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Abstract 

This paper, presents an efficient algorithm that solves such a large class of optimization problems. Ford-Fulkerson determines 

the maximum flow in a network by iteratively augmenting flow paths until no further improvement is possible. On the other 

hand, Dijkstra's algorithm excels in finding the shortest path in a weighted graph, making it suitable for minimizing costs in 

network traversal. However, this paper simultaneously optimizes both objectives (flow and cost) dependently in unique 

iterations by considering all constraints and objectives holistically. The aim of this work is to develop efficient algorithms that 

can handle complex optimization problems in transportation, network design, and other fields, ultimately improving resource 

utilization and minimizing costs as its crucial for enhancing decision-making processes, improving efficiency in resource 

utilization, and achieving cost savings in diverse applications ranging from transportation networks to production planning. 

This paper deals about formulating the linear programming for the optimizations problems and finding the maximum amount 

of flow that can be sent from a source node to a sink node while minimizing the total cost of sending that flow by using 

simplex method (Two phase method). Through computational experiments and case studies, everybody demonstrate the 

effectiveness and efficiency of the proposed approach in solving real-world network flow problems. Our method yields 

efficient algorithms with in smallest numbers of iterations and time that enable the optimal allocation of resources within 

networks, achieving both maximum flow and minimum cost simultaneously. 
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1. Introduction 

Mathematical optimizations are applicable in almost all re-

al world life problems such as diet problem, inventory prob-

lem, transportation planning, network design, and supply 

chain. Network optimization models have been most exciting 

developments in operation research in recent years [1-3]. 

They are widely used in optimization problems which have 

countless practical applications in various fields including 

commodity transportation, telecommunication systems, net-

work design, resource planning, scheduling, railroad and 

highway traffic planning, electrical power distribution, pro-

ject planning, facilities location, resource management, and 

financial planning and much more [4, 5]. The fundamental 

question in network optimization is how to efficiently 

transport some entity (commodity, product, electrical power, 

vehicles, water etc.) from one point to another in a network 

while considering the amount of budget [6, 7]. 
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Network optimization is a special type of linear program-

ming model. Some special types of network optimization 

models include: transportation problems, assignment prob-

lems, shortest path problems, minimum spanning tree prob-

lems, maximum flow problems, Chinese postman problem, 

knapsack problem and minimum cost flow problems [8, 9]. 

Solving it efficiently requires a deep understanding of graph 

theory, optimization techniques, and algorithmic design. The 

textbook [10-12] is an exhaustive reference on the subject. 

Maximum flow problem [13-15], minimum cost problem 

(MCF) is a central problem in network flows.  

Dantzig first proposed the idea of the Minimum Cost Flow 

Problem and created the first method to solve it in 1951. 

Conversely, T. Harris and F. Ross formulated the problem of 

the maximum flow discovery in a universal manner. For this 

problem, L. Ford and D. Fulkerson [16, 13, 17] created the 

well-known "augmented path" algorithm. The Ford-

Fulkerson algorithm exists in many variants [13, 18]. One of 

these is the shortest path algorithm, which was put forth by J. 

Edmonds and R. Karp in 1972 and allows one to select the 

shortest supplementary path (assuming unit length for each 

arc) from the source to the sink at each step in the residual 

network [19]. 

The paper on the minimum-cost flow problem and its ap-

plications in networks was published by Nguyen Viet Anh. 

This work focused on the least cost flow problem, where a 

constant cost function was not required. Both convex and 

differentiable functions are possible. For the maximum flow 

problem, they have expanded and changed the Ford-

Fulkerson algorithm [20, 21]. 

In the context of Maximum flow minimum cost problems, 

the cost associated with sending flow through network edges 

may represent transportation expenses, communication de-

lays, or usage fees, among other considerations. Understand-

ing and appropriately defining these costs is essential for 

accurately modeling the problem and devising efficient opti-

mization strategies that balance flow maximization with cost 

minimization, taking into account the multifaceted nature of 

cost in network operations. Jewell [24], Busaker and Gowen 

[22, 23] independently developed the successive shortest path 

algorithm [24, 25]. These researchers showed how to solve 

the MCF as a sequence of shortest path problems with arbi-

trary arc lengths. Edmonds and Karp [3] independently ob-

served that if the computations use vertex potentials, it is 

possible to implement these algorithms so that the shortest 

path problems have non-negative arc lengths. 

However, to the best of our knowledge, no one has pro-

posed the work on solving maximum flow minimum cost 

simultaneously (dependently) using linear programming. In 

this work for the given weighted and directed graphs by 

which capacity and cost associated with them we formulate it 

as a linear programming and solve it using two phase meth-

od. The primary objective of this study attempted to achieve 

an optimal solution that balances the trade-offs between flow 

maximization and cost minimization, leading to efficient and 

cost-effective operation of the underlying network or system 

simultaneously. Obviously, the aim of this paper is to maxim-

ize flows and to minimize cost for a certain weighted di-

graphs in the network. 

The last part of this paper, tried to demonstrate this algo-

rithm and show some their applications in a real network. 

2. Preliminaries 

For given directed network, i.e. a directed graph with non-

negative capacities on its edges, and two distinguished verti-

ces source - s and sink – t, the maximum flow problem tries 

to find out a maximum flow from s to t in which each arc (i, 

j) has a maximum allowed capacity of uij.  

In expanding our modeling approach, we introduce addi-

tional parameters, cij and uij, associated with each arc (i, j). 

Here, cij represents the cost of sending a unit of flow along 

the arc (i, j), while uij denotes the capacity constraint on that 

arc, indicating the maximum flow that can traverse it [16, 

23]. These parameters add depth to our understanding of the 

network by capturing the specific costs and capacities associ-

ated with individual connections. By incorporating these pa-

rameters into the problem formulation, this paper develop 

more nuanced optimization strategies that consider both the 

cost-effectiveness of flow distribution and the physical limi-

tations imposed by the network topology. 

Real networks can be modeled as a directed graph G= (V, 

A), where V is the set of n vertices (|V| = n) and A is the set of 

directed arcs. Each vertex symbolizes a location or node where 

resources originate, terminate, or transit, with associated at-

tributes like production, demand, or capacity, crucial for opti-

mizing flow distribution and minimizing costs. These vertices 

serve as key elements in formulating constraints and objectives 

governing flow dynamics, facilitating efficient resource alloca-

tion and logistics planning within the network [8, 17]. The 

source vertex denotes the origin of the flow, while the sink 

vertex represents its destination. Intermediate vertices facilitate 

the flow transfer between the source and sink, and their con-

nectivity via edges dictates the flow paths.  

Additionally, each vertex may have associated parameters 

such as production or consumption rates, capacities, and costs, 

which influence the flow optimization process [5, 11, 14]. By 

collectively considering the vertices and their interconnections, 

a comprehensive representation of the network topology and 

its flow characteristics can be established, enabling the appli-

cation of optimization techniques such as linear programming 

to solve for maximum flow with minimum cost [4, 7].  

A network is a collection of points, called vertices (nodes), 

and a collection of lines, Called edges (arcs), connecting 

these points. Network topology is only one part of the graph. 

A network can be visualized by drawing the nodes as circles 

and the arcs as lines between them [3, 8]. 

In operation of networks routing refers to the process of 

determining the path that data, information, or other entities 

take as they traverse through a network from a source to a 
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destination [7]. Next section, present the formulation, algo-

rithm and simultaneous solution methods of min-cost and 

maximum flow problem that plays an important role in net-

work routing algorithm. 

3. LP- Problem Formulation 

Let G = (V, A) be a directed network with a cost cij and a 

capacity uij associated with every arc (i, j) ∈A. For any i-j 

dipath, let P+ = set of all forward arcs on P (i,j) and P = set 

of all backward arcs on P (j,i) that means for vertex i in G, 

we define the Set of nodes before i - NB(i) and Set of nodes 

after i - NA(i) as follows. Let G = (V, A) be a digraph and 

iV. Then, 

i. NB(i) = k V: (k, i)  A (Read as “Set of nodes be-

fore i ”) 

ii. NA(i) = j V: (i, j)  A (Read as “Set of nodes After 

i ”) 

Notation: For any i-j dipath, P+ = set of all forward arcs on 

P and P = set of all backward arcs on P is defined as: 

P+(i) = {j ∈X | (i, j) ∈ A}                        (1) 

P- (i) = {j ∈ X | (j, i) ∈ A} 

Remark: (Flow Augmented Path (FAP)) 

A path P from s to t is an FAP if and only if the following 

conditions hold: 

(i) 

xij < uij, for all (i, j)P+                 (2) 

(ii) xij > 0, for all (i, j)  P. 

To determine a maximum flow through a FAP P, let 

1 = min{uij – xij: (i, j) P+}; and 

2 = min {xij: (i, j) P}                      (3) 

Then,  = min{1, 2}, called residual capacity of P, is the 

maximum flow that can be sent through P. Hence, the new 

flow in the network will be 

xij= {

 𝑥𝑖𝑗 + ∆, (𝑖, 𝑗) ∈ 𝑃+

 𝑥𝑖𝑗 − ∆, (𝑖, 𝑗) ∈ 𝑃−

 𝑥𝑖𝑗 ,     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                      (4) 

is called flow augmentation 

Note: In networks aiming to solve the maximum flow and 

minimum cost problem, the network cannot be in its optimal 

solution. 

Note that: Flow augmentation increases the value of a flow 

by  and the new flow is feasible since whatever comes into 

a node still goes out of the node. 

There are three types of nodes in a minimum cost flow 

problem: supply node, demand node, and transshipment 

node. A supply node is defined as a node where the flow out 

of the node exceeds the flow into the node. Similarly, a de-

mand node is where the flow into the node exceeds the flow 

out of the node. A transshipment node (intermediate node) is 

where the flow into the node equals the flow out of the node. 

For example, a distribution network would include the 

sources of the goods being distributed (supply nodes), the 

customers (demand nodes) and intermediate storage facilities 

(transshipment nodes) [7]. 

 

Figure 1. Source and sink digraphs. 

Write (i, j) ∈A to say that there is an arc between nodes i ∈ 

V and j∈ V. In a directed network, the arc (i, j) is regarded as 

extending from node i to node j typically, a directed network 

model involves a flow or transportation of something along 

the arcs, in the specified directions. In an undirected network, 

the arc (i, j) just represents a connection between nodes i and 

j an undirected network model may allow flows in either 

direction along an arc, or may not involve explicit flows at 

all. Solving the maximum flow minimum cost problem sim-

ultaneously using linear programming involves formulating a 

linear program with decision variables representing the flow 

on each arc and the cost associated with each flow [19]. 

Now, let us discuss methods to formulate linear program-

ming for the directed and weighted graphs as optimization 

problems by which cost, capacity and flow are associated 

with them. Let’s consider a directed graph with nodes s 

(source) and t (sink), and several intermediate nodes and let 

us define structure of linear programming in case of graphs 

[22, 23]. Each edge has a capacity and a cost associated with 

sending flow through it. The following are definition of the 

structure of LP for solving maximum flow and minimum cost 

dependently: 

1. Decision Variables: These represent the flow of goods, 

information, or any other entity through the arcs of the net-

work. Typically, for each arcs (i, j) in the digraph, a decision 

variable xij is defined to denote the flow from vertex i to ver-

tex j which are always non –negative (fij ≥ 0). That means, fij 

represent the flow on edge ij, where i and j are nodes and cij 

represent the cost of sending flow through edge ij. On each 

arc, there are 2 numbers indicating flow / cost respectively 

(fij /cij) where cij the cost per unit of flow on the edge cij i.e 

from node i to j. 

2. Objective Function: The objective function aims to min-

imize the total cost of the flow while maximizing the flow 

through the network. It is typically represented as a linear 

combination of flow variables and their associated costs. For 

example, if cij represents the cost per unit of flow on edge (i, 
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j), and fij represents the flow on that edge, then the objective 

function could be something like: 

Min ∑ 𝑐𝑖𝑗∙𝑓𝑖𝑗(𝑖,𝑗)∈𝐴                         (5) 

3. Constraints: The constraints ensure that the flow meets 

the requirements of the network and obeys the conservation 

of flow principle. They typically include: 

i. Flow Conservation Constraints: For each Intermediate 

vertex i (except the source and sink), the total flow into the 

vertex must equal the total flow out of the vertex. Mathemat-

ically, it is expressed as; 

∑ 𝑓𝑖𝑗−(𝑖,𝑗)∈𝐴 \{𝑠,𝑡}  ∑ 𝑓𝑗𝑘(𝑗,𝑘)∈𝐴\{𝑠,𝑡} = 0        (6) 

and Non-negative flow fij ≥ 0. 

b). capacity Constraints: These restrict the flow on each 

arc to be within its capacity limits i.e every flow on each arc 

should be less than or equals to the capacity possibly equals 

to zero. Mathematically, it is expressed as; 

0≤ fij ≤ uij                                     (7) 

c). Source and Sink Constraints: These specify that the to-

tal flow into the sink (demand) and out of the source (supply) 

must meet certain requirements. Mathematically, expressed 

as; 

∑ 𝑓𝑠𝑗−(𝑠,𝑖)∈𝐴  ∑ 𝑓𝑗𝑠(𝑗,𝑠)∈𝐴 = 𝑆𝑢𝑝𝑝𝑙𝑦               (8) 

∑ 𝑓𝑖𝑡−(𝑖,𝑡)∈𝐴  ∑ 𝑓𝑡𝑖(𝑡,𝑖)∈𝐴 = 𝐷𝑒𝑚𝑎𝑛𝑑  

Where, s represents the source vertex and t represents the 

sink vertex. 

Additional Constraints: To ensure that the flow out of the 

source equals the flow into the sink, set 

∑ 𝑓𝑠𝑣(𝑠,𝑣)∈𝐴 =  ∑ 𝑓𝑣𝑡 (𝑣,𝑡)∈𝐴                     (9) 

Those using this all information use a linear programming 

solver two phase method (because constraints contains ≤ and 

=) so, solve it needs to convert in Perfect standard form 

(PSF) by introducing slack and artificial variables to solve 

the formulated linear program. This will provide the optimal 

flow values that minimize the total cost while satisfying the 

capacity and flow conservation constraints. 

Let fij represent the flow along edge (i, j), cij represent the 

cost per unit flow along edge (i, j), and uij represent the ca-

pacity of edge (i, j). Linear programming formulated form of 

the problems arranged as follows. Objective function: Mini-

mize the total cost equation (5): 

Min ∑ 𝑐𝑖𝑗∙𝑓𝑖𝑗(𝑖,𝑗)∈𝐴   

Subject to: Capacity constraints: fij ≤ uij for all (i, j) in the 

digraph. 

Conservation of flow: For each node i in the digraph (ex-

cept the source and sink): 

∑ 𝑓𝑗𝑖−(𝑗,𝑖)∈𝐴  ∑ 𝑓𝑖𝑗(𝑖,𝑗)∈𝐴 = 0  

Flow conservation at the source and sink nodes: 

∑ 𝑓𝑠𝑗−(𝑠,𝑖)∈𝐴  ∑ 𝑓𝑗𝑠(𝑗,𝑠)∈𝐴 = 𝑀𝑎𝑥 𝑓𝑙𝑜𝑤             (10) 

∑ 𝑓𝑖𝑡−(𝑖,𝑡)∈𝐴  ∑ 𝑓𝑡𝑖(𝑡,𝑖)∈𝐴 = − max 𝑓𝑙𝑜𝑤   

Non-negativity constraints: fij ≥ 0 for all (i, j) in the di-

graph. 

Note: Both Minimum cost and maximum flow problems 

are typically formulated on a directed graph where nodes 

represent locations and edges represent connections between 

them. 

Example 1: Formulate linear programming problems for 

the given digraphs in figure 1 below with cost and capacity 

associated with it from source to sink node. 

 
Figure 2. Examples of LP formulations of the networks. 

Solution: There are six nodes: Source (1), Sink (6), Inter-

mediate (2, 3 4, 5). There are ten arcs with their respective 

capacities and costs. For instance, considering the above fig-

ure we have the following: 

(1, 2): Capacity = 10, Cost per unit flow = 2 

(1, 3): Capacity = 5, Cost per unit flow = 6 

(1, 5): Capacity = 9, Cost per unit flow = 2 

(2, 3): Capacity = 6, Cost per unit flow = 8 

(3, 5): Capacity = 7, Cost per unit flow = 3 etc.. 

Objective function: Minimize the total cost: 

Minimize 2f12 + 6f13 + 2f15 + 8f23 + 3f35 + 6f24 + 10f26 + 4f36 + 

3f56 + 5f46 

Subject to: Capacity constraints: 

f12 ≤ 10 

f13 ≤ 5 
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f15 ≤ 9 

f23 ≤ 6 

f35 ≤ 7 

f24 ≤ 12 

f26 ≤ 11 

f36 ≤ 3 

f56 ≤ 4 

f46 ≤ 8 

Conservation of flow: 

f15 + f35 – f56 =0 

f24 – f46 =0 

f12 – f24 – f26 – f23 =0 

f12 + f23 – f36– f35 =0 

Non-negativity constraints: fij ≥ 0, for all i,j in nodes or 

vertex. 

Solving this linear programming formulation will give us 

the optimal flow distribution and the minimum total cost. By 

simultaneously solving this linear program, you obtain the 

maximum flow and the minimum cost to achieve that flow in 

the network. 

4. Optimality Conditions 

The optimality conditions for the maximum flow mini-

mum cost problem are derived from linear programming the-

ory, and techniques such as the simplex method or interior-

point methods can be used to find the optimal solution. 

Optimality Test: If Zj- 𝐶𝑗̅ ≥ 0, ∀ j STOPS. The current BFS 

is optimal solution with optimal objective value. 𝑍∗̅̅ ̅=𝑍𝐵 
̅̅ ̅̅  (The 

negative of the entry at RHS of objective row). 

Else; 

Choose a non-basic column j with (largest) Zj − 𝐶𝑗̅ >

0 (column j is pivot column) 

Newly proposed procedure 1: (Existence of solution): In a 

network flow problem, the minimum cost maximum flow can 

be simultaneously (dependently) solved using linear pro-

gramming. 

Explanation: Consider a directed graph G = (V,A) where V 

is the set of vertices and A is the set of arcs. Let cij be the cost 

associated with sending one unit of flow from vertex i to ver-

tex j, and let fij represent the flow on arc (i, j). We aim to find 

the maximum flow f∗ from a source vertex s to a sink vertex t 

such that the total cost of the flow is minimized. We can for-

mulate this problem as a linear program (LP) as follows: Ob-

jective function: 

Minimize ∑ 𝑐𝑖𝑗∙𝑓𝑖𝑗(𝑖,𝑗)∈𝐴   

Subject to: 

1. Flow conservation: For each vertex i except s and t, 

the total flow into i must equal the total flow out of i: 

∑ 𝑓𝑗𝑖−(𝑗,𝑖)∈𝐴  ∑ 𝑓𝑖𝑘(𝑖,𝑘)∈𝐴 = 0  

∀i ∈ V \{s, t} 

2. Capacity constraints: The flow on each arc (i, j) must 

not exceed its capacity uij 

fij ≤ uij, ∀(i, j) ∈ A 

3. Source flow constraint: The total flow out of the 

source vertex s must equal the maximum flow f∗ at op-

timal solution i.e 


vj

j) f(s, = 𝑓∗  

4. Sink flow constraint: The total flow into the sink ver-

tex t must equal the maximum flow f∗: 

𝑓∗ =  ∑ 𝑓𝑗𝑡𝐽∈𝑉   

5. Non-negativity constraint: Flow must be non-negative 

on each arc: 

fij ≥ 0, ∀(i, j) ∈ A 

Solving this linear program will yield the minimum cost 

maximum flow in the network. Linear programming solver 

two phase methods can efficiently solve this problem and 

find the optimal solution. Thus, the minimum cost maximum 

flow problem can be simultaneously (dependently) solved 

using linear programming techniques. 

The uniqueness of the solution to the maximum flow min-

imum cost problem solved simultaneously using linear pro-

gramming can be proven under certain conditions. 

Newly proposed procedure 2: (Uniqueness of solution): Giv-

en a network with capacities and costs on its edges, the solution 

to the maximum flow minimum cost problem using linear pro-

gramming is unique if the network satisfies certain conditions. 

Explanation: 

1. Unique cost for each edge: If each edge in the network 

has a unique cost, it simplifies the determination of the opti-

mal solution. This uniqueness ensures that the cost of each 

flow path is distinct, aiding in the identification of the opti-

mal flow configuration. 
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2. Network topology: The structure of the network, includ-

ing the arrangement of nodes and edges, plays a crucial role. 

In some cases, the network topology may restrict the flow 

paths, leading to a unique optimal solution. 

3. Capacity constraints: If the network has capacity con-

straints on its edges, such as maximum flow capacities, these 

constraints can narrow down the feasible flow configurations, 

potentially leading to a unique optimal solution. 

4. Demand requirements: The demand or supply require-

ments at different nodes in the network can also influence the 

uniqueness of the optimal solution. Specific demands may 

dictate how flow is distributed throughout the network, af-

fecting the optimal flow configuration. 

5. Objective function: The objective function, which com-

bines the flow and cost considerations, can influence the 

uniqueness of the optimal solution. Different objective func-

tions may lead to different optimal solutions, but in the case 

of a minimum cost problem, the cost function tends to guide 

the solution towards uniqueness. 

6. Absence of cycles with negative cost: If there are no cy-

cles with negative cost in the network (assuming a cycle ex-

ists if one can return to a node by following edges and a neg-

ative cost implies you gain cost as you move along the cy-

cle), it can ensure the existence and uniqueness of the opti-

mal solution due to the absence of opportunities for improv-

ing the cost by circulating flow. 

While these factors can contribute to the uniqueness of the 

optimal solution, it's essential to note that exceptions may 

arise depending on the specific characteristics of the flow 

network and the problem constraints. Therefore, careful 

analysis and consideration are necessary when determining 

the uniqueness of the optimal solution in a maximum flow 

minimum cost problem. 

Theorem 3: If there are no cycles with negative cost in the 

network, then there exists a unique optimal solution for the 

maximum flow minimum cost problem. 

Proof: 

1. Existence of an optimal solution: 

Consider a flow network without cycles with negative 

cost. Clearly, every flow network has at least one feasible 

solution, as we can always set flow values to satisfy capacity 

constraints. Since there are no cycles with negative cost, 

there is no way to decrease the total cost of the flow by ad-

justing flow along any path or cycle. Therefore, there exists 

at least one feasible solution with a minimum cost. 

2. Uniqueness of optimal solution: 

Assume there are two distinct optimal solutions, f1 and f2, with 

the same minimum cost. Consider the symmetric difference of 

these two flows, f=f1-f2. Since both f1 and f2 are feasible solu-

tions, f is a valid flow. Since the cost of both flows is the same, 

the total cost of the flow along f is zero. However, if there is a 

flow along any edge, there must exist a positive or negative cost 

associated with it. Since the total cost is zero, there cannot be 

any flow along any edge in f, implying f=0. Therefore, f1=f2, 

showing the uniqueness of the optimal solution. 

Hence, this proved that in a network without cycles with 

negative cost, there exists a unique optimal solution for the 

maximum flow minimum cost problem. 

Theorem 1: (shortest path optimality conditions) 

a) d(j) represents shortest path distances if and only if d(j) 

≤ d(i) + l
ij
, for all (i,j)  A. 

b) Suppose d(j) is the shortest path distance. The path 

from s to j is the shortest s-j path if and only if d(j) = 

d(i) + l
ij
, for all (i,j) on P. 

Theorem 2: If a path P* is a shortest s-t path, then for eve-

ry intermediate node k on P*, the sub-path P
1
 from s to k is a 

shortest path from s to k in the graph. 

Proof: Let P* be as shown below: 

 
Figure 3. Shortest s-t path in a digraph. 

P*= P
1
 + P2, l (P*) = l (P

1
) + l (P

2
) 

Claim: P
1
 is the shortest path from s to k. 

Suppose this is not the case. 

Exists a path, say P3, from s to k such that l (P3) < l (P1). 

The path P', where P' =P3 + P2, is a path from s to t such 

that l(P') = l(P3) + l(P2) < l(P*), which is contradiction. 

5. Algorithm 

The network simplex method is an efficient algorithm for 

simultaneously solving the maximum flow and minimum cost 

problem in network flow optimization using linear program-

ming. The algorithm starts with an initial feasible flow and a 

spanning tree, known as the basis. It then iteratively improves 

the solution by finding augmenting paths to increase the flow 

while maintaining feasibility and minimizing the total cost. 

Kruskal’s Algorithm: Given a weighted connected graph 

G=(V,E) with |V|=n, to construct its minimal spanning tree T 

we have the following steps: 

Step 1: Select an edge of least weight and include it on T. 

Step 2: Among the remaining edges, select one of the least 

weight which does not form a cycle with previously selected 

edges. 

Step 3: Repeat step 2 until n – 1 edge are selected. 

Example 2: Find the minimal spanning tree of the follow-

ing graph by Kruskal’s Algorithm. 
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Figure 4. Minimal spanning Tree problem. 

Solution: By using Kruskal’s Algorithm one can obtain 

MST of G with weight 18 as the following graph. 

 
Figure 5. Minimal Spanning Tree solution for figure 4. 

MST of G with weight 18. 

Algorithms to find max flow from vertex 1 to n. 

(1). Initial: Let S1= Ø; S2:= {1}, S3 = {2, 3,…, n}. 

(2). Scanning: Choose iS2, (i is to be scanned). Put S1= 

S1 U {i}; S2= S2\ {i}; 

(2.1). Labeling For all j NA(i) and jS3 do: 

if xij < uij, then, 

Label j with (+, i); and 

S2 = S2 U {j}; S3 = S3 \ {j}; 

If j = n, identify FAP by ‘backtracking’, find it is , do 

flow augmentation, and remove all labels and go to step (1) 

(2.2). For all j NB(i) and jS3 do: 

if xji >0, then, 

Label j with (–,i); 

S2 = S2 U {j}; S3 = S3 \ {j}; 

(3). If S2  Ø, go to step (2); 

else, i.e., if S2 = Ø, current flow is Maximum, STOP 

The Simplex Algorithm: To solve min {cx | ATx=b, x  0 } 

1. Construct its simplex tableau in perfect standard form 

(PSF) and start with initial BFS where, PSF should sat-

isfy the following conditions: 

a. Objective function is expressed in terms of NBVs 

only. 

b. A constraint equation contains only one BV with co-

efficient 1. 

c. The RHS of each constraint, bi, is nonnegative. 

2. Optimality Test: If Zj- 𝐶𝑗̅ ≥ 0, ∀  j STOP. The current 

BFS is optimal solution with optimal objective value. 

𝑍∗̅̅ ̅=𝑍𝐵 
̅̅ ̅̅  (The negative of the entry at RHS of objective 

row) Else; Choose a non-basic column j with (largest) Zj 

− 𝐶𝑗̅ > 0 (column j is pivot column) 

3. Unboundedness: If, 𝑎𝑖𝑗̅̅̅̅ ≤ 0, ∀𝑖 = 1,2, … … . 𝑚  then 

stop, (It is Unbounded) Else do basis exchange as fol-

lows. 

4. Choose a pivot row r in which the following min oc-

curs: 

min {
𝑏̅𝑖

𝑎𝑖𝑗
  𝑎̅𝑖𝑗 > 0, i = 1,2,3,4….m} 

and perform pivot operation pivoting with 𝑎𝑟𝑗̅̅ ̅̅ ≤ 0 then, 

Repeat the procedure from 2. 

Theorem 2: (Criterion for unbounded LP) 

Given a feasible basis B, if there is a non-basic column j 

such that  𝑐̅𝑗 > 0 and B- 𝐴̅𝑗= 𝐴̅𝑗 ≤ 0, then the LP max{cTx | Ax 

= b, x  0} is unbounded. 

Algorithm of two phase methods for LP networks 

The two-phase method for solving the simultaneous solu-

tion of minimum cost maximum flow in linear programming 

involves two distinct phases. In the first phase, the algorithm 

begins by introducing artificial variables to the network flow 

problem, transforming it into an auxiliary linear program-

ming problem. The objective of this phase is to find an initial 

feasible solution that satisfies both capacity and flow conser-

vation constraints. 

In the second phase, the algorithm transitions to the origi-

nal linear programming problem, removing the artificial vari-

ables and optimizing the actual objective function of mini-

mizing the total cost of the flow. At each iterations, the algo-

rithm selects entering and leaving variables carefully to en-

sure convergence and optimality. 

Phase- I 

1. Initialization: 

∑ 0𝑠𝑖
𝑛
𝑖=1  + ∑ − 𝐴𝑖𝑖∈𝑉𝑖{𝑠,𝑡}

, where i= 1,2…….n (numbers of 

constraints), si are the crossponding surplus and slack varia-

bles, s,t are source and sink node and Vi are vertices of the 

graph. 

2. Construct the Auxiliary LPP in which the new objective 

function Z* is to be maximized subject to the given set 

of constraints. 

i.e Min ∑ 0𝑠𝑖
𝑛
𝑖=1  + ∑ −𝐴𝑖𝑖∈𝑉𝑖{𝑠,𝑡}

 

Subject to Aixi≤b 

xi,si ≥ 0, i=1,2…….n (number of constraints) 

3. Solve the auxiliary problem by simplex method until ei-

ther of the following three possibilities do arise 

i. Min Z* > 0 and at least one artificial vector appear 

in the optimum basis at a positive level (Zj-Cj ≥ 0). 

In this case, given problem does not possess any fea-
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sible solution. 

ii. Min Z* = 0 and at least one artificial vector appears 

in the optimum basis at a zero level. In this case pro-

ceed to phase-II. 

iii. Min Z* = 0 and no one artificial vector appears in 

the optimum basis. In this case also proceed to 

phase-II. 

Phase II 

1. Assign the actual cost to the variables in the objective 

function and a zero cost to every artificial variable that 

appears in the basis at the zero level. 

2. This new objective function is now minimized by sim-

plex method subject to the given constraints. 

3. Simplex method is applied to the modified simplex ta-

ble obtained at the end of phase-I, until an optimum 

basic feasible solution has been attained. 

4. The artificial variables which are non-basic at the end of 

phase-I are removed. 

6. Applications in Network 

This section, deals about how minimum-cost and maxi-

mum flow problems are applied in routing in data networks. 

routing refers to the process of determining the paths that the 

flow will take through the network in order to optimize cer-

tain criteria, such as maximizing the flow or minimizing the 

total cost. Routing system must satisfy several requirements 

such as reliability, high performance. Let us consider the case 

when we want to send data from one vertex s – source to 

another vertex t – sink in a graph. In practice, routing deci-

sion need to find the way to send maximum flow including 

minimum cost, dependently. This section, concerned with 

routing algorithms capable of finding routes that comply with 

application requirement and achieve high performance. 

In practical network scenarios, where data transmission 

from a source vertex (s) to a destination vertex (t) is paramount, 

the network is often represented as a graph. Routing decisions 

become pivotal as they aim to navigate the data flow while 

meeting various requirements such as achieving minimum cost 

maximum flow, minimizing delay, and mitigating loss. These 

decisions involve selecting paths through the graph that opti-

mize the trade-offs between cost, delay, and loss, ensuring 

efficient and reliable data transmission. By employing sophis-

ticated routing algorithms and considering factors like network 

topology, traffic patterns, and Quality of Service (QoS) con-

straints, networks can effectively balance these objectives to 

meet the diverse needs of modern applications and users, en-

suring optimal performance and user experience. 

Example 3: Formulate linear programming problem, solve 

maximum flow and minimum cost simultaneously for the 

formulated LPP using simplex method (two phase method) 

for the given digraphs with cost and capacity associated with 

it from source to sink node. 

 
Figure 6. Digraphs with capacity and cost. 

Solution: The linear programming formulation of the prob-

lem is arranged as follows: Consider the decision variable 

x12, x23, x35, x25, x34, x13, x14 and x45 then, we have 

Min Z = 2 x12 + 6 x23 + 5 x13 + 6 x14+ 4x35 + 3x25 + 3x45 + 

5x34 

Subject to 

x12 ≤ 10 

x23 ≤ 6 

x35 ≤ 8 

x25 ≤ 4 

x34 ≤ 5 

x13 ≤ 5 

x14 ≤ 8 

x45 ≤ 4 

x12 − x23 – x25 = 0 

x23 − x35 – x34 + x13 = 0 

x34 + x14 – x45 = 0 

x12, x23, x35, x25, x34, x13, x14, x45 ≥ 0 

Then, in order to solve the above formulated LPP prob-

lems, use two phase simplex method solution system. 

Phase-I 

The problem is converted to canonical form by adding 

slack, surplus and artificial variables as appropriate. 

After introducing slack, artificial variables the LPP formu-

lation will be: 
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Min Z = A1 − A2 − A3 

Subject to 

x12 + S1 = 10 

x23 + S2 = 6 

x35 + S3 = 8 

x25 + S4 = 4 

x34 + S5 = 5 

x13 + S6 = 5 

x14 + S7 = 8 

x45 + S8 = 4 

x12 − x23 – x25 + A1 = 0 

x23 − x35 – x34 + x13 + A2 = 0 

x34 + x14 – x45 + A3 = 0 

x12, x23, x35, x25, x34, x13, x14, x45, s1, s2, s3, s4, s5, s6, s7, s8, A1, 

A2, A3 ≥ 

Table 1. Simplex tablue (Phase - I) iteration 1. 

It-1  Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 A1 A2 A3 
Min ra-

tio (
𝑿𝑩

𝑿𝟏𝟐
) 

s1 0 10 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 10/1=10 

s2 0 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 - 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 - 

s5 0 5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 - 

s8 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 - 

A1 -1 0 (1) -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0/1=0  

A2 -1 0 0 1 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 - 

A3 -1 0 0 0 0 0 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 1 - 

Z=0  Zj -1  0 1 1 0 -1 -1 1 0 0 0 0 0 0 0 0 -1 -1 -1  

  Zj-Cj -1 0 1 1 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0  

Negative minimum Zj − Cj is -1 and its column index is 1. So, the entering variable is x12. Minimum ratio is 0 and its row index is 9. So, the 

leaving basis variable is A1. The pivot element is 1. Entering = x12, Departing = A1, Key Element = 1 

Table 2. Simplex tablue (Phase - I) iteration 2. 

It-2  Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 A2 A3 Min ratio (
𝑿𝑩

𝑿𝟐𝟑
) 

s1 0 10 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10/1=10 
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It-2  Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 A2 A3 Min ratio (
𝑿𝑩

𝑿𝟐𝟑
) 

s2 0 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 6/1=6 

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 - 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

s5 0 5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 - 

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 - 

s8 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

x12 0 0 1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

A2 -1 0 0 (1) 1 0 -1 1 0 0 0 0 0 0 0 0 0 0 1 0 0/1=0  

A3 -1 0 0 0 0 0 1 0 1 -1 0 0 0 0 0 0 0 0 0 1 - 

Z=0  Zj 0 -1 1 0 0 -1 -1 1 0 0 0 0 0 0 0 0 -1 -1  

  Zj-Cj 0 -1  1 0 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0  

Negative minimum Zj − Cj is -1 and its column index is 2. So, the entering variable is x23. Minimum ratio is 10 and its row index is 10. So, 

the leaving basis variable is A2. The pivot element is 1. Entering = x23, Departing =A2, Key Element = 1 

Table 3. Simplex tablue (Phase - I) iteration 3. 

It-3  Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 A3 Min ratio (
𝑿𝑩

𝑿𝟑𝟒
) 

s1 0 10 0 0 1 1 1 -1 0 0 1 0 0 0 0 0 0 0 0 10/1=10 

s2 0 6 0 0 1 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 6/1=6 

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 - 

s5 0 5 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 5/1=5 

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

s8 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 - 

x12 0 0 1 0 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 - 

x23 0 0 0 1 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0  

A3 -1 0 0 0 0 0 (1) 0 1 -1 0 0 0 0 0 0 0 0 1 0/1=0  

Z=0  Zj 0 0 0 0 -1 0 -1 1 0 0 0 0 0 0 0 0 -1  

  Zj-Cj 0 0 0 0 -1  0 -1 1 0 0 0 0 0 0 0 0 0  

Negative minimum Zj − Cj is -1 and its column index is 5. So, the entering variable is x34. Minimum ratio is 0 and its row index is 11. So, the 

leaving basis variable is A3. The pivot element is 1. Entering =x34, Departing =A3, Key Element =1 
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Table 4. Simplex tablue (Phase - I) iteration 4. 

It-4  Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 Min ratio 

s1 0 10 0 0 1 1 0 -1 -1 1 1 0 0 0 0 0 0 0  

s2 0 6 0 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 0  

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0  

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0  

s5 0 5 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 0  

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0  

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0  

s8 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1  

x12 0 0 1 0 -1 -1 0 1 1 -1 0 0 0 0 0 0 0 0  

x23 0 0 0 1 -1 0 0 1 1 -1 0 0 0 0 0 0 0 0  

X34 0 0 0 0 0 0 1 0 1 -1 0 0 0 0 0 0 0 0  

Z=0  Zj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

  Zj-Cj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Since all Zj − Cj ≥ 0. Hence, optimal solution is arrived with value of variables as: x12 = 0, x23 = 0, x35 = 0, x25 = 0, x34 = 0, x13 = 0, x14 = 0, 

x45 = 0 

Min Z=0 

Phase-2 

Eliminate the artificial variables and change the objective function for the original, Min Z = 2 x12 + 6 x23 + 5 x13 + 6 x14+ 

4x35 + 3x25 + 3x45 + 5x34+ 0S1 + 0S2 + 0S3 + 0S4 + 0S5 + 0S6 + 0S7 + 0S8 

Table 5. Simplex tablue (Phase - II) iteration 1. 

It-1  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟒𝟓
) 

s1 0 10 0 0 1 1 0 -1 -1 1 1 0 0 0 0 0 0 0 10/1=10 

s2 0 6 0 0 1 0 0 -1 -1 1 0 1 0 0 0 0 0 0 6/1=6 

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 - 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 - 

s5 0 5 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 5/1=5 

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 - 

s8 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 4/1=4  

x12 2 0 1 0 -1 -1 0 1 1 -1 0 0 0 0 0 0 0 0 - 

x23 6 0 0 1 -1 0 0 1 1 -1 0 0 0 0 0 0 0 0 - 
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It-1  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟒𝟓
) 

X34 5 0 0 0 0 0 1 0 1 -1 0 0 0 0 0 0 0 0 - 

Z=0  Zj 2 6 -8 -2 5 8 13 -13 0 0 0 0 0 0 0 0  

  Zj- Cj 0 0 -12 -5 0 3 7 -16  0 0 0 0 0 0 0 0  

Negative minimum Zj − Cj is -16 and its column index is 8. So, the entering variable is x45. Minimum ratio is 4 and its row index is 8. So, the 

leaving basis variable is s8. The pivot element is 1. Entering =x45, Departing =s8, Key Element =1 

Table 6. Simplex tablue (Phase - II) iteration 2. 

It-2  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟑𝟓
) 

s1 0 10 0 0 1 1 0 -1 -1 0 1 0 0 0 0 0 0 0 6/1=6 

s2 0 6 0 0 (1) 0 0 -1 -1 0 0 1 0 0 0 0 0 0 2/1=2  

s3 0 8 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 8/1=8 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 - 

s5 0 5 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 - 

s6 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 - 

x45 3 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 

x12 2 4 1 0 -1 -1 0 1 1 0 0 0 0 0 0 0 0 1 - 

x23 6 4 0 1 -1 0 0 1 1 0 0 0 0 0 0 0 0 1 - 

X34 5 4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 - 

Z=64  Zj 2 6 -8 -2 5 8 13 3 0 0 0 0 0 0 0 16  

  Zj- Cj 0 0 -12  -5 0 3 7 0 0 0 0 0 0 0 0 16  

Negative minimum Zj − Cj is -12 and its column index is 3. So, the entering variable is x35. Minimum ratio is 2 and its row index is 2. So, the 

leaving basis variable is s2. The pivot element is 1. Entering =x35, Departing =s2, Key Element =1 

Table 7. Simplex tablue (Phase - II) iteration 3. 

It-3  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟏𝟑
) 

s1 0 4 0 0 0 1 0 0 0 0 1 -1 0 0 0 0 0 0 - 

x35 4 2 0 0 1 0 0 -1 -1 0 0 1 0 0 0 0 0 -1 - 
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It-3  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟏𝟑
) 

s3 0 6 0 0 0 0 0 1 1 0 0 -1 1 0 0 0 0 1 6/1=6 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 - 

s5 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 - 

s6 0 5 0 0 0 0 0 (1) 0 0 0 0 0 0 0 1 0 0 5/1=5  

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 - 

x45 3 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 

x12 2 6 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 - 

x23 6 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

X34 5 4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 - 

Z=88  Zj 2 6 4 -2 5 -4 1 3 0 12 0 0 0 0 0 4  

  Zj- Cj 0 0 0 -5 0 -9  -5 0 0 15 0 0 0 0 0 4  

Negative minimum Zj − Cj is -9 and its column index is 6. So, the entering variable is x13. Minimum ratio is 5 and its row in-

dex is 6. So, the leaving basis variable is s6. The pivot element is 1. Entering =x13, Departing =s6, Key Element =1 

Table 8. Simplex tablue (Phase - II) iteration 4. 

It-4  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟏𝟑
) 

s1 0 4 0 0 0 (1) 0 0 0 0 1 -1 0 0 0 0 0 0 4/1=4  

x35 4 7 0 0 1 0 0 0 -1 0 0 1 0 0 0 1 0 -1 - 

s3 0 1 0 0 0 0 0 0 1 0 0 -1 1 0 0 -1 0 1 - 

s4 0 4 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 4/1=4 

s5 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 - 

x13 5 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 - 

x45 3 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 

x12 2 6 1 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 - 

x23 6 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

X34 5 4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 - 

Z=133  Zj 2 6 4 -2 5 5 1 3 0 12 0 0 0 9 0 4  

  Zj- Cj 0 0 0 -5  0 0 -5 0 0 15 0 0 0 9 0 4  

Negative minimum Zj − Cj is -5 and its column index is 4. So, the entering variable is x25. Minimum ratio is 4 and its row index is 1. So, the 

leaving basis variable is s1. The pivot element is 1. Entering =x25, Departing =s1, Key Element =1 
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Table 9. Simplex tablue (Phase - II) iteration 5. 

It-5  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 
Min ratio 

(
𝑿𝑩

𝑿𝟏𝟑
) 

x25 3 4 0 0 0 1 0 0 0 0 1 -1 0 0 0 0 0 0 - 

x35 4 7 0 0 1 0 0 0 -1 0 0 1 0 0 0 1 0 -1 - 

s3 0 1 0 0 0 0 0 0 (1) 0 0 -1 1 0 0 -1 0 1 1/1=1  

s4 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 0 0 - 

s5 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 -1 - 

x13 5 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - 

s7 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 8/1=8 

x45 3 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 

x12 2 10 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 - 

x23 6 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 - 

X34 5 4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 4/1=4 

Z=153  Zj 2 6 4 3 5 5 1 3 5 7 0 0 0 9 0 4  

  Zj- Cj 0 0 0 0 0 0 -5  0 5 7 0 0 0 9 0 4  

Negative minimum Zj − Cj is -5 and its column index is 7. So, the entering variable is x14. Minimum ratio is 1 and its row index is 3. So, the 

leaving basis variable is s3. The pivot element is 1. Entering =x14, Departing =s3, Key Element =1 

Table 10. Simplex tablue (Phase - II) iteration 6. 

It-6  Cj 2 6 4 3 5 5 6 3 0 0 0 0 0 0 0 0  

B CB XB x12 x23 x35 x25 x34 x13 x14 x45 s1 s2 s3 s4 s5 s6 s7 s8 Min ratio 

x25 3 4 0 0 0 1 0 0 0 0 1 -1 0 0 0 0 0 0  

x35 4 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

x14 6 1 0 0 0 0 0 0 1 0 0 -1 1 0 0 -1 0 1  

s4 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 0 0 0 0  

s5 0 2 0 0 0 0 0 0 0 0 0 -1 0 0 1 -1 0 0  

x13 5 5 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0  

s7 0 7 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 -1  

x45 3 4 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 1  

x12 2 10 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  

x23 6 6 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0  

X34 5 3 0 0 0 0 1 0 0 0 0 1 -1 0 0 1 0 0  

Z=158  Zj 2 6 4 3 5 5 6 3 5 2 5 0 0 4 0 9  

  Zj-Cj 0 0 0 0 0 0 0 0 5 2 5 0 0 4 0 9  
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Since all Zj − Cj ≥ 0. 

Hence, optimal solution is obtained with value of variables 

(optimal solution) as: 

x12 = 10, x23 = 6, x35 = 8, x25 = 4, x34 = 3, x13 = 5, x14 = 1, x45 = 4 

and Optimal objective value Z=158. 

That means flow variables: xij, representing the flow from 

node i to node j: 

x12 = 10, x23 = 6, x35 = 8, x25 = 4, x34 = 3, x13 = 5, x14 = 1, x45 = 4 

To identify the minimum cost, we sum up the costs associ-

ated with each unit of flow: 

Total Cost = 2 ・ 10 + 6 ・ 6 + 4 ・ 8 + 3 ・ 4 + 5 ・ 3 + 5 

・ 5 + 6 ・ 1 + 3 ・ 4 = 158 

So, the minimum cost for sending the maximum flow is 

158. 

To identify the maximum flow, we look at the flow varia-

bles leaving the source node (s): 

Max Flow = x12 + x13 + x14 = 10 + 5 + 1 = 16 

So, the maximum flow from the source to the sink is 16. 

Generally, for formulated LPP we have solved the problem 

involving maximum flow and minimum cost simultaneously 

using simplex method and obtained maximum flow of 16 

with Minimum cost for sending this maximum flow of 158. 

7. Future Work 

Future work on the simultaneous solution of the minimum 

cost maximum flow problem using linear programming could 

focus on several key areas to enhance the efficiency, scalabil-

ity, and applicability of existing methods. Firstly, algorithmic 

improvements remain a crucial avenue for research. Investi-

gating advanced pivot rules and optimization techniques 

within the linear programming framework could lead to more 

efficient convergence, reducing the computational burden 

associated with solving large-scale networks. Additionally, 

developing algorithms that exploit parallel and distributed 

computing architectures could significantly enhance the 

scalability of simultaneous solution methods, allowing for 

quicker and more effective optimization of flow in extensive 

networks. 

Secondly, future research could explore the integration of 

simultaneous solution techniques with emerging technologies. 

Leveraging advancements in machine learning and artificial 

intelligence, researchers could develop hybrid approaches 

that combine the strengths of linear programming with the 

adaptability and learning capabilities of these technologies. 

This integration could prove beneficial in addressing dynam-

ic and uncertain network conditions, providing more robust 

solutions to minimum cost maximum flow problems in real-

world applications. 

Lastly, there is a growing need for the application of sim-

ultaneous solution methods to contemporary challenges in 

sustainable and smart city development. Future work could 

focus on adapting these methods to optimize flow in urban 

systems, such as transportation networks, energy grids, and 

resource allocation, contributing to the efficient and sustaina-

ble management of cities. This research direction aligns with 

the increasing importance of developing solutions that ad-

dress the complexities of modern urban environments and 

contribute to the creation of more resilient and resource-

efficient cities. 

Generally, the future works around these study areas have 

the following themes: 

1) Exploring and developing more efficient algorithms for 

solving the simultaneous solution of minimum cost 

maximum flow problem, especially for large-scale net-

works. 

2) Investigating hybrid approaches that combine linear 

programming with other optimization techniques. 

3) Extending the scope of simultaneous solution methods 

to handle multi-objective optimization in network flow 

problems. 

4) Exploring applications of simultaneous solution tech-

niques in real-time decision-making scenarios. 

5) Exploring how simultaneous solution methods can be 

integrated with emerging technologies such as block 

chain, edge computing, or Internet of Things (IoT) to 

optimize flow in decentralized and distributed networks. 

8. Conclusion 

This paper, presented the simultaneous solution of maxi-

mum flow and minimum cost problems through linear pro-

gramming provides a versatile and efficient method for op-

timizing network flow. By integrating the objectives of 

maximizing flow and minimizing cost within a unified 

mathematical framework, this approach enables the effi-

cient allocation of resources while adhering to capacity and 

cost constraints. Leveraging linear programming techniques 

allows for the application of powerful optimization algo-

rithms, ensuring optimal solutions that balance competing 

objectives. Overall, this approach facilitates the design and 

management of networks in various domains, offering 

scalability, flexibility, and robustness in addressing complex 

real-world challenges. 

Abbreviations 

MCFP: Minimum Cost Flow Problem 

MAFMCP: Maximum Flow Minimum Cost Problem 

VH: Vertices of H 
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EH: Edges of H 

MST: Minimal Spanning Tree 

LPP: Linear Programming Problem 

LP: Linear Programming 

FAP: Flow Augmented Path 

Cij: Cost Per Unit from Node i to Node j 

fij: Amount of Flow from Node i to Node j 

Uij: Capacity from Node i to Node j 

SPP: Shortest Path Problem 

Uij: Capacity from Node i to Node j 
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