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Abstract 

Sea Surface Temperature (SST), a critical environmental element in the ocean, significantly impacts the global 

atmosphere-ocean energy balance and holds the potential to trigger severe weather like droughts, floods, and El Niño events. 

Therefore, the prediction of future SST dynamics is crucial to identifying these extreme events and mitigating the damage they 

caused. In this study, we introduce a time series prediction method based on the Self-Attention Mechanism-Long Short-Term 

Memory (SAM-LSTM) model. In addition, the historical time-series satellite data of SST anomaly (SSTA) is used instead of 

SST itself considering that the fluctuations of SST are very small compared to their absolute magnitudes. The Seasonal-Trend 

decomposition using Loess (STL) method is adopted to decompose the complex non-linear SSTA time series into trend 

components, seasonal components, and residual components. Then, the deseasonalized time series data at 6 locations in the 

Bohai Sea are used to train and valid the developed SAM-LSTM model. After that, the validated models are applied to the 

Yellow Sea, East China Sea, and South China Sea. The experimental results show that the combination of STL time series 

decomposition and SAM-LSTM can achieve high-precision prediction of daily SSTA than LSTM. This suggests that the 

methodology used in this paper has a good application for short-term daily SST prediction. 
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1. Introduction 

Sea Surface Temperature (SST), a critical environmental 

element in the ocean, has significant impacts on the transfer 

of energy, momentum, and moisture between the ocean and 

the atmosphere. Changes in SST can influence the global 

atmosphere-ocean energy cycle and potentially result in ca-

lamities such as droughts, floods, and El Niño events [1-3]. 

Therefore, predicting SST has become a focal point of cur-

rent research. Accurately predicting SST has significant sci-

entific and practical importance. However, due to the influ-

ence of multiple factors, the accuracy of SST prediction in 
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coastal areas is frequently low. 

Methods for predicting SST include numerical models and 

data-driven models. In numerical model studies, researchers 

establish complex thermodynamic and physical equations 

based on physical and chemical indicators in the ocean to 

predict SST [4, 5]. However, numerical methods are based 

on physical conditions and processes, causing computational 

complexity and laborious processes [6-8]. Additionally, they 

are typically used for coarse resolution large area predictions 

rather than specific fine resolution site predictions [9]. The 

data-driven methods can be divided into two categories: tra-

ditional statistical methods and emerging machine learning 

methods. Statistical methods include Markov models, ca-

nonical correlation analysis, and empirical orthogonal func-

tions [10-12]. However, these methods can only model linear 

relationships and lack the ability to model complex nonlinear 

processes [13, 14]. Conversely, machine learning methods 

based on data, can model non-stationary and nonlinear pat-

terns in SST time series and have been proven to produce 

satisfactory predictive results. Various neural network mod-

els have been used for predicting SST under different varia-

tions [15-17]. For instance, Zhang et al. proposed an 

LSTM-based network to model the temporal relationships of 

SST to predict future values, making the recurrent neural 

networks to address the SST prediction problem first time 

[18]. Subsequently, LSTM has been applied to various oce-

anic element predictions [19-21]. Despite LSTM delivering 

commendable results in time series prediction tasks, its high 

complexity gives rise to issues such as overfitting. Therefore, 

to enhance the predictive accuracy of SST remains a critical 

issue. 

To reduce the error of the LSTM model's prediction results 

and further improve the prediction results, it may be consid-

ered to combine it with other prediction techniques in some 

way. In this paper, we attempt to combine it with 

Self-Attention Mechanism (SAM). This approach is based on 

research into human vision and has been introduced into the 

fields of computer vision, natural language processing and 

others to optimize existing models [22-24]. In this way, the 

model can effectively capture global dependencies and ex-

tract information from previously aggregated features, en-

hancing its ability to identify relevant information. 

Therefore, the research objectives of this paper include the 

following: 1) develop LSTM deep neural network models 

that can predict short and mid-term SST with high accuracy; 

2) improve the LSTM model based on the SAM to achieve 

more accurate predictions; and 3) conduct experiments at 

selected sites in the China Sea utilizing 41 years of satellite 

time-series data to examine the applicability, effectiveness 

and advantages of the proposed combined SAM-LSTM 

model in predicting the short and mid-term daily SST. 

The remainder of the paper is organized as follows: Sec-

tion 2 describes the study area and the time-series SST data 

from the satellite inversion used in this study, and the predic-

tion methodology. Section 3 gives the experimental results. 

Section 4 and 5 present the discussions and conclusions of 

this study. 

2. Materials and Methods 

2.1. Study Area 

The study area is the Bohai Sea in China. The Bohai Sea 

consists of Bohai Bay, Laizhou Bay, Liaodong Bay, the Yel-

low River Estuary, and the central sea area. And the Bohai Sea 

acts as a migration area for various economic fish species, 

possessing rich biological resources. Therefore, predicting the 

dynamics of sea temperature in this area is crucial for research. 

In addition, research has shown that the coastal sea of China 

(mainly including the nearshore and offshore areas of the 

Bohai Sea, Yellow Sea, East China Sea, and South China Sea) 

is a marginal sea of the western North Pacific. Notably, 

against the background of global warming, this region has 

become a key area for exploring typical climate and envi-

ronmental changes and causes in China, particularly the 

eastern mainland and coastal areas. Therefore, achieving 

accurate prediction of SST in the China Seas is significant for 

the protection of national seas, ecological protection, and the 

development of agricultural and trade economies. 

In this study, we select 6 representative sites in the Bohai 

Sea as the study locations. These 6 sites differ in their distance 

from the shoreline, as shown in Figure 1. The 6 sites are de-

noted as L1-L6, where L1-L3 are located in the nearshore area, 

and L4-L6 are located in the offshore area. 

 
Figure 1. The study area is located in the Bohai Sea. 

2.2. Data Sources 

Long time series satellite data is an excellent option for 

predicting marine environment time series. Therefore, the 

data used in this paper is the National Oceanic and Atmos-

pheric Administration (NOAA) 1/4° daily Optimum Interpo-

lation Sea Surface Temperature (daily OISST, version 2), 

with the time range of September 1981 to December 2023. 
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Given the small deviations in SST in comparison to its abso-

lute magnitude, the preference is for utilizing Sea Surface 

Temperature Anomaly (SSTA) for modeling. The SSTA is a 

variable of OISST-V2-AVHRR data, which is calculated 

relative to 1971-2000 climatology (PSD). 

The basic statistical information of SSTA at 6 observation 

sites (L1-L6) is presented in Table 1 for SSTA time series 

prediction analysis. This allows us to observe the size and 

fluctuation range of the SSTA data. 

Table 1. Statistics of the SSTA time series at L1 to L6 from 

1982/01/01 to 2023/12/31. 

Sites 
Mean 

(°C) 

Std 

(°C) 
Min (°C) 

Max 

(°C) 

Median 

(°C) 

L1 0.61 1.89 -4.82 8.59 0.31 

L2 -0.52 1.69 -4.42 6.89 0.41 

L3 -0.16 1.43 -5.05 5.13 -0.27 

L4 0.15 1.15 -4.16 4.65 0.15 

L5 0.44 1.16 -3.82 4.94 0.43 

L6 0.01 1.18 -4.70 4.33 0.02 

2.3. Method 

2.3.1. LSTM Deep Neural Networks 

The LSTM model has the capability to capture long-term 

sequential information in time series data. Therefore, this 

paper utilizes the LSTM model for making predictions on 

time series data. LSTM is an expanded form of the Recurrent 

Neural Networks (RNN) structure, where each LSTM unit 

contains a memory cell and three gates: forget gate, input gate, 

and output gate [25]. These gates regulate the flow of infor-

mation associated with the memory cell state. The forget gate 

determines the amount of memory cell state passed through 

the current LSTM unit, the input gate uses current input and 

previous hidden state information to update the memory cell 

state, and the output gate controls the selective output of the 

current memory cell state. These options enable LSTM to 

understand temporal relationships in lengthy sequences. The 

formula for information state transmission in a single LSTM 

unit is as follows: 

𝑖𝑡 = 𝜎(𝑤𝑥𝑖𝜒𝑡 + 𝑤ℎ𝑖𝐻𝑡−1 + 𝑤𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖)      (1) 

𝑓𝑡 = 𝜎(𝑤𝑥𝑓𝜒𝑡 +𝑤ℎ𝑓𝐻𝑡−1 +𝑤𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓)     (2) 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh(𝑤𝑥𝑐𝜒𝑡 + 𝑤ℎ𝑐𝐻𝑡−1 + 𝑏𝑐)   (3) 

𝑜𝑡 = 𝜎(𝑤𝑥𝑜𝜒𝑡 + 𝑤ℎ𝑜𝐻𝑡−1 + 𝑤𝑐𝑜 ∘ 𝐶𝑡 + 𝑏𝑜)     (4) 

𝐻𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡)             (5) 

Where ∘ is the Hadamard product, 𝜎 is the sigmoid ac-

tivation function, tanh is the activation function, 𝑖𝑡 stands 

for the input gate, 𝑓𝑡 represents the forget gate, 𝑜𝑡 repre-

sents the output cell, 𝐶𝑡  represents the current cell state, 

𝐶𝑡−1 represents the cell state at the previous moment, 𝐻𝑡  

represents the final output, 𝑤 represents the weight coeffi-

cient of the given gate, and 𝑏 is the corresponding bias co-

efficient of the given gate. 

2.3.2. Self-Attention Mechanisms 

Self-Attention Mechanism is an attention mechanism that 

has been studied in natural language processing and comput-

er vision. The mechanism can be formulated as equation (6), 

where 𝑄 is Query, 𝐾 is Key, and 𝑉 is Value. These three 

terms are matrices, all of which are of size 𝐵 × 𝐶 × 𝐻 ×𝑊, 

and are is the dimension of Key. 

Attetion(Q, KV) = softmax (
QKT

√dk
) 𝑉        (6) 

The mechanism reduces the effect of variance on the net-

work gradient update by transposing 𝑄 by 𝐾 and dividing 

each element of the similarity matrix by √𝑑𝑘. Then, the re-

sults are normalized by applying a softmax function to obtain 

the corresponding weight coefficient matrix. Finally, the re-

sulting matrix is multiplied by 𝑉. In this way, the model can 

effectively capture global dependencies and obtain infor-

mation from past aggregated features, enhancing the ability 

to recognize complex moving objects. 

2.3.3. SAM-LSTM Combined Modeling 

This paper develops a deep neural network model using 

SAM and LSTM for predicting specific site SSTA, as il-

lustrated in Figure 2. The model takes SSTA time series as 

input and employs the rolling prediction method. For each 

LSTM model training, historical observed values are uti-

lized to establish a pattern between the SSTA at time 𝑡𝑖 

and its previous 𝑛 values at time 𝑡𝑖−1, 𝑡𝑖−2,…and 𝑡𝑖−𝑛 

(referred to as time window). Then, future predictions are 

made based on the identified pattern and sliding the time 

window, allowing for predictions 𝑘 days ahead. There-

fore, the prediction approach in this paper involves input-

ting the SSTA sequence in the form of a time window into 

the LSTM layer to extract time features. Then input the 

sequence processed by the SAM layer for enhanced in-

formation extraction, and obtain the final prediction result 

through the Dense layer. The latest prediction is used to 

update the input SSTA sequence for predicting daily 

SSTA. 

2.4. Model Evaluation Indicators 

The performance of the SSTA prediction method is meas-

ured using three metrics: mean absolute error (MAE), root 
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mean square error (RMSE), and coefficient of determination 

(R
2
). These are defined as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1              (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

           (8) 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖)
2𝑛

𝑖=1

              (9) 

where 𝑦𝑖  and �̂�𝑖 represent the actual and predicted values, 

respectively, 𝑦
𝑖
 represents the average actual value, 𝑛 rep-

resents the sample size, and 𝑖 represents the ith value. 

3. Results 

3.1. Data Pre-processing 

Before feeding the historical SSTA observations into the 

SAM-LSTM model for training, the SSTA time series at each 

selected location are first deseasonalized and normalized. 

Deseasonalization is useful for exploring trends, cycles, and any 

remaining irregular components of the time series and has been 

shown to contribute to more accurate predictions than using 

original data [26]. Therefore, we have first predicted the desea-

sonalized SSTA data. Then, seasonality is added to obtain the 

final prediction. In addition, the deseasonalized SSTA time se-

ries for each site are normalized to make the data more central-

ized, which facilitates the functioning of the model. 

 
Figure 2. The architecture of the SAM-LSTM deep neural network model for SSTA prediction. 

Table 2. The Yellow Sea, East China Sea and South China Sea Station Location. 

 The Yellow Sea The East China Sea The South China Sea 

Nearshore L7 (121.00°E, 35.66°N) L9 (123.20°E, 28.63°N) L11 (114.60°E, 21.26°N) 

Offshore L8 (123.40°E, 35.27°N) L10 (126.35°E, 29.46°N) L12 (116.06°E, 18.66°N) 

 

3.2. Trend Decomposition 

Seasonal-Trend decomposition using Loess (STL) is a re-

liable method for decomposing time series data into seasonal, 

trend, and residual components. Loess is an algorithm for 

dealing with nonlinear correlation. STL is ideal for time se-

ries decomposition because it can address any type of sea-

sonality. When performing time series decomposition, the 

time series has three main components: the trend, seasonal 

and residual components. Two commonly used time series 

decompositions are additive and multiplicative decomposi-

tions, whose expressions are shown in (10) and (11). 

yt=Trendt+Seasonalt+Residualt         (10) 

yt=Trendt×Seasonalt×Residualt         (11) 

The additive decomposition method is employed in this 

study to decompose the SSTA time series, as the magnitude 

of seasonal fluctuations and the change in trend do not vary 

with the time series. Since the decomposition plots of the 

three points on the nearshore are similar, and the same is true 

for the offshore, this paper only shows the decomposition 

plots of the L1 position on the nearshore and the L4 position 
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on the offshore, and the results of the decompositions are 

shown in Figure 3. 

The original SSTA time series exhibits strong instability. 

The trend component after the STL decomposition greatly 

restores the changing trend of the original SSTA time series. 

The SSTA at 6 sites shows an increasing trend from 1982 to 

2023, with a more significant rise in the nearshore area. The 

seasonal component shows very consistent frequency of 

change, mainly extracting the seasonal variation attributes of 

the original time series. The seasonal changes at 3 nearshore 

sites are very similar, as are the seasonal changes at three off-

shore sites. The residual component lacks a distinct changing 

pattern compared to the trend and seasonal components. 

3.3. Experimental Setup 

For the SSTA prediction experiments at each location, we 

set the time window of the input SSTA sequence to 40. The 

datasets are prepared for LSTM and SAM-LSTM models 

(LSTM is used for comparison). The SSTA data from 

1982/01/01 to 2010/12/31 is used as the training set, while the 

SSTA data from 2011/01/01 to 2017/12/31 is used for valida-

tion, and the remaining samples are used for the final model 

test to evaluate the model's performance. The SSTA prediction 

is conducted at 6 sites in the Bohai Sea, as described in Sec-

tion 2.1. 

 
Figure 3. STL decomposition of L1 and L4 locations in the Bohai Sea: original data, trend, seasonal and residual components in sequence. 

3.4. SSTA Predictive Model Validation 

The use of conventional scatter regression plots is inade-

quate for effectively depicting the prediction effect due to 

large data. Therefore, a density scatter plot is employed to 

display the prediction. Figures 4 and 5 show the results of the 

density scatter plots for the validation and test sets at the 6 

locations in the Bohai Sea. The results of the density scatter-

plot indicate that the SAM-LSTM model developed in this 

study shows outstanding performance on both the validation 

and test sets. Among the three prediction models near the 

shore, the L1 location exhibits superior performance on both 

the validation and test sets, whereas the L3 location shows 

slightly inferior prediction performance. On the offshore, the 

L6 location demonstrates significantly better performance on 

both the validation and test sets, while the L4 location shows 

relatively poor performance. The R
2
 of the nearshore locations 

are all higher than 0.95, the MAE is lower than 0.26, and the 

RMSE is concentrated in 0.368 to 0.464, with ideal model 

performance. The R
2
 of the offshore locations are all higher 

than 0.89, the MAE is lower than 0.28, and the RMSE is con-

centrated in 0.39 to 0.494, and the prediction performance of 

the offshore locations is relatively lower than the nearshore 

locations. This may be attributed to the relatively stable trend 

components of the nearshore locations, showing an almost 

yearly increasing trend. In contrast, the trend components of 

the offshore locations are unstable and the increasing trend of 

SSTA is relatively less pronounced compared to the nearshore. 

As a result, the model is more effective in capturing the SSTA 

change trend nearshore, leading to better prediction perfor-

mance compared to offshore. This observation should be taken 

into account in future research by incorporating dynamic con-

ditions and other factors influencing offshore SST. 
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Figure 4. The Density Scatterplot of the validation set for SSTA prediction. 

 
Figure 5. The Density Scatterplot of the testing set for SSTA prediction. 

3.5. Application of SAM-LSTM SSTA  

Prediction Modeling 

The results of the previous section show that model 1 (L1 

location) and model 6 (L6 location) are the best predictive 

models for the nearshore and offshore, respectively. To 

demonstrate the generalizability of the models, a location site 

is selected in the Yellow Sea, East China Sea and South Chi-

na Sea areas nearshore and offshore, respectively, and the 

specific location information is shown in Table 2. The input 

data collected from three specified ocean regions during the 

period from 2018/01/01 to 2018/02/09 is utilized as the input 

for predicting the SSTA values for the future two months. L7, 

L9, L11 are predicted by model 1 (L1 location), and L8, L10, 

L12 are predicted by model 6 (L6 location). 

Figure 6 illustrates the outstanding performance of the 

SAM-LSTM model, with R
2
 exceeding 0.9, MAE below 0.3, 

and RMSE mainly concentrated between 0.3 and 0.5. Howev-

er, it performs poorly in predicting certain high and low values 

for both the nearshore and offshore. In the prediction of SSTA 

at nearshore and offshore sites in three sea areas, we could 

observe significant high and low SSTA values. The high val-

http://www.sciencepg.com/journal/ajese


American Journal of Environmental Science and Engineering http://www.sciencepg.com/journal/ajese 

 

20 

ues can reach 6°C, and the low values can reach -4°C. Predic-

tion errors are primarily concentrated at the extremes of high 

and low values. Analysis of the SSTA line graphs for the 3 sea 

areas shows that when there is a large change in SSTA, the 

predictive capacity of the model significantly reduces. This is 

attributed to the substantial data change, which hinders the 

model's ability to accurately capture the trend for the next 

moment, resulting in error accumulation. 

 
Figure 6. (A) The nearshore L7, L9, and L11 locations are partially sampled in the L1 prediction model for 1 day ahead; (B) The nearshore 

L8, L10, and L12 locations are partially sampled in the L6 prediction model for 1 day ahead. 

4. Discussion 

All the above results show that the SAM-LSTM model has 

satisfactory prediction performance. To further prove the 

prediction performance of SAM-LSTM, the prediction re-

sults for 10 days are used to fully demonstrate that the 

SAM-LSTM model proposed in this paper is superior to the 

traditional LSTM. Except without the self-attention mecha-

nism, all the other model parameters of the LSTM are the 

same as the settings of the SAM-LSTM model. The specific 

operation is to use the prediction models at L1-L6 positions 

to predict the SSTA for the next 10 days for the nearshore 

and offshore of the Yellow Sea, the East China Sea and the 

South China Sea, respectively. And obtaining an average 

nearshore model and an average offshore model for each sea 

area, and then conducting relevant analysis, as shown in 

Figure 7. 

Observing the R
2
 histograms of nearshore and offshore, it 

can be clearly seen that the R
2
 of nearshore and offshore of 

the SAM-LSTM model is higher than LSTM in the predic-

tion of the next 10 days. Among them, the South China Sea 

has the highest R
2
 in the nearshore prediction, and the East 

China Sea has the highest R
2
 in the offshore prediction. In 

addition, the R
2
 of the nearshore is higher than that of the 

offshore, which is consistent with the prediction of the Bohai 

Sea. The results of the RMSE histograms show that the 

RMSE of the Yellow Sea is the lowest in the nearshore, and 

the RMSE of the East Sea is the lowest in the offshore. In 

addition, the RMSE of the SAM-LSTM model is lower than 

the LSTM model in all the sea areas in both nearshore and 

offshore. From the MAE histograms, it can be observed that 

the MAE of the Yellow Sea is the lowest in the nearshore, the 

East Sea is the lowest in the offshore, and the MAE of the 

SAM-LSTM model is lower than the LSTM model. 

In summary, the prediction performance of the 

SAM-LSTM model constructed in this paper outperforms the 

traditional LSTM deep neural network model in the short 

and mid-term prediction experiments for the next 10 days, 

and it can be applied to the Yellow Sea, the East China Sea 

and the South China Sea for the SSTA prediction. However, 

only SSTA data are considered in this paper, and the SST is 

affected by various factors such as solar radiation and at-

mospheric motion. Therefore, a multivariate prediction mod-

el should be considered in the future to further improve the 

model prediction performance, so that the sudden and fre-

quent occurrence of ecological disasters (such as red tide) 

can be effectively prevented. 

 

http://www.sciencepg.com/journal/ajese


American Journal of Environmental Science and Engineering http://www.sciencepg.com/journal/ajese 

 

21 

 
Figure 7. Comparison of the prediction performance of SAM-LSTM and LSTM (10 days). (A)-(C) are the R2, RMSE, and MAE in the nearshore, 

respectively; (D)-(F) are the R2, RMSE, and MAE in the offshore. 

5. Conclusions 

In order to achieve precise short mid-term daily SST pre-

diction, this paper introduces a time series predicting method 

based on the SAM-LSTM model. It utilizes 41 years of daily 

SST time series data obtained from the AVHRR satellite 

sensor at 6 locations in the Bohai Sea for training and testing. 

In this approach, considering the small fluctuation of sea 

temperature relative to its absolute magnitude. The STL time 

series decomposition method is employed to decompose the 

complex non-linear time series into trend components, sea-

sonal components, and residual components. Then, the 

SAM-LSTM models of 6 sites are constructed to predict the 

deseasonalized future SSTA, effectively reducing the model 

fitting difficulty and decreasing prediction errors. The vali-

dated and tested models are applied to the Yellow Sea, East 

China Sea, and South China Sea, and SAM-LSTM is com-

pared with LSTM. The conclusions are as follows: 

(1) The combination of STL time series decomposition and 

the SAM-LSTM model can achieve high-precision pre-

diction of daily SSTA, with better predictive perfor-

mance at nearshore locations than offshore locations. 

(2) The validated and tested models exhibit excellent pre-

dictive performance in the Yellow Sea, East China Sea, 

and South China Sea, with R
2
 values all above 0.9, 

MAE below 0.3, and RMSE mainly ranging from 0.2 

to 0.5. 

(3) Comparing SAM-LSTM and LSTM using different 

statistics such as R
2
, RMSE, and MAE, it is evident 

that LSTM with the addition of SAM can achieve more 

accurate prediction. 
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