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Abstract 

Due to the swift advancement of artificial intelligence and deep learning technologies, computers are assuming an increasingly 

prominent role in the realm of music composition, thereby fueling innovations in techniques for music generation. Deep learning 

models such as RNNs, LSTMs, Transformers, and diffusion models have demonstrated outstanding performance in the music 

generation process, effectively handling temporal relationships, long-term dependencies, and complex structural issues in music. 

Transformers, with their self-attention mechanism, excel at capturing long-term dependencies and generating intricate melodies, 

while diffusion models exhibit significant advantages in audio quality, producing higher-fidelity and more natural audio. Despite 

these breakthroughs in generation quality and performance, challenges remain in areas such as efficiency, originality, and 

structural coherence. This research undertakes a comprehensive examination of the utilization of diverse and prevalent deep 

learning frameworks in music generation, emphasizing their respective advantages and constraints in managing temporal 

correlations, prolonged dependencies, and intricate structures. It aims to provide insights to address current challenges in 

efficiency and control capabilities. Additionally, the research explores the potential applications of these technologies in fields 

such as music education, therapy, and entertainment, offering theoretical and practical guidance for future music creation and 

applications. Furthermore, this study highlights the importance of addressing the limitations of current models, such as the 

computational intensity of Transformers and the slow generation speed of diffusion models, to pave the way for more efficient 

and creative music generation systems. Future work may focus on combining the strengths of different models to overcome these 

challenges and to foster greater originality and diversity in AI-generated music. By doing so, we aim to push the boundaries of 

what is possible in music creation, leveraging the power of AI to inspire new forms of artistic expression and enhance the creative 

process for musicians and composers alike. 

Keywords 

Artificial Intelligence, Deep Learning, Music Generation, Transformers 

 

1. Introduction 

With the rapid advancement of artificial intelligence and 

deep learning technologies, music generation is no longer 

solely reliant on the inspiration and skills of human crea-

tors—artificial intelligence has also begun to participate in the 

music composition process. The application of deep learning 

in music generation has evolved progressively from simple to 

complex models [1]. Initially, methods such as Markov chains 

and rule-based models were primarily used to generate simple 
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melodic sequences. While these methods achieved some 

success in their early stages, they exhibited clear limitations 

when dealing with complex musical structures. As deep 

learning technologies advance, the sophistication and capa-

bility of models have continually increased. For example, 

architectures such as Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks [2], possess the 

capability to produce musical compositions that are more 

intricate and expressive in nature. These models effectively 

capture the temporal relationships in music, thereby enhanc-

ing the coherence and expressiveness of the generated com-

positions. Building on this foundation, Transformer models, 

with their powerful self-attention mechanisms, have further 

advanced music generation technology. Unlike traditional 

RNNs and LSTMs, Trans-formers leverage self-attention to 

simultaneously consider all positions in the input sequence, 

avoiding the limitations of generating long-span sequences [3]. 

This capability makes Transformers particularly effective in 

capturing long-range dependencies in music, enabling the 

generation of more coherent and intricate melodies [4]. Fur-

thermore, in recent years, diffusion models have also 

demonstrated significant applications in music generation. By 

employing multi-step reverse inference to re-cover clear audio 

signals from noise, diffusion models are capable of producing 

high-quality, stable audio and excel in capturing fine details in 

timbre and tonal variations [5]. 

This paper aims to explore the application of neural net-

works and pre-trained models in music feature extraction, 

with a particular focus on overcoming the limitations of tra-

ditional composition methods in generating complex musical 

structures and creating high-quality works. By analyzing 

various advanced models, such as Transformers and diffusion 

models, the study seeks to reveal how these models play a 

unique role in handling long-term dependencies in music and 

capturing multi-level structural features. One of the motiva-

tions of this research is to provide a comprehensive frame-

work to better understand how different technologies can be 

applied to music generation and processing, especially in 

practical applications across education, therapy, and enter-

tainment. 

2. Theoretical Foundations of Deep 

Learning in Music Composition 

2.1. Early Deep Learning Models 

RNN is a neural network specifically designed to process 

sequential data, particularly well-suited for tasks with tem-

poral dependencies [6]. It captures the dependencies between 

previous and subsequent time steps in the input sequence 

through recur-rent connections, making it ideal for generating 

music content with temporal requirements, such as melodies 

and harmonies. LSTM is a specialized version of RNN, which 

addresses the vanishing gradient problem of traditional RNNs 

by introducing a gating mechanism, enabling the network to 

better capture long-term dependencies [7]. LSTM effec-

tively retains and updates long-term dependency infor-

mation, enhancing the model's ability to generate complex 

sequences. 

2.2. Transformer Model 

Transformer architecture revolutionizes the framework of 

conventional RNNs and LSTMs by incorporating the 

self-attention mechanism. This mechanism facilitates inter-

actions among all input positions within the sequence, thereby 

addressing the challenges faced by RNNs and LSTMs in 

capturing long-range dependencies. Unlike RNNs and 

LSTMs, Transformers do not rely on sequential processing; 

instead, they process inputs in parallel, significantly improv-

ing training efficiency and generation quality. Transformer is 

better at capturing long-range dependencies, and it demon-

strates higher coherence and expressiveness, especially in 

generating complex melo-dies and multi-layered musical 

structures [4]. 

2.3. Diffusion Models 

Diffusion models are a type of generative model, where the 

basic idea is to gradually recover the process from noise to 

clear signals through reverse inference during generation [8]. 

Through multiple steps of reverse diffusion, the model is able 

to generate high-quality audio signals from noise, and the 

generation process is more stable. Diffusion models exhibit a 

high level of detail when generating audio, effectively simu-

lating changes in timbre and audio quality, making them 

especially suitable for generating high-quality and diverse 

audio content. 

3. Feature Extraction 

3.1. Using Neural Networks to Extract Music 

Features 

Neural networks are widely used in music feature extrac-

tion. For example, the Piano Roll is a two-dimensional ma-

trix representation that captures melody and chord structures. 

Its ability to directly map to the input and output layers of 

neural net-works makes it highly suitable for deep learning 

models, facilitating the processing and generation of 

complex musical structures (Chen et al., 2024) [9]. VAEs 

generate latent space through an encoder-decoder archi-

tecture, and this latent space can rep-resent high-level 

features of music. For instance, the Music VAE model 

uses VAE to generate multi-track music and creates new 

musical segments through interpolation in the latent space 

[10]. 
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3.2. Using Pre-trained Models to Extract Music 

Features 

Pre-trained models play a crucial role in music feature ex-

traction, especially when handling large-scale music data. 

The Transformer model, initially used in natural language 

processing, also performs exceptionally well in music gener-

ation due to its attention mechanism. For example, the Music 

Transformer model utilizes a pre-trained Transformer to 

generate music with long-term structure [11]. The global 

relative attention mechanism calculates the relative distance 

between any two positions in the sequence and uses this dis-

tance information to adjust attention weights. This allows the 

model to capture relationships between different parts of the 

music, such as the repetition of melodies and the interplay of 

rhythms. the local relative attention mechanism divides the 

music sequence into smaller blocks and models the relative 

distances between elements within each block and between 

elements of the previous block. This approach reduces com-

putational complexity, enabling the model to process 

long-sequence music data more efficiently while still being 

able to recognize local musical features, such as rhythm and 

harmony within a measure. 

Transfer learning allows fine-tuning on pre-trained models 

to adapt them to specific music styles or tasks. For example, 

the GPT-2 model, pre-trained on large-scale text data, is used 

to generate multi-track music [28]. The ―Figure 1‖ illustrates 

the music feature extraction methods, where music is broken 

down into features such as notes (NOTE_ON and 

NOTE_OFF), time intervals (TIME_DELTA), instruments 

(INST), and note density (DENSITY) using MultiTrack and 

BarFill representations, with structural markers 

(BAR_START, TRACK_START) defining the organiza-

tional structure of the music. Additionally, the BarFill repre-

sentation, through FILL_START and FILL_END markers, 

allows for precise filling and editing of music measures, en-

abling fine-grained control in the music generation process. 

 
Figure 1. Overview of Multi-Track and Bar-Fill Representations in Music Generation Models [12]. 

4. Models 

4.1. Model Based on Traditional Deep Learning 

Methods such as CNN, RNN, LSTM, and GAN are widely 

used in the field of music generation. Oord et al. used 

one-dimensional convolutional layers to capture local pat-

terns and temporal dependencies in audio signals, and by 

stacking multiple convolutional layers, they learned more 

complex feature representations, enabling the generation of 

high-quality audio waveforms [13]. RNNs are capable of 

handling sequential data, capturing temporal dependencies 

and structures in music, making them suitable for generating 

coherent music sequences. LSTM, an improvement of RNN, 

introduces structures like input gates, output gates, and forget 

gates, effectively addressing the issues of vanishing and ex-

ploding gradients, and capturing long-term dependencies in 

music. The use of LSTM to generate Bach-style music 

demonstrates its powerful capability in music generation [14]. 

Through adversarial training in-volving a generator and a 

discriminator, the GAN model produces realistic and 

high-quality musical content. The generator is tasked with 

synthesizing music data, whereas the discriminator serves to 

differentiate between synthetic and authentic musical pieces. 

DCGAN excels in generating high-fidelity audio, producing 

realistic audio waveforms [15]. WaveGAN [16] focuses on 

generating monophonic music and is capable of producing 

high-quality instrumental sounds. 

4.2. Transformer-based Model 

The Transformer efficiently handles sequential data using 

the self-attention mechanism, particularly excelling at cap-

turing long-range dependencies and complex structures in 
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music composition [17]. ―Figure 2‖ illustrates the working 

process of the MusicLM [18] model during training and in-

ference. Part (1) describes the training phase, where MuLan 

audio labels, semantic labels, and acoustic labels are ex-

tracted from an audio dataset and predicted through a 

two-stage sequence-to-sequence task. Part (2) showcases the 

inference phase, where MuLan text labels, computed from a 

text prompt, are used as conditional signals. The model then 

generates audio labels, which are subsequently converted 

into waveforms using the SoundStream decoder, result-ing in 

music generation. The entire process utilizes multiple models, 

including MuLan [19], w2v-BERT [20], SoundStream [21], 

and the Transformer structure with a de-coder-only architec-

ture. This approach enables MusicLM to generate music that 

not only considers the acoustic characteristics of the audio 

but also the semantic infor-mation described by the text, 

producing music that is highly consistent with the tex-tual 

description. 

 
Figure 2. Workflow from Audio Feature Extraction to Text-Conditioned Music Generation [18]. 

4.3. Diffusion-based Model 

By progressively diminishing noise, the diffusion model 

produces audio content of high quality, rendering it appro-

priate for the generation of high-fidelity music. The ―Figure 

3‖ illustrates the framework of the Moûsai model [22], which 

is a two-stage cascaded diffusion model for generating music 

based on text descriptions. During the initial stage, a Diffu-

sion-based Music Autoencoder (DMAE) is employed to 

condense the musical data, whereas in the subsequent stage, 

music is synthesized from the condensed representation, di-

rected by the encoded textual description. The entire process 

includes text encoding, a diffusion generator, and a diffusion 

decoder, ultimately producing music that matches the text 

description. 
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Figure 3. A text-based music generation and compression method. 

Table 1. Comparison Table of Different Music Generation Models. 

Base Model Advantages Limitations Typical Application Examples 

CNN [13] 
Efficient at capturing local features, 

suitable for audio waveform generation 
Struggles with long-range dependencies 

High-fidelity audio waveform 

generation 

RNN 
Good at handling time series data, suitable 

for generating coherent music sequences 

Vanishing/exploding gradients, 

long-term de-pendency issues 

Coherent music sequence gen-

eration 

LSTM 

Effectively captures long-term dependen-

cies, suitable for generating complex 

music structures 

High computational complexity, but 

more stable than RNN 

Bach Bot generating Bach-style 

music [14] 

GAN 
Generates high-quality, realistic audio 

content 
Unstable training, may lack coherence 

DCGAN [15] and Wave-GAN 

[16] generating high-quality 

audio waveforms 

Transformer 

Excels at capturing long-range dependen-

cies and complex structures, can generate 

music based on text 

Complex training process, high compu-

tational cost 

MusicLM [18] generating mu-

sic consistent with text descrip-

tions 

Diffusion 

Model 

Generates high-quality audio, suitable for 

high-fidelity music generation 

High computational cost, slower gener-

ation speed 

Moûsai [22] generating music 

based on text descriptions 

 

4.4. Comparison Between Models 

As music generation technology continues to evolve, the 

advantages and challenges of various models have gradually 

emerged. Selecting an appropriate model depends not only 

on the specific requirements of the generation task but also 

on factors such as computational resources and training sta-

bility. The ―Table 1‖ summarizes the characteristics, ad-

vantages, and disadvantages of several common music gen-

eration models. These models have their own strengths and 

challenges in different music generation tasks, and under-

standing their characteristics helps in selecting the most 

suitable model for specific needs. As shown in the table, 

CNN is good at extracting local features from audio, making. 

it suitable for generating high-fidelity audio waveforms, 

but it has weaker capabilities in handling long-range de-

pendencies. Both RNN and LSTM can process sequential 

data, with LSTM performing better at capturing long-term 

dependencies, making it suitable for generating coherent 

music sequences. GAN generates high-quality audio through 

adversarial training, but the training process may be unstable, 

and the generated music can sometimes lack coherence. 

Transformer excels at handling complex music structures 

and long-range dependencies and can generate music based 

on text descriptions, though it has high computational costs. 
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Diffusion models generate high-fidelity audio through 

step-by-step denoising, making them suitable for tasks re-

quiring high-quality audio, but they have slower generation 

speeds and higher computational resource consumption. 

5. Application 

5.1. Music Education and Learning 

As a teaching tool, music generation models can automat-

ically create simple exercises to help students better under-

stand music structure and harmony [23]. In this way, stu-

dents can experience the application of theoretical 

knowledge through practical visual and auditory experiences, 

thus improving their understanding and mastery of music 

theory. Additionally, AI-generated music models can provide 

inspiration and guidance for music learners, assisting them in 

learning composition techniques. For example, they can 

generate melodies or harmonies for students to study and 

imitate, which not only helps them gain inspiration during 

the creative process but also accelerates the development of 

their compositional skills [24]. Therefore, AI-generated mu-

sic technology has broad application potential in music edu-

cation, offering students richer learning resources and crea-

tive support. 

5.2. Music Therapy and Rehabilitation 

AI-generated music has important applications in emo-

tional regulation and neurorehabilitation. It can create music 

that helps alleviate stress and anxiety, widely used in music 

therapy to assist patients in regulating their emotions [25]. It 

can also generate customized music based on the patient's 

specific condition, supporting neurorehabilitation and help-

ing restore brain function [26]. 

5.3. Entertainment and Gaming 

Music generation in interactive entertainment applications 

such as videos and games greatly enhances the user experi-

ence. For example, TikTok uses music generation technolo-

gy to create matching background music for video content 

[27], making the atmosphere of each video more fitting and 

enhancing the viewer's immersion. Additionally, in interac-

tive entertainment, music generated based on the user's re-

al-time input provides a richer interactive experience. For 

instance, in games, the background music dynamically ad-

justs according to the player's actions and emotional state 

[28], allowing the music to synchronize with the game con-

text and the player's psychological state, thus enhancing the 

player's gaming experience and emotional resonance. 

5.4. Artistic Creation and Performance 

In music performance, real-time generated music can not 

only provide accompaniment, enhancing the interactivity and 

creativity of the performance [29], but also of-fer performers 

greater freedom and space for innovation. At the same time, 

artists have begun using generated musical material for ex-

perimental music creation [24], exploring different forms and 

styles of music. 

6. Limitations & Future Outlooks 

Currently, the application of deep learning in music crea-

tion still faces several significant limitations. First, modeling 

the long-term dependencies of music is challenging, particu-

larly in capturing aspects such as melodic coherence and 

harmonic stability. Although existing models have made 

progress in long-term sequence modeling, they still fail to 

fully meet the structural and logical requirements of music 

generation [30]. For example, while the Transformer has 

advantages in sequence modeling, it suffers from high com-

putational costs, insufficient local structure modeling, and 

weak ability to capture dynamic changes over time, resulting 

in generated music lacking a sense of coherence [18]. Alt-

hough Diffusion models excel in generating high-quality 

content, their generation process is slow, resource-intensive, 

and difficult to control precisely, presenting dual challenges 

in efficiency and control capabilities in practical applications 

[22]. Additionally, deep learning models also exhibit short-

comings in creativity and originality in creation, often rely-

ing on patterns found in existing data, which limits their po-

tential to break through traditional music styles and creative 

paradigms. 

In the future, as technology evolves, we can expect signif-

icant improvements in the use of deep learning models in 

music composition. One possible direction is to com-bine the 

advantages of Transformer and Diffusion models to con-

struct a more efficient and creative hybrid generation model. 

The Transformer’s powerful sequence modeling ability can 

complement the Diffusion model's advantages in generation 

quality, thereby addressing the current issues of efficiency, 

resource consumption, and creative control in music genera-

tion. At the same time, as models improve their understand-

ing of user intentions, future music creation systems may 

place greater emphasis on users’ personalized needs and cre-

ativity, enabling users to better engage in the creative process, 

breaking the limitations of traditional creation modes, and 

fostering diversity and innovation in music creation. Moreo-

ver, with continuous technological advancement, deep 

learning models may be able to generate music that show-

cases more originality and uniqueness in creative style, 

breaking traditional creative paradigms. 

7. Conclusion 

With the continuous advancement of artificial intelligence 

and deep learning, the ap-plication of deep learning in music 
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creation has gradually broken traditional boundaries, driving 

innovation and transformation in music generation technol-

ogy. This paper explores in depth the application of deep 

learning models (such as RNN, LSTM, Transformer, and 

Diffusion models) in music generation, analyzing how these 

models address issues of temporal relationships, long-range 

dependencies, and complex structural problems in music. 

Among them, the Transformer model stands out for its 

powerful self-attention mechanism, particularly in capturing 

long-range dependencies and generating com-plex melodies. 

It can handle information flow over long time spans, ensur-

ing that the generated music is more coherent and layered. 

On the other hand, Diffusion models have a significant ad-

vantage in the quality of audio generation, producing 

high-er-quality and more natural audio output. By comparing 

the characteristics of different models, we can clearly ob-

serve their respective strengths and weaknesses in terms of 

generation effects, efficiency, and stability. 

Although existing generative models have made signifi-

cant progress, they still face numerous challenges in terms of 

generation efficiency, originality, and the integrity of musi-

cal structure. Future research may improve generation quali-

ty and control capabilities by combining the advantages of 

Transformer and Diffusion models, thereby supporting more 

personalized and diverse creative needs. Overall, this paper 

not only provides a comprehensive theoretical framework for 

music generation technology but also offers important aca-

demic value and practical significance for advancing 

in-novation in fields such as music creation, education, and 

therapy. 

Abbreviations 

AI Artificial Intelligence 

DL Deep Learning 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

CNN Convolutional Neural Network 

VAE Variational Autoencoder 
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