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Abstract 

ANSYS UserMat and its corresponding special MACRO are developed for implementing the linear matching method (LMM) 

for the limit analysis by using ANSYS. By this, pre and post-processing for the limit analysis can be done in the sole ANSYS 

circumstance without a help of any additional programs. Once user creates the FE model and enters the parameters for the 

LMM analysis by using ANSYS interface, ANSYS then will evaluate the upper and lower bound of limit load automatically. 

In order to overcome the drawback of LMM which does not give the reliable lower bound of limit load, the elastic 

compensation method (ECM) for the computation of lower bound of limit load is combined with the LMM so that the 

converged upper and lower bound of limit load is obtained, respectively. Moreover, a simple method is proposed in order to 

overcome the numerical difficulty of LMM due to the high gradient of stress state. Some numerical examples were given to 

validate the proposed method and the corresponding computational system and the reliable stability was shown, as expected. 
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1. Introduction 

There have been developed various numerical approaches 

for the limit analysis of structures which could be classified 

as the direct method and the indirect one according to the 

solution category of optimization problems. The direct 

method usually consists of the linear elastic FEA, the com-

putation of bases of residual stress field and the optimization, 

classifying into several methods according to the numerical 

method employed for the optimization [1, 2]. The indirect 

method, of which the LMM is a representative, is the one for 

obtaining the solution of limit load by the iterative computa-

tion of FEAs having special properties unlike the optimiza-

tion method [3-5]. 

The convergence of LMM has already been proved and 

found wide applications for practice, leading to the confir-

mation of its accuracy [6, 7]. In particular, the LMM was 

applied for the determination of limit load of composites 

[8-11] and pressure vessels [19-23]. 

It is one of the greatest advantages of LMM that the 

standard FEA can be used, considering the varying spatially 

material properties, leading to the easy implementation by 

using the multi-purpose FEA packages like ANSYS, 

ABAQUS and ADINA. ABAQUS and ADINA has already 
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been used for the limit analysis of structures based on the 

LMM, respectively [6, 9, 10, 12]. 

In this paper, ANSYS is implemented for the limit analy-

sis of structure based on the LMM. Considering the varying 

spatially material properties, ANSYS UserMat and special 

MACRO for the pre and post-processing aimed to compute 

the upper and lower bound of limit load are developed and 

their implementation procedure is established. In order to 

overcome the drawback of LMM which does not give the 

reliable lower bound of limit load, the elastic compensation 

method (ECM) for the computation of the lower bound of 

limit load is combined with the LMM so that the converged 

upper and lower bound of limit load is obtained, respectively. 

Moreover, a simple method is proposed in order to overcome 

the numerical difficulty of LMM due to the high gradient of 

stress state. The computation system for the limit analysis is 

made so as to use the standard functions of ANSYS, reduce 

the amount of data processing and modify the code easily as 

possible as one can. Only if user creates the FE model by 

using ANSYS interface and executes the pre and 

post-processing MACRO, the upper and lower bound of lim-

it load can be obtained automatically and viewed in the type 

of graph or list. This system can solve the plane stress, the 

plane strain and the axi-symmetry as well as the 3D prob-

lems using 3D SOLID and 2D SOLID elements. 

Some numerical examples including the square plate with 

a circular hole, the single edge notched plate, axi-symmetric 

pressure vessel and the 3D pipe connection are shown in 

order to validate the proposed method and its corresponding 

execution system. The obtained results show the good 

agreement with the analytical ones as well as the excellent 

convergence. 

2. Linear Matching Method for the Limit 

Analysis 

2.1. Lower and Upper Bound Theorem of the 

Limit Load 

Material is assumed to be elastic-perfectly-plastic and that 

satisfies the von Mises yielding condition. Let us consider a 

body with volume V  and surface S  where a traction is 

given as zero or  i iP p x  on TS  and displacement 

0iu   is specified on uS  ( S = FS + uS ). Here, P  is a 

scalar parameter defining the relative magnitude of applied 

load as compared with the reference load ip . The lower and 

upper bound theorem of the limit load can be postulated as 

follows, respectively [5]. 

Lower bound theorem: 

If, for load LBP P , there exists a statically possible 

stress field such that: 

 *
ij yf                   (1) 

at every point within V , then L LBP P . Here, f  is a von 

Mises yield function and y  is the uniaxial yield stress. 

Thus, one can know that the maximum value of LBP  is the 

lower bound of limit load. 

Upper bound theorem: 

If, for load UBP P , there exists a kinetically possible 

displacement rate field *
iu  and its corresponding strain rate 

field such that: 

* * *
i ij

T

p
UB i ij

S V

P p u u dV             (2) 

where 
*p

ij  is the stress point at yield associated with 
*
ij , 

then satisfies L UBP P . Hence, one can know that the min-

imum value of UBP  is the upper bound of limit load. 

According to above theorems, lower and upper bound of 

the limit load could be evaluated by solving the optimization 

problem. The direct method employs the optimization ap-

proach based on the admissible space as the statically possi-

ble stress filed or the kinetically possible strain field, while 

the indirect method obtains the statically possible stress filed 

or the kinetically possible strain field by using FEA with a 

certain particular property, leading to the improvement of 

solution of the limit load. The LMM takes the kinetically 

possible strain field by the FEA solution obtained adjusting 

spatially varying material properties. 

2.2. LMM Algorithm for the Limit Analysis 

As mentioned above, the LMM is based on the linear elas-

tic FEA with the spatially varying material properties. The 

Young’s modulus is changed spatially such that stress field 

corresponding to a certain kinetically possible strain field is 

placed on the yielding surface at every point of material. The 

Poisson ratio is taken as 0.4999999 since the material has the 

plastic incompressibility. The LMM algorithm could be for-

mulated as follows [3-5, 8]. 

1) Initialization: Set 0 1UBP  ,  1 xE E . 

2) k th iteration: 

The linear elastic analysis with the Young’s modulus of 

 xkE  is performed under a load 1k
UBP p   and 

k
ij , 

k
ij  

and k
iu  is obtained, respectively. 

Lower and upper bound of the limit load at k th iteration 

is evaluated as: 

 
1 yk k

LB UB k
eq ij

P P


 

              (3) 
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 
1

1

T

k
y eq ij

k k V
UB UB

k k
UB i i

S

P P
P p u

  








           (4) 

where, eq  and eq  denotes the equivalent stress and 

strain, respectively. 

The 1kE   at 1k  th iteration is updated as follows. 

 
1  

yk

k
eq ij

E


 

               (5) 

Equation (5) gives the 1kE   at 1k  th iteration such 

that the stress field corresponding to the strain field 
k
ij  ob-

tained at k th iteration lies on the yielding surface. Never-

theless, for the high gradient of stress, the Young’s modulus 

evaluated by equation (5) may not give incorrect solution, 

sometimes. In order to overcome this numerical difficulty 

without any effect on the LMM solution, we do the normali-

zation using the initial Young’s modulus refE  of material. 

We denote the minimum value of the Young’s modulus 

 xkE  on the whole region obtained at 1k  th iteration by 

 min
x

min xk kE E . Then, after performing the k th iteration, 

1kE   at 1k  th iteration will be evaluated by: 

 
1

min

 
ref yk

k k
eq ij

E
E

E



 

               (6) 

instead of using equation (5). Even though equation (6) 

shows the theoretical equivalence with equation (5), our 

computational experiences ensure that equation (6) can im-

prove the numerical stability much more as compared with 

equation (5). 

Meanwhile, instead of using equation (5), the elastic 

compensation method (ECM) employs following relation 

[9]. 

 

 
 

eq

1

eq

                

      

k
ij y

k
y k

ij yk
eq ij

E

E

  


  

 



 



 




       (7) 

The LMM gives the non-increasing series of upper bound 

but fails to give the non-decreasing ones of lower bound, 

sometimes whereas the ECM results the non-increasing se-

ries of upper bound as well as the non-decreasing ones of 

lower bound even though the convergence rate of series of 

upper bound can not be rapid as compared with in the LMM. 

Though the ECM has been emerged earlier in fact, it is 

used as the additional method for the theoretically completed 

LMM now. Moreover, the difference between two methods 

lies only in using equation (6) or equation (7), thus we don’t 

distinguish the execution of LMM and ECM. 

3. Implementaion of the LMM by Using 

ANSYS 

ANSYS UserMat and pre and post-processing MACRO 

can be executed for the implementation of LMM. First, by 

compiling and connecting ANSYS UserMat, ANSYS.exe 

with adding the user-defined material is generated. And then 

the path of newly generated ANSYS.exe is added into Cus-

tom ANSYS Executable of Mechanical APDL Launcher. 

Finally ANSYS is executed. 

In the meantime, pre and post-processing MACRO file is 

copied into the working directory. Next, after executing the 

pre-processing MACRO, parameters for the LMM is entered 

and FE model for the limit analysis is made. User can make 

the FE model by using GUI or ANSYS commands without 

the definition of material properties. It should be noted that 

the element integration formula appropriate for the 

non-compressible condition has to be used because the mate-

rial follows nearly non-compressible property. 

After the definition of FE model, the limit analysis using 

the LMM is performed automatically by executing the 

post-processing MACRO. According to the iteration number 

entered in the pre-processing MACRO, the LMM and the 

ECM is repeated. 

3.1. ANSYS Subroutine-Usermat 

It is impossible to compute the varying spatially Young’s 

modulus evaluated by equation (5) or equation (6) by using the 

default functions of ANSYS. UserMat, being the ANSYS UPF 

subroutine, can be used in order to evaluate the varying spa-

tially Young’s modulus. UserMat controls such that the upper 

and lower bound of limit load evaluated according to equation 

(3) or equation (4) as well as the Young’s modulus to be used 

in the next iteration can be output by the state variable of us-

er-defined material or reflected in the default output of ele-

ment. By this, it is possible to control the solution process suf-

ficiently by using only the standard functions of ANSYS 

without any development of other programs for the 

post-processing of LMM or the additional treatment process. 

In other words, one has no need for making program or user 

subroutine in order to evaluate the upper and lower bound of 

limit load by reading the computed results from files. 

3.2. Pre-Processing Macro 

Figure 1 shows the execution of pre-processing MACRO. 

The pre-processing MACRO offers the ANSYS interface for 

the input of parameters necessary for the limit analysis based 

on the LMM and declares the associated variables. 
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Figure 1. Execution of pre-processing MACRO. 

Figure 2 presents the ANSYS interface for the input of 

parameters including the Young’s modulus, the yield stress 

and the maximum iteration number of LMM. The reference 

solution is entered for the comparison if it would be known 

beforehand. If the reference solution is unknown or user does 

not want to view the comparison, this option should be en-

tered by any value less than zero. 

 

Figure 2. ANSYS interface for the input of parameters. 

3.3. Post-Processing Macro 

The post-processing MACRO performs the iteration 

computation by the maximum iteration number entered in the 

pre-processing MACRO according to the algorithm of LMM 

or ECM in order to evaluate the upper and lower bound of 

limit load. Furthermore, it displays the upper bound of limit 

loads calculated by the LMM as well as the lower one of 

limit load evaluated by the ECM using the graph. Meanwhile, 

the obtained solution is listed by the message. Figure 3 

shows its example. 

 

Figure 3. Display and list in the form of graph and message by using the post-processing MACRO. 
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4. Numerical Examples 

4.1. The Square Plate with a Circular Hole 

Figure 4 shows the FE model of square plate with a circu-

lar central hole under the biaxial tension. For the biaxial ten-

sion of 1 2 yp p   , the analytical solution for the plane 

stress condition has already been known in ref [13]. 

Figure 5 depicts the upper and lower bound of limit load 

calculated by the LMM and the ECM, respectively. 

Table 1 lists the numerical results for the upper and lower 

bound of limit load as compared with the analytical ones for 

different ratios of R L , confirming the good agreement 

between them. 

Table 1. Analytical solutions as well as numerical ones for different ratios of R L . 

R L  Analytical solution Upper bound for LMM Lower bound for ECM 

0.1 0.97063 0.97494 0.96341 

0.2 0.89425 0.89987 0.87998 

0.3 0.79122 0.79734 0.77751 

0.4 0.67602 0.68274 0.66685 

0.5 0.55682 0.56352 0.55128 

0.6 0.43801 0.44441 0.43419 

0.7 0.32195 0.32696 0.31511 

0.8 0.20991 0.21257 0.20394 

0.9 0.10249 0.10402 0.09977 

 

 

Figure 4. Plate with a circular hole under the biaxial tension. 

As expected, one can see from Figure 5 that the LMM 

predicts the more accurate upper bound while the ECM 

evaluates the lower bound with the better accuracy, as men-

tioned above. 

 

Figure 5. Upper and lower bound of limit load computed by the 

LMM and the ECM for 0.5R L  . 

After this, we obtain the upper bound by using the LMM 

and the lower one by the ECM. 
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4.2. The Single Edge Notched Plate Under 

Tension 

 
Figure 6. Geometry of single edge notched plate under the tension. 

 
Figure 7. Numerical result as well as analytical one [14, 15] for 

the single edge notched plate with different relative crack lengths. 

Figure 6 shows the geometry of single edge notched plate 

under the tension. Assuming the plane strain condition, the 

geometry of b L  and the loading condition of yp   is 

applied, respectively. 

Figure 7 presents the numerical result as well as the ana-

lytical one [14, 15] for the single edge notched plate with 

different relative crack lengths for the comparison. 

As seen from this figure, our result has a good agreement 

with the analytical one. 

4.3. Axi-Symmetric Pressure Vessel Subjected 

to the Internal Pressure 

The axi-symmetric pressure vessel is studied, which has 

been investigated by many researchers, as shown in figure 8. 

The geometry of 4500bR mm , 3000zR L mm  , 

658.2l mm , 360kR mm  and 225s mm  are assumed. 

For the internal pressure of yp  , the limit load factor 

is found as 0.0746~0.083 in ref [16] and as 0.78 in ref [17]. 

Through 40 iterations, the limit load factor of upper and 

lower bound was obtained as 0.785 and 0.772, respectively, 

which showed the good agreement with the result as in pre-

viously studies. 

Figure 9 depicts the convergence process of upper and 

lower bound of limit load factor. As shown, one can know 

that the lower bound has a slow convergence rate as com-

pared with the upper one. 

 
Figure 8. Axi-symmetric pressure vessel: a) Geometry; b) FE mod-

el. 

 
Figure 9. Convergence process of the limit load factor of pressure 

vessel subjected to the internal pressure. 

4.4. The 3D Pipe Connection 

The 3D pipe connection subjected to the internal pressure 

is considered for the limit analysis as shown in figure 10. 

The geometry of 39D mm , 15d mm  and 

3.4s t mm   are assumed. For the internal pressure of 

yp  , the limit load factor is known as 0.1443 in ref [17] 

and as 0.134 in ref [18]. 

Until 30 iterations, the upper and lower bound was ob-

tained as 0.141 and 0.139, respectively, which confirmed the 

very good agreement with the previous results. Figure 11 

shows the convergence process of solutions. As seen from 

this figure, the lower bound requires the more iteration 

number than the upper one to obtain the converged solutions. 
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Figure 10. 3D pipe connection: a) FE mesh; b) Geometry. 

 
Figure 11. Convergence process of limit load factor of pipe connec-

tion. 

5. Conclusions 

In this paper, we developed the ANSYS user subroutines 

and the specific pre and post-processing MACROs for the 

limit analysis of structures and established its execution 

procedure by using ANSYS and LMM. And a simple 

method was proposed in order to raise the numerical stabil-

ity of LMM. Our numerical results showed the good 

agreement with the previous one as well as high numerical 

stability. 

This study is limited to the limit analysis for the monoton-

ic external loading. In the future, the shakedown analysis for 

the general case when the variable loads act should be de-

veloped by using ANSYS, including the shell and the beam 

problem. 

One can refer the ANSYS UserMat and some of pre and 

post-processing MACROs in appendix. 

Abbreviations 

LMM Linear Matching Method 

FE Finite Element 

ECM Elastic Compensation Method 

UPF User Programmable Function 
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Appendix 

Appendix I: Usermat (Plane Stress) 

*deck,usermatps    USERDISTRIB  parallel                                gal 

subroutine usermatps( 

&                   matId, elemId,kDomIntPt, kLayer, kSectPt, 

&                   ldstep,isubst,keycut, 

&                   nDirect,nShear,ncomp,nStatev,nProp, 

&                   Time,dTime,Temp,dTemp, 

&                   stress,ustatev,dsdePl,sedEl,sedPl,epseq, 
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&                   Strain,dStrain, epsPl, prop, coords, 

&                   var0, defGrad_t, defGrad, 

&                   tsstif, epsZZ, 

&                   var1, var2, var3, var4, var5, 

&                   var6, var7, var8) 

 

#include "impcom.inc" 

INTEGER 

&                 matId, elemId, 

&                 kDomIntPt, kLayer, kSectPt, 

&                 ldstep,isubst,keycut, 

&             nDirect,nShear,ncomp,nStatev,nProp 

DOUBLE PRECISION 

&                 Time,    dTime,   Temp,    dTemp, 

&                 sedEl,   sedPl,   epseq,   epsZZ 

c 

c************************************************************************* 

c 

keycut   = 0 

c *** get young's modulus from array parameter 'YOUNG' and etc 

young       = ustatev(1) 

young_ref   = prop(1) 

posn        = prop(2) 

sigy0       = prop(3) 

c 

c *** calculate elastic stiffness matrix (2d) 

c 

c1 = ONE - posn * posn 

c2 = young / c1 

c3 = posn * c2 

twoG     = young / (ONE+posn) 

tsstif(1) = HALF * twoG 

c *** identify LMM or ECM scheme 

parName = 'LMM' 

CALL PAREVL (parName, 0, 1, -1, LMM, cLabels, keyiqr) 

parName = 'YOUNG_MIN' 

CALL PAREVL (parName, 0, 1, -1, young_min, cLabels, keyiqr) 

Appendix II: Pre-Processing Macro 

PARSAV,SCALAR,'PARAM',' ',' ' 

PARRES,NEW,'PARAM',' ',' ' 

/PREP7 

*SET, NU, 0.49999999 

*SET, MAXIT, MAXIT+1 

TB,USER,1, 1, 3 

TBDATA,1, E, NU, SIGY    ! E, posn, sigy 

TB,STAT,1,1,2, 

TBTEMP,0 

TBDATA,,E 

*DIM, LBLMM, ARRAY, MAXIT, 1, 1, , , 

*DIM, UBLMM, ARRAY, MAXIT, 1, 1, , , 

*DIM, LBECM, ARRAY, MAXIT, 1, 1, , , 

*DIM, UBECM, ARRAY, MAXIT, 1, 1, , , 

*DIM, UBD,    ARRAY, MAXIT, 1, 1, , , 
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*DIM, REFA,  ARRAY, MAXIT, 1, 1, , , 

UBD(1) = 1.0 

FINISH 

Appendix III: Model Macro (Axi-Symmetric Pressure Vessel) 

/PREP7 

ET,1,PLANE182 

KEYOPT,1,1,0 

KEYOPT,1,3,1 

KEYOPT,1,6,1 

*SET, RZ, 3000/1000 

*SET, RB, 4500/1000 

*SET, L, 3000/1000 

*SET, CL, 658.2/1000 

*SET, S, 225/1000 

*SET, RK, 360/1000 

*AFUN,DEG 

K, 1,RZ,0,0, 

K, 2,RZ,L,0, 

K, 3,RZ-RK,L,0, 

K, 4,KX(3)+RK*COS(60),KY(3)+RK*SIN(60),0, 

LARC,4,2,3,RK, 

K, 5,KX(4)-CL*COS(30),KY(4)+CL*SIN(30),0, 

K, 6,0,KY(5)-RB*COS(30),0, 

K, 7,0,KY(6)+RB,0, 

LARC,7,5,6,RB, 

LSTR,       4,       5 

LSTR,       1,       2 

K, 101,RZ+S,0,0, 

K, 102,RZ+S,L,0, 

K, 104,KX(3)+(RK+S)*COS(60),KY(3)+(RK+S)*SIN(60),0, 

LARC,104,102,3,RK+S, 

K, 105,KX(104)-CL*COS(30),KY(104)+CL*SIN(30),0, 

K, 107,0,KY(6)+RB+S,0, 

LARC,107,105,6,RB+S, 

LSTR,       7,     107 

LSTR,     105,     104 

LSTR,     102,     101 

LSTR,     101,       1 

ALLSEL,BELOW,LINE 

KSEL,INVE 

KDELE,ALL 

ALLSEL,ALL 

NUMCMP,ALL 

A, 5, 10, 9, 4 

A, 4, 9, 8, 3 

A, 3, 8, 7, 2 

A, 2, 7, 6, 1 

LSEL, S, , , 1, 4, 1, 

SFL,ALL,PRES,SIGY, 

LSEL,S,LOC,X,0 

DL,ALL, ,UX, 

LSEL,S,LOC,Y,0 

DL,ALL, ,UY, 
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ALLSEL,ALL 

LSEL,S,LENGTH,,0,S 

LESIZE,ALL, , ,4, , , , ,1 

CM,THICK,LINE 

LSEL,S,RADIUS,,RK,RK+S 

LESIZE,ALL,S/5, , , , , , ,1 

CMSEL,A,THICK 

LSEL,INVE 

LESIZE,ALL,S/3, , , , , , ,1 

ALLSEL,ALL 

MSHAPE,0,2D 

MSHKEY,1 

AMESH,ALL 

Appendix D: Post-Processing Macro 

/SOL 

ALLSEL,ALL 

TIME,1 

AUTOTS,1 

NSUBST,1,0,0 

ERESX,NO 

OUTRES,SVAR,ALL, 

*DO,LMM,1,2 

*DO,K,2,MAXIT,1 

/SOLU 

PARSAV,ALL,'PARAM',' ',' ' 

*IF, K-2, GT, 0, THEN 

PARRES,NEW,'PARAM',' ',' ' 

*ENDIF 

SOLVE 

/POST1 

SET,LAST 

UBD(K) = PL/EX*UBD(K-1) 

*IF,LMM,EQ,1,THEN 

LBLMM(K-1) = LBL*UBD(K-1) 

UBLMM(K-1) = UBD(K) 

REFA(K-1)=REF 

*ELSE 

LBECM(K-1) = LBL*UBD(K-1) 

UBECM(K-1) = UBD(K) 

*ENDIF 

FINISH 

*ENDDO 

/SOLU 

FINISH 

*ENDDO 

/POST26 

NSOL,2,1,U,Y, Upper-LMM 

NSOL,3,2,U,Y, Lower-ECM 

NSOL,4,3,U,Y, Upper-ECM 

NSOL,5,4,U,Y, Lower-LMM 

NSOL,6,5,U,Y, Reference 

STORE,MERGE 

VPUT,UBLMM,2, , 

VPUT,LBECM,3, , 

VPUT,UBECM,4, , 
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VPUT,LBLMM,5, , 

VPUT,REFA,6, , 

XVAR,1 

/XRANGE,0,MAXIT-1 

/AXLAB,Y,Limit load factor 

/AXLAB,X,Iteration number 

*IF,REF,LE,0,THEN 

PLVAR,2,3 

*ELSE 

PLVAR,2,3,6 

*ENDIF 
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