
American Journal of Information Science and Technology

2025, Vol. 9, No. 2, pp. 87-93

https://doi.org/10.11648/j.ajist.20250902.13

*Corresponding author:

Received: 24 March 2025; Accepted: 28 April 2025; Published: 22 May 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

The Path from Software Engineering to System Engineering:

Gamification Based S2S-G Framework

Wei Ren
*

, Bo Qin

China Academy Electronics and Information Technology, Beijing, China

Abstract

System engineering is a multidisciplinary, structured approach designed to manage the lifecycle of complex systems, ensuring

their effective design, integration, and retirement. Benefits of system engineering include reduced risks, better stakeholder

participation, adaptable systems, and improved documentation. However, as systems become more complex, traditional

methodologies are often insufficient, leading to the emergence of Model-Based System Engineering (MBSE). MBSE, using

Systems Modeling Language (SysML), offering a feasible pathway for software engineers transitioning to systems engineering

through focused training. While software engineering shares similarities with systems engineering, particularly in process and

goal alignment, the two disciplines differ significantly in scope and focus. The challenge lies in bridging the knowledge and

mindset gaps between the two fields, as software engineers often struggle to transition to systems engineering due to differences

in methodologies and focus areas. Gamification, the integration of game design elements into non-game contexts, has gained

attention as a tool to facilitate this transition. This study compares software engineering and systems engineering, this work

highlights their similarities and differences and proposes the S2S-G Framework, a gamification based framework, as a

structured, effective tool to bridge the gap between the two disciplines.

Keywords

System Engineering, Software Engineering, Gamification, S2S-G Framework, MBSE, SysML

1. Introduction

System engineering is a structured, multidisciplinary ap-

proach aimed at designing, managing, and retiring systems

effectively throughout their lifecycle [1]. Its primary function

is to guide the engineering of complex systems through pro-

cesses like defining stakeholder needs, system requirements,

conceptual design, development, integration, testing, and

validation [1, 4]. This approach emphasizes iterative refine-

ment to ensure systems meet functional, performance, and

reliability standards within budget and schedule constraints.

Benefits include reduced risks of cost and schedule overruns,

improved stakeholder participation, adaptable systems, better

documentation, and fewer defects [6].

System engineering ensures technical integrity by guiding

design processes, assessing concept options, managing tech-

nical information, addressing stakeholder issues, and resolv-

ing challenges throughout the system’s lifecycle [1]. As sys-

tems grow increasingly complex and interdisciplinary, tradi-

tional methodologies may prove insufficient. Consequently,

Model-Based System Engineering (MBSE) has emerged as a

new approach to enhance information quality and optimize

http://www.sciencepg.com/journal/ajist
http://www.sciencepg.com/journal/526/archive/5260902
http://www.sciencepg.com/
https://orcid.org/0000-0003-2910-2150
https://orcid.org/0000-0003-2910-2150
https://orcid.org/0000-0003-2910-2150

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

88

communication between teams, thereby simplifying the

management of complex projects [2]. MBSE’s core technol-

ogy, Systems Modeling Language (SysML), evolved from

Unified Modeling Language (UML), a standard tool in soft-

ware engineering. The transition from UML to SysML is

feasible, and software engineers are more easily transitioning

to systems engineering through training [24].

Software engineering applies engineering principles to de-

sign, develop, maintain, test, and evaluate software, inte-

grating computer science with engineering practices to deliver

quality software on time and within budget [23]. It involves

phases like requirements gathering, design, implementation,

testing, and deployment [3]. Although software engineering

and system engineering has similarity, but it still a challenge

convert software engineer to system engineer due to

knowledge gaps, mindset shifts, or lack of formal training.

Software engineering and systems engineering are related but

differ in scope and focus. For example, software engineering

focuses on software components, systems engineering ensures

their cohesive integration into larger systems [17].

Gamification is a way to help transfer from software en-

gineering to system engineering, which is defined as incor-

porating game design elements into non-game settings, and

gamification is gaining attention across various fields, in-

cluding software engineering and systems engineering [8-12].

This study develops a gamification framework: S2S-G

Framework. S2S-G Framework help software engineering

convert to system engineering, which include four parts.

This work contributes to the field by providing a compre-

hensive comparison between software engineering and sys-

tems engineering, emphasizing their distinctive yet comple-

mentary roles in the development of complex projects. While

both disciplines share foundational principles of engineering

design, their scope, focus, and methodology differ signifi-

cantly, influencing how they approach problem-solving, pro-

ject management, and system integration. Through this

comparison, we illuminate the unique challenges faced by

engineers transitioning between these domains, particularly in

multidisciplinary environments where collaboration is key.

A core contribution of this study is the introduction of the

S2S-G Framework, a novel gamification-based approach

designed to facilitate the transition from software engineering

to systems engineering. By leveraging gamification tech-

niques, the S2S-G Framework encourages engineers to ap-

proach systems engineering problems with a mindset that

fosters innovation, adaptability, and a holistic view of project

challenges. Moreover, the S2S-G Framework is designed to

be adaptable, allowing it to be customized for different project

contexts, whether in academia, industry, or large-scale,

cross-functional teams. This work not only advances the the-

oretical understanding of the relationship between software

and systems engineering but also offers a solution— the

S2S-G Framework—that directly addresses the need for im-

proved interdisciplinary collaboration and knowledge transfer

in the face of increasingly complex and integrated engineering

projects.

2. Related Work and Hypothesis

Development

Systems engineering is a methodical, multidisciplinary

approach used for designing, developing, managing, operat-

ing, and retiring complex systems [1]. Its primary function is

to guide the engineering process of intricate systems by en-

suring a structured process that begins with defining stake-

holder needs and system requirements, followed by concep-

tual design, detailed design, development, integration, testing,

and validation [1, 4]. This iterative process ensures that sys-

tems meet functional, performance, and reliability standards

while adhering to budget and schedule constraints.

The benefits of systems engineering include reducing the

risk of schedule and cost overruns, improving stakeholder

participation, shortening project cycles, enhancing adaptabil-

ity and resilience of systems, verifying functionality, reducing

defects, and producing better documentation [6]. Systems

engineering’s responsibilities cover maintaining technical

integrity throughout the system’s lifecycle, guiding

end-to-end engineering design, assessing concept options,

properly archiving technical information, resolving stake-

holder issues, and addressing questions as they arise [1].

In recent years, systems have become increasingly complex

and interdisciplinary [2]. Traditional methodologies are often

insufficient to address these complexities. Therefore, a new

approach, Model-Based Systems Engineering (MBSE), has

emerged as a promising solution. MBSE helps improve in-

formation quality within a project and simplifies stress man-

agement by enhancing communication between diverse teams

[2].

The core technology of MBSE is the Systems Modeling

Language (SysML), which is an extension of the Unified

Modeling Language (UML), a foundational tool in software

engineering. As a specialization of UML, SysML introduces

advanced diagram types, such as Requirement Diagrams and

Parametric Diagrams, which enable comprehensive modeling

of system structures, behaviors, requirements, and constraints

[25]. Unlike UML, which focuses primarily on software vis-

ualization through diagrams like Class Diagrams and Se-

quence Diagrams, SysML offers broader capabilities suitable

for systems engineering. This technological continuity makes

it easier for software engineers to transition to systems engi-

neering, with 68% of those trained in UML successfully

making the shift through training programs averaging 4.2

months [24].

Software engineering, on the other hand, is the disciplined

application of engineering principles to the design, develop-

ment, maintenance, testing, and evaluation of software sys-

tems [7]. It combines computer science knowledge with en-

gineering practices to produce high-quality software that

meets user requirements and is delivered within budget and on

http://www.sciencepg.com/journal/ajist

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

89

time.

The software engineering process generally includes

phases such as requirements gathering, design, implementa-

tion, testing, and deployment [3]. Its benefits include im-

proved software quality and reliability, reduced risks through

better management, increased efficiency in development

cycles, enhanced user satisfaction, better maintainability

through documentation, and improved collaboration among

stakeholders [7].

The responsibilities of software engineers include design-

ing and maintaining software systems, evaluating and testing

new software programs, optimizing software for speed and

scalability, and consulting with various stakeholders such as

clients, engineers, and security specialists [5]. Thus, as Table

1 shows, the progress, benefits, and benefits of software en-

gineering and system engineering are very similar.

Table 1. Similarity of Software Engineering and System Engineering.

Aspects Software Engineering System Engineering Similarity

Progress

Design Design Yes

Implementation Implementation Yes

Testing Testing Yes

Operation Operation Yes

Responsibilities

Maintaining Software Maintaining System Yes

Guiding Design Guiding Design Yes

Evaluating Testing / /

Optimizing Software Ensuring info archived Yes

Stakeholders Stakeholders Yes

Benefits

Risk Management Reducing Risk Yes

User Satisfaction Meet User’s Needs Yes

Efficiency Shorter Project Cycles Yes

Scalability Adaptable and Resilient Yes

Improved Quality Verified Functionality Yes

Maintainability Better Documentation Yes

Collaboration Stakeholder Participation Yes

Software engineering and systems engineering are two

closely related disciplines that share common goals, such as

delivering high-quality solutions through structured processes,

but they differ significantly in scope, focus, and application.

Software engineering is a specialized field that concentrates

on the design, development, testing, and maintenance of

software systems. It employs methodologies such as agile

development, DevOps, and iterative prototyping to ensure that

software products are functional, reliable, and scalable. Tools

like version control systems, integrated development envi-

ronments (IDEs), and automated testing frameworks are cen-

tral to software engineering practices. The primary focus is on

writing efficient code, optimizing algorithms, and ensuring a

seamless user experience, often within the constraints of time

and budget [5, 15].

In contrast, systems engineering takes a broader, interdis-

ciplinary approach, addressing the design, integration, and

management of complex systems that may include hardware,

software, processes, and human elements. Systems engineers

focus on the entire system lifecycle, from conceptual design to

deployment and maintenance, ensuring that all components

work together cohesively to meet stakeholder requirements.

Techniques such as systems modeling, trade-off analysis, and

risk management are integral to systems engineering. Tools

like SysML (Systems Modeling Language) and MBSE

(Model-Based Systems Engineering) are often used to analyze

and optimize system interactions [1, 16]. The discipline em-

phasizes a holistic perspective, balancing performance, cost,

schedule, and risk across the system.

While software engineering can be viewed as a subset of

systems engineering, their methods and tools differ signifi-

cantly. For example, in a spacecraft project, software engi-

neers develop flight control software, while systems engineers

ensure seamless integration of that software with hardware,

http://www.sciencepg.com/journal/ajist

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

90

sensors, and communication systems to achieve mission ob-

jectives [17]. This distinction highlights the complementary

nature of both fields, where collaboration between software

and systems engineers is essential for delivering complex,

integrated solutions. The difference can be seen in Table 2.

Table 2. Difference of System Engineering and Software Engineering.

Aspects Software Engineering System Engineering Similarity

Key Concern Software Development Meet Stakeholder Requirement No

Methodology Agile Development Integration Components No

Tools
UML SysML Yes

IDEs MBSE No

Primary Focus

Code Management Complex System No

Algorithms Balancing Performance Yes

User Experience Cost/Risk/… Yes

Given their similarities, it is natural to consider whether

software engineers could successfully transition to systems

engineering. However, several challenges hinder this transi-

tion, including knowledge gaps, mindset shifts, and a lack of

formal training in systems engineering.

Gamification has emerged as a potential solution to facili-

tate this transition. Widely applied across various fields such

as education, healthcare, tourism, and business [8-11], gami-

fication refers to the integration of game design elements into

non-game contexts to enhance user engagement, motivation,

and performance [12]. In software engineering, gamification

has been used to improve code quality and enhance devel-

opment practices [13, 14].

Research on the application of gamification in systems

engineering is still limited. Existing studies focus primarily on

enhancing academic performance by setting goals and in-

creasing engagement and learning in systems engineering

projects [18, 19]. Despite these efforts, the application of

gamification strategies to train systems engineers remains

largely unexplored, even though gamification has proven

effective in promoting skill development in software engi-

neering [9].

Since software engineering and systems engineering share

many similarities, it raises a critical research question: Can

gamification help software engineers transition to systems

engineering? To address this question, we propose developing

a gamification-based framework that provides a detailed ap-

proach to applying gamification principles during the transi-

tion from software engineering to systems engineering.

3. S2S-G Model

Several frameworks exist within the realm of gamification,

including 6D, MDA, and Octalysis [20, 21]. Additionally, [22]

introduces a gamification framework tailored for the software

engineering process. This paper aims to develop a Soft-

ware-to-System Engineering Gamification Model (S2S-G

Model) to facilitate the transition from software engineering

to system engineering while providing detailed guidance for

implementation. The S2S-G Model comprises four main

components: Preparation, Platform, Gamification Design, and

Development (See Figure 1).

The Preparation phase involves a series of four steps, cul-

minating in the transition to the Platform stage. The first step

requires identifying the key differences between system en-

gineering and software engineering, such as variations in

methodologies and processes. During this stage, operators

also determine the appropriate gamification level based on the

complexity of the task. The second step involves evaluating

whether a given task is suitable for gamification. If the task is

deemed unsuitable, the gamification process may be bypassed

during the conversion. However, if the task is appropriate for

gamification, the fourth step requires operators to define

specific requirements. For instance, this may involve redi-

recting software engineers’ focus from agile development

practices to enhancing interactions between systems and en-

gineers.

The Platform phase is centered on user analysis, metric

selection, and persona creation. The first aspect of this phase

involves classifying engineers into various levels and identi-

fying their motivation types, such as encouraging better in-

teractions or promoting the transition from using UML to

SysML. Based on this user analysis, operators proceed to

select suitable gamification metrics that align with both en-

gineers’ progress and the requirements of the task. The chosen

metrics are then assigned to engineers at different levels,

ensuring appropriate alignment with their skill sets and mo-

tivations. Subsequently, operators create personas to represent

http://www.sciencepg.com/journal/ajist

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

91

various engineer profiles within the gamification environment,

aiding in the personalization of the gamified experience.

The Gamification Design phase focuses on constructing a

gamified environment and ensuring its effectiveness. Opera-

tors first gather suitable gamification features and theories,

including points, leaderboards, guides, and rewards, derived

from previous stages. These features are then integrated into a

coherent storyline with clear objectives and guidance,

providing engineers with a structured path to follow

throughout their tasks. The storyline serves as a guiding

framework to influence and direct engineers’ behavior. Once

the design is established, operators proceed to develop a

prototype to test the effectiveness of the gamification envi-

ronment. If the prototype meets the desired outcomes,

full-scale platform development begins. If not, operators

return to the design phase to refine the prototype and address

any shortcomings.

The Development phase focuses on building the gamifica-

tion platform and evaluating its overall effectiveness. Oper-

ators select appropriate development tools and incorporate the

relevant metrics of transfer into the platform. Gamification

features are embedded within the platform, such as awarding

points for modeling real-world scenarios using SysML, to

motivate and guide user behavior. Once the platform is oper-

ational, user performance is assessed through data analysis or

survey feedback. If the gamification effect does not meet

expectations, operators may revisit the prototype design phase

for further improvements. Otherwise, the process is consid-

ered complete.

Figure 1. S2S-G Framework.

http://www.sciencepg.com/journal/ajist

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

92

4. Conclusion

In conclusion, both software engineering and systems en-

gineering are essential for creating complex solutions, though

they differ in scope and focus. Software engineering focuses

on the development, testing, and maintenance of software

systems, while systems engineering takes a broader approach,

integrating hardware, software, and processes throughout the

system lifecycle. Despite these differences, the two disci-

plines share common goals of delivering high-quality, relia-

ble solutions. Gamification, which incorporates game design

elements into non-game contexts, has shown promise in im-

proving engagement and performance in both fields. To

bridge the gap between software and systems engineering,

we propose the S2S-G Framework, a gamification-based

approach designed to help transition software engineering

practices into systems engineering. This framework identify

how to apply gamification during the transition.

5. Future Work

Future work will involve conducting experiments to apply

the S2S-G Framework in real-world settings, using empirical

studies to evaluate its effectiveness in transitioning software

engineering practices to systems engineering. The goal is to

gather data on the gamification’s impact on engagement,

collaboration, and performance in system engineering pro-

jects. A key challenge will be defining the appropriate de-

pendent and independent variables to assess the gamification

strategies’ success. Dependent variables could include

measures of system integration, project completion time, and

quality, while independent variables might encompass the

gamification elements, team dynamics, and training methods

employed. By conducting rigorous experiments, I aim to

refine the framework and provide evidence of its practical

benefits, offering a scalable solution for professionals in both

fields. This research will contribute to understanding how

gamification can bridge the gap between software and sys-

tems engineering, ultimately enhancing the effectiveness of

engineering teams in complex projects.

Abbreviations

MBSE Model-Based Systems Engineering

SysML Systems Modeling Language

UML Unified Modeling Language

S2S-G

Framework

Software Engineering to System Engineering

Gamification Framework

Author Contributions

Wei Ren: Conceptualization, Methodology, Investigation

Qin Bo: Validation, Project administration

Funding

This work is supported by CETC.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hirshorn, S. R., Voss, L. D., & Bromley, L. K. (2017).

NASA systems engineering handbook (No.

HQ-E-DAA-TN38707).

[2] Riva, M., Zanutta, A., Genoni, M., Scalera, M. A., & Balestra,

A. (2024, August). MBSE or no MBSE: is MBSE the final

answer to system engineering?. In Modeling, Systems Engi-

neering, and Project Management for Astronomy XI (Vol.

13099, pp. 115-120). SPIE.

[3] Aggarwal, K. K. (2005). Software engineering. New Age

International.

[4] Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer, S. M.

(2011). Systems engineering principles and practice (Vol. 83).

John Wiley & Sons.

[5] Sommerville, I. (2011). Software engineering (ed.). America:

Pearson Education Inc.

[6] Blanchard, B. S. (2004). System engineering management.

John Wiley & Sons.

[7] Stuart Hallifax, Audrey Serna, Jean-Charles Marty, and Elise

Lavou é. Adaptive gamification in education: A literature re-

view of current trends and developments. In European con-

ference on technology enhanced learning, pages 294–307.

Springer, 2019.

[8] Juho Hamari, Jonna Koivisto, and Harri Sarsa. Does gamifi-

cation work?–aliterature review of empirical studies on gami-

fication. In 2014 47th Hawaii international conference on

system sciences, pages 3025–3034. Ieee, 2014.

[9] Manuel Trinidad, Mercedes Ruiz, and Alejandro Calder ón. A

bibliometric analysis of gamification research. IEEE Access, 9:

46505–46544, 2021.

[10] Kai Huotari and Juho Hamari. A definition for gamification:

anchoring gamification in the service marketing literature.

Electronic Markets, 27(1): 21–31, 2017.

[11] Sebastian Deterding, Miguel Sicart, Lennart Nacke, Kenton

O’Hara, and Dan Dixon. Gamification. using game-design

elements in non-gaming contexts. In CHI’11 extended ab-

stracts on human factors in computing systems, pages 2425–

2428. 2011.

[12] Catalin-Virgil Briciu and Ioan Filip. Applying gamification

for mindset changing in automotive software project man-

agement. Procedia-Social and Behavioral Sciences, 238:

267–276, 2018.

http://www.sciencepg.com/journal/ajist

American Journal of Information Science and Technology http://www.sciencepg.com/journal/ajist

93

[13] Ren, W. (2023, December). Gamification in test-driven de-

velopment practice. In Proceedings of the 2nd International

Workshop on Gamification in Software Development, Verifi-

cation, and Validation (pp. 38-46).

[14] IEEE Computer Society. (2020). *Guide to the Software En-

gineering Body of Knowledge (SWEBOK)*. Retrieved from

https://www.computer.org

[15] INCOSE. (2023). *What is Systems Engineering?* Retrieved

from https://www.incose.org/systems-engineering

[16] Blanchard, B. S., & Fabrycky, W. J. (2017). *Systems Engi-

neering and Analysis* (5th Edition). Pearson Education.

[17] Huamaní, G. T., Rodriguez, L. A., & Alca, C. (2020, April).

Agile method and implementation of gamification in an engi-

neering course. In 2020 IEEE Global Engineering Education

Conference (EDUCON) (pp. 1815-1818). IEEE.

[18] Tonkal, M., Wu, A., & Rogers, C. (2024, October). Exploring

the Impact of Systems Engineering Projects on STEM En-

gagement and Learning. In 2024 IEEE Frontiers in Education

Conference (FIE) (pp. 1-8). IEEE.

[19] Klock, A., & da Cunha, L. (2015). Gamification in e-learning

systems: A conceptual model to engage students and its ap-

plication in an adaptive e-learning system. In Learning and

collaboration technologies (Vol. 9192, pp. 595–607). Berlin:

Springer.

[20] Chou, Y.-K. (2015). Actionable gamification: Beyond points,

badges, and leaderboards. Fremont: Octalysis Media.

[21] Ren, W., Barrett, S., & Das, S. (2020, January). Toward gami-

fication to software engineering and contribution of software

engineer. In Proceedings of the 2020 4th International Con-

ference on Management Engineering, Software Engineering

and Service Sciences (pp. 1-5).

[22] Ankobiah, W. A. (2022). Integrating Model-Based Systems

Engineering Industry Transformations for Workforce Devel-

opment (Master's thesis, The University of Texas Rio Grande

Valley).

[23] Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical

guide to SysML: the systems modeling language. Morgan

Kaufmann.

[24] Fowler, M. (2018). UML distilled: a brief guide to the standard

object modeling language. Addison-Wesley Professional.

[25] Rumpe, B. (2016). Modeling with UML (Vol. 98).

Ber-lin/Heidelberg, Germany: Springer.

http://www.sciencepg.com/journal/ajist

