressive. Temperature at 2 Meters (C) (T2M) pre-

sented 4,531 (0.16%) outlier records, indicating some varia-

bility. Dew/Frost Point at 2 Meters (C) (T2MDEW) demon-

strated a fair representation, with 2,023 (~0.07%) outlier 

records identified. Wet Bulb Temperature at 2 Meters (C) 

(T2MWET) displayed 1,814 (0.06%) outlier records, a mar-

ginal proportion compared to the dataset's volume. Maximum 

Temperature at 2 Meters (C) (T2M_MAX) showed 3,384 

(~0.12%) outlier records, indicating a fair representation as 

well. In contrast, the Minimum Temperature at 2 Meters (C) 

(T2M_MIN) exhibited 6,944 (~0.25%) outliers. Temperature 

Range at 2 meters (C) (T2M_RANGE) indicated 3,628 

(~0.13%) standard outliers. Earth Skin Temperature (C) (TS) 

contained 4,762 (~0.17) outlier values, which were negligible 

in the context of the entire dataset. 

Upon examination of Wind Speed at 10 Meters (m/s) 

(WS10M), 29,954 (~1.08%) records were identified as outli-

ers. Maximum Wind Speed at 10 Meters (m/s) 

(WS10M_MAX) recorded 23,387 (~0.84%) outliers, while 

Minimum Wind Speed at 10 Meters (m/s) (WS10M_MIN) 

exhibited a relatively high outlier count at 39,901, represent-

ing approximately 1.4% of the total records. Minimum Wind 

Speed at 10 Meters (m/s) (WS10M_RANGE) displayed 

35,979 outliers, approximately 1.3% of the total records. 

For Wind Speed at 50 Meters (m/s) (WS50M), 23,090 out-

liers were identified, constituting approximately 0.8% of the 

total records. Maximum Wind Speed at 50 Meters (m/s) 

(WS50M_MAX) exhibited 25,985 outliers, representing ap-

proximately 0.94% of the dataset. Minimum Wind Speed at 

50 Meters (m/s) (WS50M_MIN) displayed 19,569 outliers, 

constituting approximately 0.70% of the total records. 

Notably, the Wind Speed Range at 50 Meters (m/s) 

(WS50M_RANGE) contained 33,808 noisy data points, rep-

resenting approximately 1.22% of the total records, marking it 

as one of the highest outlier counts in the dataset. 

 
Figure 8. The Skewed Analysis of the Dependent Variables. 
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Figure 8 shows a classical view of each of the variable's 

skewness after the elimination of noise and null values. 

Applying Bulmer, 1979 skewness rules to Figure 8, the 

variables PRECTOT (4.56), WS10M (1.11), WS10M_MIN 

(1.40), WS10M_MAX (1.28), and WS50M_RANGE (1.2) 

were highly skewed positively, and this can impact the accu-

racy of the model’s prediction. Similarly, QV2M, 

T2M_RANGE, WS10M_RANGE, WS50M, WS50M_MAX, 

and WS50M_MIN were moderately positively skewed with 

various degrees as follows: 0.52, 0.09, 0.93, 0.86, 0.89, 0.86, 

respectively. Conversely, the following independent variable 

can be classified to be approximately symmetric: fips (-0.07), 

T2M (-0.42), T2MDEW (-0.30), T2MWET (-0.28), 

T2M_MAX (-0.46), T2M_MIN (-0.36), TS (-0.39). The only 

feature that was moderately negatively skewed was PS 

(-2.13). 

Table 3. Independent Variables’ Kurtosis Analysis. 

S/N Feature Kurtosis values S/N Feature Kurtosis values 

1. fips -1.10 13. WS10M_MAX 0.70 

2. PRECTOT 33.30 14. WS10M_MIN 3.15 

3. PS 4.81 15. WS10M_RANGE 2.08 

4. QV2M -0.78 16. WS50M 0.81 

5. T2M 0.55 17. WS50M_MAX 0.98 

6. T2MDEW -0.73 18. WS50M_MIN 0.59 

7. T2MWET -0.75 19. WS50M_RANGE 2.20 

8. T2M_MAX -0.50 20. Score 1.38 

9. T2M_MIN -0.44 21. Year 1.20 

10. T2M_RANGE -0.31 22. month 1.20 

11. TS -0.53 23. day 1.19 

12. WS10M 1.41    

 

 
Figure 9. Correlation Plot For Feature Selection. 

Further investigation into the data from Table 3 revealed a 

state where the distribution of classes or categories within the 

dataset is highly skewed, with one or more classes being 

significantly more prevalent than others. The Kurtosis values 

of the data show how tailed to the right or left the data is, 

which gives more information on outliers in the dataset. 

Figure 9 shows the visualization of the correlation plot; this 

plot shows are how closely related correlated are the variables; 

the closer to 1, the darker the shade, the more correlated the 

features are. As illustrated in Figure 9, the features to be se-

lected for the experiments were plotted against each other to 

calculate the degree of mathematical relationship known as 

correlation. This aspect of preprocessing is crucial to building 

a good model that can be generalized easily. All correlation 

coefficients of 1.0 to 0.8 indicate that the correlation was very 

strongly positive, such as Specific Humidity at 2 Meters (g/kg) 

(QV2M), Temperature at 2 Meters (C) (T2M), Dew/Frost 

Point at 2 Meters (C) (T2MDEW), Maximum Temperature at 

2 Meters (C) (T2M_MAX), Wet Bulb Temperature at 2 Me-

ters (C) (T2MWET), Minimum Temperature at 2 Meters (C) 

(T2M_MIN), Temperature Range at 2 meters (C) 
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(T2M_RANGE) and Earth Skin Temperature (C) (TS). 

A similar very strong correlation was also found among the 

following features: Wind Speed at 10 Meters (m/s) (WS10M), 

Maximum Wind Speed at 10 Meters (m/s) (WS10M_MAX), 

Minimum Wind Speed at 10 Meters (m/s) (WS10M_MIN), 

Minimum Wind Speed at 10 Meters (m/s) 

(WS10M_RANGE), Wind Speed at 50 Meters (m/s) 

(WS50M), Maximum Wind Speed at 50 Meters (m/s) 

(WS50M_MAX), Minimum Wind Speed at 50 Meters (m/s) 

(WS50M_MIN) and Wind Speed Range at 50 Meters (m/s) 

(WS50M_RANGE). 

However, there were some with weak positive correlations, 

such as PRECTOT and QV2M, T2MDEW, T2M, T2MWET, 

and T2M_MIN. However, most of the temperature features 

were negatively and weakly correlated with the wind features. 

   
Figure 10. The Bi-variance Correlation between some Dependent Variables. 

Attributes QV2M, T2M, T2MDEW, T2MWET, 

T2M_MAX, T2M_MIN and TS have shown strong positive 

correlation. Similary, WS10M, WS10M_MAX and 

WS10M_MIN have shown a strong positive correlation. 

Likewise, WS50M, WS50M_MAX and WS50M_MIN show 

strong positive correlation. However, the scatter plots above 

show significant variance between the data points despite the 

strong positive correlation. Hence, we'll retain all these vari-

ables and try other feature selection methods. 

 
Figure 11. An Overview of Numbers of Tuples Across 17 Year. 

3.2. Model Building 

Following essential data exploration and preprocessing 

steps, the dataset underwent systematic division into three 

distinct subsets to facilitate the development and evaluation of 

the machine learning model. The training set assumed a piv-

otal role, comprising data dedicated solely to training the 

model, enabling it to grasp patterns and relationships within 

the dataset. Concurrently, the validation set emerged as a 

crucial tool for fine-tuning hyperparameters and evaluating 

the model's performance during training, thereby mitigating 

overfitting risks. The test set remained isolated throughout 

model development and was exclusively reserved for final 

evaluation. It served as a litmus test for the model's general-

ization capabilities, offering insights into its performance on 

previously unseen data. To ensure the model's training on past 

data and evaluation on future data, the division of training, 

validation, and test sets occurred over time using the date 

feature, as seen in Figures 10 and 11. 

Additional analysis was conducted on the dataset, where 

models were constructed using the ensemble algorithm, spe-

cifically the Extreme Gradient Boosting Algorithm, following 

the procedures outlined in Algorithm 1. Furthermore, a hy-

bridized model combining K-means++ and the Gradient 

Boosting Algorithm(KGBA) was developed with a Principal 

Component Analysis function for dimensionality reduction, 

as detailed in Figure 11. The Performance Metrics were cal-

culated as an average percentage of test options (Training set 

and Testing set) used to run the selected ensemble algorithm 

(Gradient Boosting Algorithm). 

One very important thing in K-means++ is choosing the 

number of clusters to use, which is the K. In this study, the elbow 

method was employed to help determine the proper number of 

clusters for K-means++ clustering. Figure 12 shows the plot for 

the elbow method, and this was done by plotting the distortion 

against the number of clusters. By visually inspecting the plot in 

Figure 12 and identifying the point at which additional clusters 

bring diminishing returns in terms of reducing distortion. The 

distortion measures how evenly distributed the data points are 

inside each cluster. Better grouping is indicated by lower distor-

tion. The plot assists in determining the appropriate number of 

clusters by finding the point of inflection or "elbow" in the plot 

when the distortion improvement is greatly reduced. As indicated 
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in Figure 12, three points with cluster numbers 3, 4 and 5 were 

seen as the point of inflection, so this research work tested all 

three points to see which had a better performance and cluster 

number 5 was concluded to have the best performance and was 

chosen as the K, which is the K needed for the implementation of 

the K-means++. 

 
Figure 12. The Elbow Method To Determine Number of Clusters. 

The scaled feature matrix X_scaled is subjected to Principal Component Analysis (PCA) and the data is transformed into the 

new lower-dimensional space denoted by X_pca using the fit_transform() method after computing the principal components 

using the PCA() function from scikit-learn. 

 
Figure 13. Training Dataset Distribution After PCA and K++Mean According To Each Class. 

Figure 13 illustrates the distributions of the dataset for model training. The label class 0,1,2,3,4 had about 490,000, 490,000, 

350,000, 280,000, and 360,000 records, respectively. 
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Figure 14. Test Dataset Distribution After PCA and K++Mean According To Each Class. 

The distributions of the dataset during the testing is depicted in Figure 14. The class 0,1,2,3,4 of the label had about 120,000, 

120,000, 90,000, 79,000 and 95,000 records, respectively. 

 
Figure 15. Data Clusters During PCA. 

The modified data X_pca, which contains the principal 

components derived from PCA, is subjected to K-Means++ 

clustering, and the data were clustered using the K-Means++ 

algorithm into n_clusters (in this case, 5 separate clusters) as 

depicted in Figure 15. The fit_predict() method is used to 

compute the clusters for the data once the KMeans++ function 

from scikit-learn is used to generate a K-Means++ object. The 

clusters array contains the assigned clusters as a result. A new 
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feature is then added to the DataFrame X named 

"kmeans_scaled" that holds the cluster designations for each 

data point after applying K-Means++. Afterwards, the machine 

learning model uses this new feature as an additional input. 

 
Figure 16. Confusion matrix for K-Means++ Gradient Boosting 

Algorithm (KGBA). 

Data exploration and analysis were performed on the da-

taset, which includes dimensionality reduction using Principal 

Component Analysis and clustering using K-means++ as 

shown in Figures 13, 14, and 15. The implementation was 

carried out on the virtual machine of kaggle.com running 

Graphics Processing Unit (GPU) with Python Scikit-learn 

libraries. Figure 16 shows the confusion matrix for the model 

developed in this study, K-means++ Gradient Boosting Al-

gorithm. This was done to assess the model's performance on 

each class independently, providing insights into how well it 

handles minority classes. This confusion matrix was used to 

generate a classification report in Table 4 to gain more insight 

into the performance of the model. 

The explorations began with the first phase, which was 

the data preprocessing stage. This stage of data transfor-

mation allows the machine to easily interpret and use the 

data. In the second phase, Principal Component Analysis 

(PCA) was used to reduce dimensionality. At the end of the 

operation the following features were considered viable for 

building the model: PRECTOT, PS, QV2M, T2M, 

T2MDEW, T2MWET, T2M_MAX, T2M_MIN, 

T2M_RANGE, TS, WS10M, WS10M_MAX, 

WS10M_MIN, WS10M_RANGE, WS50M, 

WS50M_MAX, WS50M_MIN, WS50M_RANGE. It re-

duced the number of features while preserving the crucial 

information in the data by focusing on the most significant 

variances, as illustrated in Figures 10 & 11. To improve the 

performance of the model, the K-means++ was used to 

separate the points into different clusters. In the third phase, 

the clustered points were added as a new feature and the 

Gradient Boosting Algorithm (GBA) was used to build the 

prediction model with a weather dataset. The machine 

learning standard metrics were used for the evaluation to 

know how the new model K-Means++ Gradient Boosting 

Algorithm (KMGBA) fares. 

4. Result and Discussion 

The process of data exploration was completed in section 

3.0, during which the preprocessing activities were strictly 

carried out. The models were trained using different algo-

rithms, among which are Gradient Boosting (GB), K-Nearest 

Neighbour(KNN), Random Forest (RF) and Naïve Bayes, and 

the new algorithm, which is the combination of K-Nearest 

Neighbour (KNN++) and Gradient Boosting (KGBA). The 5 

levels of drought (D0: Abnormal dry, D1: Moderate drought, 

D2: Severe drought, D3: Extreme drought and D4: Excep-

tional drought) in the dataset were predicted, and standards 

metrics were used, such as Recall, Precision, F1Score and 

accuracy to compare the performance of the models. The 

outcome of the models can be viewed in Tables 5-8. Although 

emphasis was laid on the recall due to the nature of the da-

taset. 

Table 4. KXGBA Classification Report for All the Classes. 

 precision recall f1-score Support 

Class 0 0.57 0.50 0.53 10904 

Class 1 0.56 0.23 0.33 10737 

Class 2 0.69 0.16 0.26 10880 

Class 3 0.28 0.34 0.31 10932 

Class 4 0.33 0.72 0.45 10890 

Class 5 0.75 0.78 0.76 10803 

Accuracy   0.46 65146 

macro avg 0.53 0.46 0.44 65146 

weighted avg 0.53 0.46 0.44 65146 

Table 4 presents the performance results of the K-means++ 

Gradient Boosting Algorithm. The algorithm achieved a pre-

cision of approximately 57%, indicating that out of the 10,904 

instances predicted as the "no drought" (Class 0), roughly 

6,215 were accurate positive predictions of all instances. 

However, the remaining 43% of the records were erroneously 

classified as positive. 

The recall value for this algorithm was lower, standing at 

around 50%. This implies that the algorithm correctly identified 

only half of the actual "no drought" instances in the dataset. 

When assessing the records classified as Abnormal drought 

(Class 1), approximately 56% of the 10,737 instances were 
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accurately identified as positive (true positives) out of all 

instances predicted as positive, encompassing both true posi-

tives and false positives. This corresponds to 6,010 instances 

within the class. However, the recall prediction was less 

promising, indicating only a 23% accurate prediction of actual 

positive instances of Abnormal drought. 

The precision value for the Moderate drought (Class 2) was 

notably high, standing at 69%. This indicates that out of all 

instances predicted as positive by the model, 7,507 were indeed 

positive out of the total 10,880 instances. However, the recall 

value for this class is strikingly low compared to the precision 

prediction. This suggests that only 16% of the actual moderate 

drought instances were correctly identified as moderate drought 

this may be due to the skewness of the dataset. 

For the Severe drought (Class 3), the model achieved a 

precision of 28%, indicating that approximately 28% of the 

instances predicted as positive were accurate predictions out 

of the total instances. Conversely, the recall value was rec-

orded at 34%, suggesting that only 34% of the actual severe 

drought instances were correctly identified by the model, 

totaling 3,717 of the actual instances out that were actual 

severe drought. 

Similarly, for the Extreme drought (Class 4), the precision 

prediction value was 33%, indicating that around 33% of the 

total instances predicted as positive were accurate predictions, 

with a false positive prediction rate of 67%. However, the 

recall value was notably higher, standing at 72%, indicating 

that the model accurately predicted the presence of extreme 

drought in approximately 7,840 cases. 

The exceptional drought (Class 5) was predicted with 75% 

precision, an indication of 8,102 postive instances correctly 

predicted from 10,803 instances. The 25% of the total records 

were erroneously classified as positive. In similar way, the 

recall value for the same exceptional drought was high. The 

78% of instances were accurately predicted of the actual ex-

ceptional drought cases. It signifies that the model wrongly 

classified 22% of this class. 

The overall accuracy of the model in the prediction of this 

multiple classes is 46% because the model failed to perform 

well in some of the classes probably because of low per-

centage of representation. 

Table 5. GBA Classification Report For All the Classes. 

Class Name precision recall f1-score support 

Class 0 0.56 0.49 0.52 10904 

Class 1 0.53 0.23 0.32 10737 

Class 2 0.68 0.15 0.25 10880 

Class 3 0.28 0.35 0.31 10932 

Class 4 0.33 0.72 0.45 10890 

Class 5 0.74 0.77 0.76 10803 

Class Name precision recall f1-score support 

accuracy   0.45 65146 

macro avg 0.52 0.45 0.43 65146 

weighted avg 0.52 0.45 0.43 65146 

Table 5 presents the classification report depicting the 

performance metrics for Drought Prediction utilizing the 

Traditional Gradient Boosting Algorithm. The model's effec-

tiveness in predicting drought situations across different 

classes is assessed based on precision, recall, and F1-scores. 

The performance metrics for this model are as follows: 

Class 0 achieved a precision of 56%, a recall of 49%, and an 

F1-score of 52%, with a support of 10,904 instances. For 

Class 1, the precision was 53%, the recall was 23%, and the 

F1-score was 32%, with a support of 10,737 instances. Class 2 

exhibited a precision of 68%, a recall of 15%, and an F1-score 

of 25%, with a support of 10,880 instances. Class 3 had a 

precision of 28%, a recall of 35%, and an F1-score of 31%, 

with a support of 10,932 instances. Class 4 displayed a pre-

cision of 33%, a recall of 72%, and an F1-score of 45%, with a 

support of 10,890 instances. Class 5 demonstrated a precision 

of 74%, a recall of 77%, and an F1-score of 76%, with a 

support of 10,803 instances. The overall accuracy of the 

model was 45%, calculated over a total of 65,146 instances. 

Table 6. Random Forest Model’s Performance across all the classes 

of Drought. 

Class Name precision Recall f1-score Support 

Class 0 0.6095 0.6039 0.6067 10904 

Class 1 0.4020 0.3868 0.3943 10737 

Class 2 0.2748 0.2707 0.2727 10880 

Class 3 0.1716 0.1701 0.1709 10932 

Class 4 0.1565 0.1680 0.1620 10890 

Class 5 0.8606 0.8578 0.8592 10803 

accuracy   0.4089 65146 

macro avg 0.4125 0.4095 0.4110 65146 

weighted avg 0.4118 0.4089 0.4103 65146 

Table 6, presents the classification report showcasing the 

performance metrics for Drought Prediction with Random 

Forest model. The classification model's performance metrics 

are detailed as follows: For Class 0, a precision of 60%, recall 

of 60%, and F1-score of 60% were achieved, with a support of 

10,904 instances. Class 1 exhibited a precision of 40%, recall 

of 38%, and F1-score of 39%, with a support of 10,737 in-
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stances. Class 2 demonstrated a precision of 27%, recall of 

27%, and F1-score of 27%, with a support of 10,880 instances. 

For Class 3, precision was 17%, recall was 17%, and F1-score 

was 17%, with a support of 10,932 instances. Class 4 dis-

played a precision of 15%, recall of 16%, and F1-score of 

16%, with a support of 10,890 instances. Finally, Class 5 

showed a precision of 86%, recall of 85%, and F1-score of 

85%, with a support of 10,803 instances. The overall accuracy 

of the model was 40%, calculated over a total of 65,146 in-

stances. 

Table 7. KNN Classification Report For All the Classes. 

Class Name precision recall f1-score support 

Class 0 0.3554 0.4534 0.3985 10904 

Class 1 0.2651 0.2493 0.2570 10737 

Class 2 0.1807 0.1833 0.1820 10880 

Class 3 0.1472 0.1452 0.1462 10932 

Class 4 0.2031 0.1811 0.1915 10890 

Class 5 0.6855 0.6098 0.6455 10803 

accuracy   0.3033 65146 

macro avg 0.3062 0.3037 0.3034 65146 

weighted avg 0.3057 0.3033 0.3030 65146 

Table 7 provides the classification report detailing the 

performance metrics for Drought Prediction using the 

K-Nearest Neighbor (KNN) algorithm. The model's ability to 

predict drought situations across different classes is evaluated 

based on precision, recall, and F1-scores. 

The model's performance are summarized as follows: For 

Class 0, a precision of 35%, recall of 45%, and F1-score of 

39% were achieved, with a support of 10,904 instances. Class 

1 exhibited a precision of 26%, recall of 24%, and F1-score of 

25%, with a support of 10,737 instances. Class 2 demon-

strated a precision of 18%, recall of 18%, and F1-score of 

18%, with a support of 10,880 instances. For Class 3, preci-

sion was 14%, recall was 14%, and F1-score was 14%, with a 

support of 10,932 instances. Class 4 displayed a precision of 

20%, recall of 18%, and F1-score of 19%, with a support of 

10,890 instances. Finally, Class 5 showed a precision of 68%, 

recall of 60%, and F1-score of 64%, with a support of 10,803 

instances. The overall accuracy of the model was 30%, cal-

culated over a total of 65,146 instances. 

Table 8 is the classification report which shows the per-

formance metrics for Drought Prediction using the Naïve 

Bayes Classifier. Table 8 presents the classification report 

detailing the performance metrics for Drought Prediction. 

The model's ability to predict drought situations across di-

verse classes is assessed through precision, recall, and 

F1-scores. 

The results are as follows: For Class 0, a precision of 

0.2647, recall of 0.1045, and F1-score of 0.1499 were 

achieved, with a support of 10,904 instances. Class 1 exhib-

ited a precision of 0.1584, recall of 0.0392, and F1-score of 

0.0629, with a support of 10,737 instances. Class 2 demon-

strated a precision of 0.1171, recall of 0.0342, and F1-score of 

0.0529, with a support of 10,880 instances. For Class 3, pre-

cision was 0.0639, recall was 0.0369, and F1-score was 

0.0467, with a support of 10,932 instances. Class 4 displayed 

a precision of 0.2375, recall of 0.9366, and F1-score of 0.3789, 

with a support of 10,890 instances. Finally, Class 5 showed a 

precision of 0.4070, recall of 0.2164, and F1-score of 0.2826, 

with a support of 10,803 instances. The overall accuracy of 

the model was 0.2283, calculated over a total of 65,146 in-

stances. 

Table 8. Naive Bayes Classifier Classification Report For All the 

Classes. 

Class Name precision recall f1-score support 

Class 0 0.2647 0.1045 0.1499 10904 

Class 1 0.1584 0.0392 0.0629 10737 

Class 2 0.1171 0.0342 0.0529 10880 

Class 3 0.0639 0.0369 0.0467 10932 

Class 4 0.2375 0.9366 0.3789 10890 

Class 5 0.4070 0.2164 0.2826 10803 

accuracy   0.2283 65146 

macro avg 0.2081 0.2280 0.1623 65146 

weighted avg 0.2079 0.2283 0.1623 65146 
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Figure 17. Performance Comparison of the model used. 

The performance of various machine learning algorithms 

for prediction of drought can be compared based on their 

accuracy, precision, recall, and F1-score metrics. The com-

parative analysis of the algorithms mentioned can simply be 

summaried further from Figure 17 as follows: 

Accuracy: K-Means++ Gradient Boosting Algorithm (KGBA) 

achieved the highest accuracy of approximately 46% across all 

the classes of drought levels, followed closely by Traditional 

Gradient Boosting Algorithm (GBA) and K-Nearest Neighbor 

algorithm, both with an accuracy of 45%. Random Forest algo-

rithm had an accuracy of 41%, while Naïve Bayes classifier 

algorithm exhibited the lowest accuracy of 23%. 

Precision: KGBA also outperformed other algorithms in 

terms of precision, with a precision value of ~53%. GBA fol-

lowed closely with a precision of ~52%, while Random Forest 

algorithm had a precision of ~41%. K-Nearest Neighbor algo-

rithm exhibited lower precision of 31%, and Naïve Bayes 

classifier algorithm had the lowest precision of 21%. 

Recall: KGBA and GBA had similar recall values, both 

around ~45%. Random Forest algorithm and K-Nearest 

Neighbor algorithm also exhibited comparable recall values, 

approximately ~41% and ~30% respectively. Naïve Bayes 

classifier algorithm had the lowest recall value of ~23%. 

F1-score: KGBA had the highest F1-score of ~44%, fol-

lowed closely by GBA with a score of ~43%. Random Forest 

algorithm and K-Nearest Neighbor algorithm had similar 

F1-scores, around ~41% and 30% respectively. Naïve Bayes 

classifier algorithm had the lowest F1-score of ~16%. 

In summary, comparing the performance of these machine 

learning algorithms, it's evident that K-Means++ Gradient 

Boosting Algorithm (KGBA) achieved the highest accuracy, 

precision, recall, and F1-score among the algorithms consid-

ered. Following closely behind KGBA was the Traditional 

Gradient Boosting Algorithm (GBA), which exhibited similar 

performance across all metrics. Random Forest algorithm 

showed moderate performance, while K-Nearest Neighbor 

algorithm demonstrated relatively lower precision and recall 

values. Notably, Naïve Bayes classifier algorithm exhibited the 

lowest performance across all metrics, with significantly lower 

accuracy, precision, recall, and F1-score values compared to the 

other algorithms. In summary, KGBA and GBA performed the 

best overall, followed by Random Forest, K-Nearest Neighbor, 

and finally, Naïve Bayes classifier algorithm. 

KGBA demonstrated the best overall performance across 

all metrics, followed closely by GBA. Random Forest algo-

rithm performed moderately well, while K-Nearest Neighbor 

algorithm showed relatively lower performance. Naïve Bayes 

classifier algorithm exhibited the lowest performance among 

the algorithms evaluated. 

5. Conclusion 

In this study, the K-means++ Gradient Boosting Algorithm 

(KGBA) was introduced to enhance the performance of the 

Gradient Boosting Algorithm (GBA) in classifying 

drought-prone areas. Through comparisons with standard 

models like Random Forest and Naïve Bayes classifiers, the 

study evaluated KGBA's efficacy in drought prediction using 

criteria such as accuracy, precision, recall, and F1-Score. 

Results showed KGBA's slight advantage over GBA in fore-

casting drought likelihood based on historical data, high-

lighting its potential for improving predictive capabilities in 

drought mitigation. 

By integrating K-means++ into GBA, KGBA aimed to 

better identify and categorize drought-prone regions, offering 

a more precise model for drought prediction in line with Jiang 

and Luo as suggested in the article. Ensemble models like 
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KGBA and Random Forest performed notably well, particu-

larly in predicting extreme drought seasons [11]. Incorporat-

ing advanced techniques such as K-means++ and Principal 

Component Analysis during feature engineering could further 

enhance prediction accuracy. These findings support previous 

research by Likas et al., endorsing the effectiveness of the 

K-means algorithm in clustering for both solution quality and 

computational complexity considerations [24]. 

6. Recommendation 

Further research can be conducted to validate the KGBA 

model's usefulness in multiple circumstances by applying it to 

other geographical regions and datasets. Furthermore, the 

model can be improved by taking into account additional 

environmental and socioeconomic elements that influence 

drought occurrence, allowing for a more complete knowledge 

and prediction of drought events. 

Overall, the KGB model represents an encouraging step for-

ward in drought prediction, with potential benefits for resource 

management, agriculture, and water conservation activities. 
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