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Abstract 

We will study some properties of Boolean functions based on newly introduced concepts called “Special Decomposition of a 

Set’’ and “Special Covering of a Set’’. The introduced concepts easily solve the question of how changes in clauses affect the 

resulting value of a function. They easily determine a clause as well as the literals that can be added to or removed from the 

clause so that the satisfiability of the function is preserved. The concept of generating a satisfiable function by another 

satisfiable function through admissible changes in the function's clauses is also introduced. If the generation of a function by 

another function is defined as a binary relation, then the set of satisfiable functions of 𝑛 variables, represented in conjunctive 

normal form with 𝑚  clauses is partitioned to equivalence classes. Moreover, we prove that any two satisfiable Boolean 

functions of 𝑛  variables, represented in conjunctive normal form with 𝑚  clauses, can be generated from each other in 

polynomial time. 
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1. Introduction 

The subject of this article is Boolean functions represented 

in conjunctive normal form [3, 7]. We will study some prop-

erties of satisfiable functions [1]. 

In generally the field of Boolean functions has long been 

widely investigated and well-studied [2, 3, 6]. Nevertheless, 

we obtain important and interesting results in this field using 

new introduced concepts of special decomposition and spe-

cial covering of a set and based on them. These concepts are 

flexible and simple in use, so they enable us to study im-

portant problems concerning Boolean functions, including 

the satisfiability problem. 

To create a special decomposition that will uniquely corre-

spond to а Boolean function represented in conjunctive nor-

mal form, we treat the function as an ordered set of its 

clause. 

We will show that any Boolean function in conjunctive 

normal form generates a special decomposition of the set of 

its clauses, and any special decomposition of a set generates 

a Boolean function. Moreover, we prove that these genera-

tions run in polynomial time [9]. 

In addition, we prove that the Boolean function in con-

junctive normal form is satisfiable if and only if there is a 

special covering for the set of clauses of this function. 

One of the main goals of this article is to explore the pos-

sibilities of the concepts of special decomposition and spe-

cial covering, using them in relation to satisfiable functions. 

Typically, when transforming a Boolean function given in 

conjunctive normal form, it is not always obvious what im-

pact a change in а clause may have on the satisfiability of the 

function. Furthermore, it is not always easy to find a clause 
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and determine a literal that can be removed from or added to 

the clause, in order to preserve the satisfiability of the func-

tion. 

We introduce the concept of admissible changes in the 

clauses, which allows us to add a literal to a clause, remove a 

literal from a clause, or swap negative and positive literals of 

the same variable of a satisfiable function, so that the result-

ing function remains satisfiable. 

To study the results, we also introduce the concept of gen-

eration of а satisfiable function by another satisfiable func-

tion. Applying this concept to the function, as a result of any 

step, new satisfiable function is obtained. We also prove that 

the procedure for generation of a function by another func-

tion has a polynomial time complexity. 

Further, defining the generation of a function by another 

function as a binary relation [14, 16], we prove that the set of 

satisfiable functions of 𝑛 variables represented in conjunctive 

normal form with 𝑚 clauses, is partitioned into equivalence 

classes [2, 3]. All functions included in the same class have a 

common satisfiable assigning tuple. 

Moreover, extending the rules of admissible changes, we 

prove an important result: 

If two arbitrary Boolean functions of 𝑛  variables repre-

sented in conjunctive normal form with 𝑚 clauses, are both 

satisfiable, then either can be generated by the other using 

extended admissible changes in polynomial time [8, 9, 11]. 

The terminology used in relation to set theory, Boolean 

functions, complexity theory and matrix theory is well 

known and is consistent with the terminology in correspond-

ing monographs in the Bibliography. The newly introduced 

terms are not found in use by other authors and do not con-

tradict to other terms. 

2. Basic Concepts 

We will deal with different nonempty sets. The elements 

of these sets will usually be denoted as 𝑒1, 𝑒2,.... etc. These 

sets are assumed to be ordered [2, 14] unless otherwise stat-

ed. 

Let the nonempty set 𝑆 = {𝑒1, 𝑒2,..., 𝑒𝑚} be given. Let al-

so for some natural number 𝑛, 

(𝑀1
0, 𝑀1

1), (𝑀2
0, 𝑀2

1),..., (𝑀𝑛
0, 𝑀𝑛

1) 

be 𝑛 arbitrary ordered pairs [15, 16] of arbitrary subsets of 

the set 𝑆. 

It is important to note that the subsets and their pairs are 

numbered in no particular order. 

We will use the notation 𝑑𝑛𝑆 for an arbitrarily ordered set 

of these ordered pairs: 

𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1), (𝑀2
0, 𝑀2

1),..., (𝑀𝑛
0, 𝑀𝑛

1)}. 

The Boolean values 𝛼𝑖 and 𝛼̅𝑖, for 𝑖 ∈ {1,..., 𝑛 }, will be 

used to denote superscripts of subsets: 

𝛼̅𝑖 = 0 if 𝛼𝑖 = 1, and 𝛼̅𝑖 = 1 if 𝛼𝑖 = 0. 

The tuple of superscripts (𝛼1,..., 𝛼𝑛) of subsets will also be 

called a Boolean tuple. 

Definition 1.1. The set 𝑑𝑛𝑆  will be called a special de-

composition of the set 𝑆, if 

∀𝑖 ∈ {1,..., 𝑛} (𝑀𝑖
0  ∩  𝑀𝑖

1)= ∅,                     (1) 

∀𝑖 ∈ {1,..., 𝑛} (𝑀𝑖
0  ≠ ∅ or 𝑀𝑖

1  ≠ ∅),                 (2) 

⋃ (𝑀𝑖
0 ∪ 𝑀𝑖

1)𝑛
𝑖=1  = 𝑆.                             (3) 

Obviously, the same subsets of the set can form different 

special decompositions. 

Definition 1.2. Let the set 𝑑𝑛𝑆 be a special decomposition 

of the set 𝑆. 

For any Boolean tuple (𝛼1, 𝛼2,..., 𝛼𝑛) the ordered set 

𝑐𝑛𝑆 = {𝑀1
𝛼1, 𝑀2

𝛼2,..., 𝑀𝑛
𝛼𝑛} 

will be called a special covering for the set 𝑆 under the de-

composition 𝑑𝑛𝑆, if 

⋃  𝑀𝑖
𝛼𝑖𝑛

𝑖=1  = 𝑆. 

Note that the subsets  𝑀𝑖
0  and 𝑀𝑖

1  cannot simultaneously 

belong to the special covering. 

Let 𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0, 𝑀𝑛

1)}be an ordered set of 

arbitrary ordered pairs of subsets of the set 𝑆. For any 1 ≤ 𝑘 

≤ 𝑛, an ordered set obtained by permutating the components 

of arbitrary chosen ordered pairs 

(𝑀𝑖1

0 , 𝑀𝑖1

1 ),..., (𝑀𝑖к

0 ,  𝑀𝑖к

1 ) ∈  𝑑𝑛𝑆 

will be called an 𝐼-transformation of the set 𝑑𝑛𝑆. It will be 

denoted by (𝑖1,𝑖2,..., 𝑖𝑘 )𝐼(𝑑𝑛𝑆). Sometimes, if there is no 

need to mark the numbers of the ordered pairs, we will skip 

them and use the notation 𝐼(𝑑𝑛𝑆): 

𝐼(𝑑𝑛𝑆) = *(𝑀1
𝛼1, 𝑀1

𝛼̅1),..., (𝑀𝑛
𝛼𝑛, 𝑀𝑛

𝛼̅𝑛)}. 

The ordered pairs of this decomposition are defined as: 

(𝑀𝑖
𝛼𝑖, 𝑀𝑖

𝛼̅𝑖) = (𝑀𝑖
0, 𝑀𝑖

1), if the components of the 𝑖-th pair 

are not displaced, 

(𝑀𝑖
𝛼𝑖, 𝑀𝑖

𝛼̅𝑖) = (𝑀𝑖
1, 𝑀𝑖

0), if the components of the 𝑖-th pair 

are displaced. 

Lemma 1.3. If 𝑑𝑛𝑆 is an ordered set of ordered pairs of 

subsets of the set 𝑆 then for any I-transformation I (𝑑𝑛𝑆), the 

following is true: 

i) 𝑑𝑛𝑆 is a special decomposition of the set 𝑆 if and only 

if so is the ordered set 𝐼(𝑑𝑛𝑆). 

ii) If 𝑑𝑛𝑆 is a special decomposition of the set 𝑆, then 

there exists a special covering for the set 𝑆 under the 
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decomposition 𝑑𝑛𝑆 if and only if it exists under the de-

composition 𝐼(𝑑𝑛𝑆). 

Proof. i) During the transition from the set 𝑑𝑛𝑆 to the set 

𝐼(𝑑𝑛𝑆) and vice versa, the contents of the subsets do not 

change. Only the orders of the components of some ordered 

pairs change. Therefore, the sets 𝑑𝑛𝑆 and 𝐼(𝑑𝑛𝑆) are either at 

the same time special decompositions of the set 𝑆, or at the 

same time they are not such decompositions. 

At the other hand, if under the special decomposition 𝑑𝑛𝑆 

the set 𝑐𝑛𝑆 = {𝑀1
𝛼1,..., 𝑀𝑛

𝛼𝑛+ (𝛼𝑖  ∈ {0, 1}) is a special cover-

ing for the set 𝑆, then it will also be a special covering for the 

set 𝑆 under decomposition 𝐼(𝑑𝑛𝑆) and vice versa. ∇ 

In what follows, we will distinguish the subsets included 

in ordered pairs according to the order of their location in 

these pairs. 

Let for some Boolean tuple (𝛼1,..., 𝛼𝑛), 𝑑𝑛𝑆 be a special 

decomposition: 

𝑑𝑛𝑆 = *(𝑀1
𝛼1, 𝑀1

𝛼̅1),... , (𝑀𝑛
𝛼𝑛, 𝑀𝑛

𝛼̅𝑛)}. 

The subsets 𝑀1
𝛼1 ,..., 𝑀𝑛

𝛼  will be called the subsets of 0-

domain, 

The subsets 𝑀1
𝛼̅1,..., 𝑀𝑛

𝛼̅𝑛  will be called the subsets of 1-

domain. 

If the components of an ordered pair (𝑀𝑖
0, 𝑀𝑖

1) are per-

muted, then the subset 𝑀𝑖
1  becomes a subset of the 0 -

domain, and the subset 𝑀𝑖
0  becomes a subset of the 1 -

domain. 

For technical convenience, for any 𝛼 ∈ {0, 1}, we denote: 

𝑀𝛼 = ⋃ 𝑀𝑖
𝛼𝑖𝑛

𝑖=1  and 𝑀𝛼̅ = ⋃ 𝑀𝑖
𝛼̅𝑖𝑛

𝑖=1  

𝑠𝑀𝛼  = {𝑀1
𝛼1 ,..., 𝑀𝑛

𝛼𝑛} and 𝑠𝑀𝛼̅ = {𝑀1
𝛼̅1 ,..., 𝑀𝑛

𝛼̅𝑛}. For any 

𝛼 ∈ {0, 1}, 𝑠𝑀𝛼 will be called a set of 𝛼-components or 𝛼-

domain of the decomposition 𝑑𝑛𝑆. 

(𝑖1,..., 𝑖𝑘)s𝑀𝛼 is the set obtained by replacing the subsets 

𝑀1
𝛼1 ,..., 𝑀𝑛

𝛼𝑛  with the subsets 𝑀1
𝛼̅1 ,..., 𝑀𝑛

𝛼̅𝑛 , respectively, in 

the set 𝑠𝑀𝛼 . ( 𝑖1 ,..., 𝑖𝑘 ) s𝑀𝛼  will be called a set of 𝛼 -

components of the ordered pairs included in the decomposi-

tion (𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆). 

Definition 1.4. If the set of subsets of the 𝛼-domain is a 

special covering for the set 𝑆, then such a covering will be 

called a special 𝑀𝛼-covering or briefly 𝑀𝛼-covering for the 

set 𝑆. 

Lemma 1.5. Let 𝑑𝑛𝑆 = (𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0, 𝑀𝑛

1)} be a spe-

cial decomposition of the set 𝑆. 

Then, there exists a special covering for the set 𝑆 under the 

special decomposition 𝑑𝑛𝑆 if and only if for some 𝛼 ∈ {0,1} 

there exists an 𝑀𝛼-covering for the set 𝑆 under some special 

decomposition 𝐼(𝑑𝑛𝑆). 

Proof. Obviously, the procedure for forming the 𝛼-domain 

does not violate the Definition 1.2 of a special covering. 

Therefore, any 𝑀𝛼-covering is also a special covering for the 

set 𝑆. 

If there exists a special covering for 𝑆 containing subsets 

included in the 𝛼̅ -domain, then, obviously, by applying 𝐼 -

transformation with respect to ordered pairs containing these 

subsets, according to Lemma 1.3, we obtain an 𝑀𝛼-covering 

for the set 𝑆. ∇. 

3. Boolean Functions and Special 

Decompositions 

Let for natural numbers 𝑛 and 𝑚, 𝑓(𝑥1,..., 𝑥𝑛) be a Boole-

an function of 𝑛 variables represented in conjunctive normal 

form (𝐶𝑁𝐹) with 𝑚 clauses. 

We assume that the clauses of the function are numbered 

by the numbers 1,..., 𝑚 in some natural order, and we will 

use the notation 𝑐𝑗 for the 𝑗-th clause of the function. We will 

also use the notations 𝑥𝑖
0 = 𝑥𝑖̅ and 𝑥𝑖

1 = 𝑥𝑖  for 𝑖 ∈ {1,..., 𝑛} 

for literals included in clauses. 

For simplicity and technical convenience, we assume the 

following: 

a) no variable and its negation are included in any clause 

simultaneously, 

b) if the function contains 𝑛 variables, then for any 𝑖 ∈ 

{1,..., 𝑛}, the literal 𝑥𝑖
𝛼 appears in some clauses for 

some 𝛼 ∈ {0,1}. 

Obviously, this assumption does not limit the set of func-

tions being considered. 

We say that the clauses of the set {𝑐𝑗1
,..., 𝑐𝑗𝑘

} are satisfia-

ble if there is a Boolean assignment tuple (σ1,...,σ𝑛), such 

that any of these clauses takes the value 1 when the variables 

𝑥1,..., 𝑥𝑛 are assigned the values σ1,...,σ𝑛, respectively. 

3.1. Special Decomposition of Clauses of a 

Boolean Function 

Let 𝑆(𝑓) = {𝑐1, 𝑐2,..., 𝑐𝑚} be the set of clauses of some 

function 𝑓(𝑥1,..., 𝑥𝑛). 

Based on the clauses of the function 𝑓(𝑥1,...,𝑥𝑛), we form 

the subsets of the set 𝑆(𝑓). For convenient these subsets will 

be denoted by capital letters corresponding to the function 

designation: 

For any 𝑖 ∈ {1,..., 𝑛} and 𝛼 ∈ {0,1} we denote: 

F𝑖
0 = {𝑐𝑗 / 𝑐𝑗 ∈ 𝑆(𝑓) and 𝑐𝑗 contains the literal 𝑥̅𝑖, (𝑗 ∈ {1,..., 𝑚})}. 

F𝑖
1 = {𝑐𝑗 / 𝑐𝑗 ∈ 𝑆(𝑓) and 𝑐𝑗 contains the literal 𝑥𝑖, (𝑗 ∈ {1,..., 𝑚})}. 

Let’s form the following ordered set of ordered pairs of 

these subsets: 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1), (F2
0, F2

1) ,..., (F𝑛
0, F𝑛

1)}. 

We will say that the ordered set 𝑑𝑛𝑆(𝑓) is a decomposition 

of the set 𝑆(𝑓) generated by the conjunctive normal form of 

the function 𝑓(𝑥1,...,𝑥𝑛). 

Lemma 2.2. For any function 𝑓(𝑥1,..., 𝑥𝑛), represented in 

conjunctive normal form, the set 𝑑𝑛𝑆(𝑓) is a special decom-
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position of the set 𝑆(𝑓). 

Proof. Taking into account that the functions under con-

sideration satisfy conditions (a) and (b) set out in the previ-

ous paragraph, it is easy to verify that the conditions of the 

Definition 1.1 of the special decomposition, (1), (2) and (3) 

are satisfied. ∇. 

If there exists a special covering for the set 𝑆(𝑓) under the 

special decomposition 𝑑𝑛𝑆(𝑓),  then we will denote it by 

𝑐𝑛𝑆(𝑓) = {F1
𝛼1, F2

𝛼2,..., F𝑛
𝛼𝑛+. 

Theorem 2.3. For any Boolean function 𝑓(𝑥1,..., 𝑥𝑛) repre-

sented in conjunctive normal form, the following is true: 

There is a Boolean assigning tuple (σ1,..., σ𝑛) such that f 

(σ1,..., σ𝑛) = 1 if and only if there is a special covering for 

the set 𝑆(𝑓) under the decomposition 𝑑𝑛𝑆(𝑓). 

Proof. Let for some tuple (σ1,..., σ𝑛), 𝑓(σ1,..., σ𝑛) =1. We 

prove, that then ⋃  F𝑖
σ𝑖 =𝑛

𝑖=1  𝑆(𝑓), which will mean that the 

ordered set 𝑐𝑛𝑆(𝑓)= {F1
σ1 , F2

σ2 ,..., F𝑛
σ𝑛 } will be a special 

covering for the set 𝑆(𝑓) under the decomposition 𝑑𝑛𝑆(𝑓). 

It is enough to show that each clause belongs to some sub-

set included in the set 𝑐𝑛𝑆(𝑓). 

Suppose that there is a clause 𝑐𝑗 ∈ 𝑆(𝑓) that does not be-

long to any of the subset included in 𝑐𝑛𝑆(𝑓). Then, none of 

the literals 𝑥1
σ1 , 𝑥2

σ2 ,...,  𝑥𝑛
σ𝑛  is included in the clause 𝑐𝑗 . 

Therefore, 𝑐𝑗 is the disjunction of some literals of the form 

𝑥 𝑖
σ̅𝑖. Since σ𝑖

σ̅𝑖  = 0 for any 𝑖 ∈ {1,..., 𝑛}, then for given val-

ues of variables, the clause 𝑐𝑗  will take the value 0, which 

contradicts the assumption that 𝑓(σ1, σ2,..., σ𝑛) = 1. So, each 

clause is included in some subset included in the set 𝑐𝑛𝑆(𝑓). 

Let for some tuple of superscripts (𝛼1 , 𝛼2,..., 𝛼𝑛), where 

𝛼𝑖  ∈ *0,1+, the set 

𝑐𝑛𝑆(𝑓) ={ F1
𝛼1, F2

𝛼2,..., F𝑛
𝛼𝑛} is a special covering for the 

set 𝑆(𝑓) under the decomposition 𝑑𝑛𝑆(𝑓). 

By definition, the subset F𝑖
𝛼𝑖 contains clauses that contain 

the literal 𝑥𝑖
α𝑖. If 𝑥𝑖

α𝑖 = 1, then the value of all clauses includ-

ed in the set F𝑖
𝛼𝑖 will be equal to 1, 

That is, for any 𝑖 ∈ {1,..., 𝑛} and 𝑗 ∈ {1,..., 𝑚}, if (𝑥𝑖
α𝑖 = 

1) & (𝑐𝑗 ∈  F𝑖
𝛼𝑖 ) then (𝑐𝑗  = 1). It is easy to notice that if 

σ1=𝛼1, σ2=𝛼2,..., σ𝑛=𝛼𝑛, then 𝑓(σ1,..., σ𝑛) =1. ∇ 

3.2. Generation of the Boolean Function Based 

on a Special Decomposition 

Let 𝑆 = {𝑒1, 𝑒2,..., 𝑒𝑚} be a nonempty set of 𝑚 elements. 

Based on some special decomposition of the set 𝑆, we form a 

Boolean function, represented in conjunctive normal form. 

Suppose that 𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),...,(𝑀𝑛
0,  𝑀𝑛

1)} is a mentioned 

decomposition. 

To form this function, first, for any element 𝑒𝑗  ∈  𝑆, we 

form the set of literals, denoted by 𝑙(𝑒𝑗), based on the posi-

tions of the subsets containing the element 𝑒𝑗 . That is, for 

any 𝑗 ∈ {1,..., 𝑛} and 𝛼 ∈  *0,1+, if 𝑒𝑗 ∈ 𝑀𝑖
𝛼, then we form 

the literal 𝑥𝑖
𝛼 and add it to the formed set 𝑙(𝑒𝑗). It is easy to 

see, that when forming the literals 𝑥𝑖
𝛼, the number of varia-

bles will be 𝑛. 

In fact, for any element 𝑒𝑖 ∈ 𝑆 we will have: 

𝑙(𝑒𝑗) = {𝑥𝑖
𝛼 / 𝑒𝑗 ∈ 𝑀𝑖

𝛼, 𝑖 ∈ {1,..., 𝑛}, 𝛼 ∈  *0,1+}. 

Let 𝑐𝑗 be the clause formed by the literals of the set 𝑙(𝑒𝑗). 

Obviously, the number of these clauses will be equal to 𝑚. 

Then, we form the function denoted by 𝑕(𝑥1,..., 𝑥𝑛) as fol-

lows: 

𝑕(𝑥1,..., 𝑥𝑛) = ⋀ 𝑐𝑗
𝑚
𝑗=1 . 

We will say that the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by 

the special decomposition 𝑑𝑛𝑆. 

Theorem 2.5. If the set 𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0,  𝑀𝑛

1)} is 

a special decomposition of a set 𝑆, and 𝑕(𝑥1 ,..., 𝑥𝑛) is the 

function generated by this decomposition, then: 

There exists a special covering for the set 𝑆 under the de-

composition 𝑑𝑛𝑆, if and only if there exists a Boolean as-

signment tuple (σ1,..., σ𝑛) such that 𝑕(σ1,..., σ𝑛) = 1. 

Proof. The proof is similar to the proof of Theorem 2.3. ∇ 

Remark 2.6. In fact, we have established an important re-

lationship between the Boolean satisfiability problem and the 

problem of finding a special covering for a set: 

1.  each Boolean function 𝑓(𝑥1,..., 𝑥𝑛) of 𝑛 variables rep-

resented in conjunctive normal form with 𝑚  clauses, 

generates a special decomposition 𝑑𝑛𝑆(𝑓 ) of the set 

𝑆(𝑓) of 𝑚 elements. 

2.  each special decomposition of any set of 𝑚 elements 

and containing 𝑛  ordered pairs, generates a Boolean 

function of 𝑛 variables in conjunctive normal form with 

𝑚 clauses. 

In particular, using the Theorems 2.3 and 2.5, we can as-

sert that any decidability result for any of these problems 

leads to the same result for the other [1, 9, 11, 12]. 

4. Some Important Properties of Special 

Decompositions 

We introduce some transformations in the special decom-

position by changing the contents of subsets such that the 

conditions of the special decomposition are preserved. 

We assume that the ordered set 𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0, 

𝑀𝑛
1)} is a special decomposition for a set 𝑆, and for some 

Boolean tuple (𝛼1 ,..., 𝛼𝑛 ), the ordered set 𝑐𝑛𝑆  = {𝑀1
𝛼1 ,..., 

𝑀𝑛
𝛼𝑛} is some special covering for the set 𝑆 under this de-

composition. 

We will use the notation 𝑀𝑖
𝛿  ∈ (𝑀𝑖

0 , 𝑀𝑖
1), meaning that 

𝑀𝑖
𝛿 = 𝑀𝑖

0 or 𝑀𝑖
𝛿 = 𝑀𝑖

1. 

Definition 3.1. Let the ordered pairs (𝑀𝑖
𝛼, 𝑀𝑖

𝛼̅) and (𝑀𝑗
𝛽

, 

𝑀𝑗
𝛽̅

) be included in the special decomposition 𝑑𝑛𝑆 and let 

http://www.sciencepg.com/journal/ajmcm


American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm 

 

88 

𝑀𝑖
𝛿  ∈ (𝑀𝑖

0, 𝑀𝑖
1) and 𝑀𝑗

γ
 ∈ (𝑀𝑗

0, 𝑀𝑗
1). 

i) We say that the changes in the contents of the subsets 

𝑀𝑗
γ
 and 𝑀𝑖

𝛿 are admissible under the tuple (𝛼1,..., 𝛼𝑛), 

if the changes are made in accordance with the fol-

lowing points: 

a) for an element 𝑒 ∈  𝑀𝑖
𝛿 , the subset 𝑀𝑖

𝛿  is replaced 

with the set 𝑀𝑖
𝛿\ {𝑒} in the ordered pair (𝑀𝑖

0, 𝑀𝑖
1 ), if 

𝑀𝑖
𝛿  ∉ 𝑐𝑛𝑆 and ((𝑀𝑖

𝛿\ {𝑒}) ∪ 𝑀𝑖
𝛿̅) ≠  ∅. 

b) for an element 𝑒 ∉ (𝑀𝑖
0 ∪ 𝑀𝑖

1), the subset 𝑀𝑖
𝛿 is re-

placed with the set 𝑀𝑖
𝛿∪ {𝑒} in the ordered pair 

(𝑀𝑖
0, 𝑀𝑖

1). 

c) if the subsets 𝑀𝑗
γ
 and 𝑀𝑖

𝛿  are both included in 𝑐𝑛𝑆, 

then for an element 𝑒 such that 𝑒 ∈ 𝑀𝑗
γ
 and 𝑒 ∉ 𝑀𝑖

𝛿̅, 

the subset 𝑀𝑗
γ
 is replaced with the set 𝑀𝑗

γ
\ {𝑒} and 

the subset 𝑀𝑖
𝛿 is replaced with the set 𝑀𝑖

𝛿∪ {𝑒} in 

the corresponding ordered pairs, respectively. 

ii) We say that the ordered set, denoted by 𝑑𝑛𝑆𝐺, is gen-

erated by the decomposition 𝑑𝑛𝑆 as a result of admis-

sible changes under the tuple (𝛼1,..., 𝛼𝑛), if these 

changes are made in the components of some ordered 

pairs of the decomposition 𝑑𝑛𝑆, in accordance with 

points (i.1) - (i.3). 

iii) We say that the ordered set, denoted by 𝑐𝑛𝑆𝐺 is gen-

erated as a result of admissible changes under the tu-

ple (𝛼1,..., 𝛼𝑛) in the special decomposition 𝑑𝑛𝑆, if 

any subset included in it has the same superscript as 

the corresponding subset in the set 𝑐𝑛𝑆. 

If it does not lead to ambiguity, we will use the notation 

𝑐𝑛𝑆𝐺 for the ordered set which either coincides with the set 

𝑐𝑛𝑆 or is generated by the sets 𝑑𝑛𝑆 and 𝑐𝑛𝑆. 

Theorem 3.2. Let for some Boolean tuple (𝛼1,..., 𝛼𝑛), the 

ordered set 

 𝑐𝑛𝑆 = {𝑀1
𝛼1,..., 𝑀𝑛

𝛼𝑛} 

be a special covering for the set 𝑆 under the special decom-

position 𝑑𝑛𝑆. 

If the ordered sets 𝑑𝑛𝑆𝐺 and 𝑐𝑛𝑆𝐺 are generated as a re-

sult of admissible changes under the tuple (𝛼1,..., 𝛼𝑛) in the 

decomposition 𝑑𝑛𝑆, then: 

- 𝑑𝑛𝑆𝐺 is also a special decomposition of the set 𝑆, 

- 𝑐𝑛𝑆𝐺 is a special covering for the set 𝑆 under the decom-

position 𝑑𝑛𝑆𝐺. 

Proof. During the admissible changes, the conditions of 

Definition 1.1 are not violated. ∇ 

5. Admissible Changes in Clauses of 

Functions 

Consider a Boolean function 𝑓(𝑥1 ,..., 𝑥𝑛 ) represented in 

conjunctive normal form with 𝑚 clauses. Lemma 2.2 states 

that any Boolean function represented in 𝐶𝑁𝐹  generates a 

special decomposition of the set 𝑆(𝑓): 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1), (F2
0, F2

1),..., (F𝑛
0, F𝑛

1)}. 

Theorem 2.3 actually proves that the satisfiable assign-

ment tuple defines the subsets that cover the set 𝑆(𝑓), and 

vice versa, that is, for a Boolean tuple (σ1,..., σ𝑛), 𝑓(σ1,..., 

σ𝑛) = 1 if and only if the ordered set 𝑐𝑛𝑆(𝑓) = {F1
σ1, F2

σ2,..., 

F𝑛
σ𝑛} is a special covering for the set 𝑆(𝑓) under the special 

decomposition 𝑑𝑛𝑆(𝑓). 

Also, section 2.4 describes a procedure that, based on any 

special decomposition, generates a Boolean function in con-

junctive normal form. 

Definition 4.1. Let 𝑓(𝑥1 ,..., 𝑥𝑛 ) be a satisfiable Boolean 

function represented in conjunctive normal form. 

We say that the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the 

function 𝑓(𝑥1,..., 𝑥𝑛) as a result of admissible changes under 

the assignment tuple (σ1,..., σ𝑛), if the following conditions 

are met: 

- 𝑓(σ1,..., σ𝑛) = 1, 

- the special decomposition 𝑑𝑛𝑆(𝑓)  is generated by the 

function 𝑓(𝑥1,..., 𝑥𝑛), 

- the special decomposition 𝑑𝑛𝑆(𝑓)𝐺 is generated by the 

special decomposition 𝑑𝑛𝑆(𝑓)  as a result of admissible 

changes under the assignment tuple (σ1,..., σ𝑛), 

- 𝑕(𝑥1 ,..., 𝑥𝑛) is generated by the special decomposition 

𝑑𝑛𝑆(𝑓)𝐺. 

Theorem 4.2. Let 𝑓(𝑥1,..., 𝑥𝑛) be a Boolean function rep-

resented in conjunctive normal form, and let for some as-

signment tuple (σ1,..., σ𝑛), 𝑓(σ1,..., σ𝑛) = 1. 

If the function 𝑕(𝑥1 ,..., 𝑥𝑛) is generated by the function 

𝑓(𝑥1,..., 𝑥𝑛) as a result of admissible changes under the as-

signment tuple (σ1,..., σ𝑛), then 𝑕(σ1,..., σ𝑛) = 1. 

Proof. It is easy to see that under these conditions, accord-

ing to Theorem 2.3, the ordered set 

𝑐𝑛𝑆(𝑓) = {F1
σ1, F2

σ2,..., F𝑛
σ𝑛} is a special covering for the 

set 𝑆(𝑓) under the special decomposition 𝑑𝑛𝑆(𝑓). 

Since the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the function 

𝑓(𝑥1,..., 𝑥𝑛) by the admissible changes under the assignment 

tuple σ1,..., σ𝑛), then: 

- the special decomposition 𝑑𝑛𝑆(𝑓) generates the special 

decomposition 𝑑𝑛𝑆(𝑓)𝐺  as a result of admissible changes 

under the assignment tuple (σ1,..., σ𝑛), 

- the decomposition 𝑑𝑛𝑆(𝑓)𝐺  generates the function 

𝑕(𝑥1,..., 𝑥𝑛). 

According to Theorem 3.2, there is a special covering for 

the set 𝑆(𝑓) under the special decomposition 𝑑𝑛𝑆(𝑓)𝐺. But 

then, by Theorem 2.5, the function 𝑕(𝑥1,..., 𝑥𝑛) is satisfiable. 

Obviously, during these changes in the decomposition 

𝑑𝑛𝑆(𝑓) the special covering does not lose elements. So, the 

subsets with superscripts σ1,..., σ𝑛, respectively, cover the set 

𝑆(𝑓). Therefore, 𝑕(σ1,..., σ𝑛) = 1. ∇ 

Let's explore the nature of the concept of function genera-

tion by a function in general. 
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For the function 𝑓 (𝑥1 ,..., 𝑥𝑛 ) and for the satisfying as-

signment (σ1,..., σ𝑛) we define the class of functions, denot-

ed as 𝐺𝑓[σ1,..., σ𝑛], as follows: 

1) 𝑓(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑓[σ1,..., σ𝑛]. 

2) if the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the function 

included in the class 

𝐺𝑓[σ1,..., σ𝑛] as a result of admissible changes under the 

assignment tuple (σ1,..., σ𝑛), then, 

𝑕(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑓[σ1,..., σ𝑛]. 

3) the class 𝐺𝑓[σ1,..., σ𝑛] contains only functions satisfy-

ing conditions (1) and (2). 

Theorem 4.3. Let 𝑓(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛) be Boolean 

functions of 𝑛  variables represented in conjunctive normal 

form, each containing 𝑚 clauses. 

If there exists a Boolean satisfiable tuple (σ1,..., σ𝑛) such 

that 𝑓(σ1,..., σ𝑛) = 1 and 𝑕(σ1,..., σ𝑛) = 1, then 

𝑕(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑓(σ1,..., σ𝑛) and 

𝑓(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑕(σ1,..., σ𝑛). 

Proof. Let 𝑆(𝑓) = {𝑐1,..., 𝑐𝑛} and 𝑆(𝑕) = {𝑒1,..., 𝑒𝑛} be or-

dered sets of clauses of the functions 𝑓 ( 𝑥1 ,..., 𝑥𝑛 ) and 

𝑕 (𝑥1 ,..., 𝑥𝑛 ), respectively. By Lemma 2.2 these functions 

generate special decompositions 𝑑𝑛𝑆(𝑓) and 𝑑𝑛𝑆(𝑕) of the 

sets 𝑆(𝑓) and 𝑆(𝑕), respectively: 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1), (F2
0, F2

1),..., (F𝑛
0, F𝑛

1)}, 

𝑑𝑛𝑆(𝑕) = {(H1
0, H1

1), (H2
0, H2

1),..., (H𝑛
0, H𝑛

1)}. 

In addition, the following ordered sets 

𝑐𝑛𝑆(𝑓) = {F1
σ1 , F2

σ2 ,..., F𝑛
σ𝑛 } and 𝑐𝑛𝑆(𝑕) = {H1

σ1 , H2
σ2 ,..., 

H𝑛
σ𝑛} are special coverings for the sets 𝑆(𝑓) and 𝑆(𝑕), respec-

tively. 

Thus, we will proof that the special decompositions 

𝑑𝑛𝑆(𝑓) and 𝑑𝑛𝑆(𝑕) are generated by each other as a result of 

admissible changes under the tuple of superscript (σ1,..., σ𝑛). 

Let for some 𝑖 ∈ {1,..., 𝑛}, 

F𝑖
σ𝑖 = {𝑐𝑖1

,..., 𝑐𝑖𝑝} and H𝑖
σ𝑖 = {𝑒𝑗1

,..., 𝑒𝑗𝑞=}. = 

By the definition of these subsets, 

𝑥𝑖
σ𝑖  ∈  𝑐𝑖𝑘

 for any 𝑐𝑖𝑘
∈ {𝑐𝑖1

,..., 𝑐𝑖𝑝}, 

𝑥𝑖
σ𝑖  ∈  𝑒𝑗𝑘

 for any 𝑒𝑗𝑘
∈ {𝑒𝑗1

,..., 𝑒𝑗𝑞}. 

Let’s describe a procedure for obtaining the subset H𝑖
σ𝑖 in-

stead the subset F𝑖
σ𝑖 as a result of admissible changes in the 

decomposition 𝑑𝑛𝑆(𝑓). 

The procedure consists of applying the points of Defini-

tion 3.1 to the subsets included in the decomposition 𝑑𝑛𝑆(𝑓). 

We will assume that none of the subsets included in the set 

𝑐𝑛𝑆(𝑓) is empty, otherwise we can add an element to this 

subset according to admissible changes. This does not affect 

the estimation of the complexity of the entire procedure. 

a) We sequentially remove all elements from subsets not 

included in the set 𝑐𝑛𝑆(𝑓). As a result, any ordered pair 

(F𝑖
0, F𝑖

1) will take the form 

(F𝑖
0, ∅), if F𝑖

0  ∈  𝑐𝑛𝑆(𝑓) or (∅, F𝑖
1), if F𝑖

1  ∈  𝑐𝑛𝑆(𝑓). 

We can do this applying the point (i.1) of the Definition 

3.1. It is easy to see, that as a result of these operations some 

clauses of the function are change, so the function is 

changed. At the same time, the resulting function is satisfia-

ble since all changes are made in accordance with the admis-

sible changes under the same assignment tuple. 

b) let’s consider the following cases for the clauses of the 

subsets 

F𝑖
σ𝑖 = {𝑐𝑖1

,..., 𝑐𝑖𝑝} and H𝑖
σ𝑖 = {𝑒𝑗1

,..., 𝑒𝑗𝑞}. 

Recall that our goal is to obtain the clauses of the set H𝑖
σ𝑖 

instead of the set F𝑖
σ𝑖 in the decomposition 𝑑𝑛𝑆(𝑓) using the 

admissible changes. 

1) suppose that 𝑝 = 𝑞. In this case, we proceed as follows: 

For any number 𝑖𝑘  ∈ {𝑖1,..., 𝑖𝑝}, we compare the pairs of 

clauses 𝑐𝑖𝑘
 and 𝑒𝑖𝑘

: 

- if 𝑐𝑖𝑘
 and 𝑒𝑖𝑘

 are the same, we will assume that 𝑒𝑖𝑘
 ∈

 F𝑖
σ𝑖 and compare other pairs. 

- if there is a literal, let it be 𝑥𝑠
𝛼𝑠, such that 𝑥𝑠

𝛼𝑠  ∈  𝑒𝑖𝑘
 and 

𝑥𝑠
𝛼𝑠  ∉  𝑐𝑖𝑘

, then we add 𝑥𝑠
𝛼𝑠  to the clause 𝑐𝑖𝑘

. Recall that 

adding the literal 𝑥𝑠
𝛼𝑠  to the clause 𝑐𝑖𝑘

 means adding the 

clause 𝑐𝑖𝑘
 to the subset F𝑠

𝛼𝑠 , which is possible if 𝑐𝑖𝑘
 ∉  F𝑠

𝛼̅𝑠 

(point (i.2), of the Definition 3.1). 

To show that the clause 𝑐𝑖𝑘
 can be added to the subset F𝑠

𝛼𝑠, 

we consider two cases: 

- F𝑠
𝛼𝑠  ∈  𝑐𝑛𝑆(𝑓). In this case F𝑠

𝛼̅𝑠  = ∅, therefore we can 

add 𝑐𝑖𝑘
 to the subset F𝑠

𝛼𝑠 which will mean that the literal 𝑥𝑠
𝛼𝑠 

is added to the clause 𝑐𝑖𝑘
. 

- F𝑠
𝛼𝑠  ∉  𝑐𝑛𝑆(𝑓). Then F𝑠

𝛼̅𝑠  ∈  𝑐𝑛𝑆(𝑓) and F𝑠
𝛼𝑠 = ∅. So, we 

will add 𝑐𝑖𝑘
 to the empty subset F𝑠

𝛼𝑠 . In this case, if 𝑐𝑖𝑘
 is 

included in F𝑠
𝛼̅𝑠, we can remove it in accordance to the point 

(i.3) of the Definition 3.1, since 𝑐𝑖𝑘
 is also included in anoth-

er subset F𝑖
σ𝑖 of the set 𝑐𝑛𝑆(𝑓). 

Thus, in case b.1) by means of admissible changes, we can 

add all clauses included in the subset H𝑖
σ𝑖 to the subset F𝑖

σ𝑖. 

2) if 𝑝 <  𝑞, then we use the point (i.3) and add clauses to 

the subset F𝑖
σ𝑖 such that the number of clauses in it will 

be equal to the number of clauses in the subset H𝑖
σ𝑖. 

As a result, we will get the case b.1). 

3) if 𝑝 >  𝑞, then using the point (i.3), we move some 

clauses from the subset F𝑖
σ𝑖 to other subsets such that 

the number of clauses in it will be equal to the number 

of clauses in the subset H𝑖
σ𝑖. As a result, we again get 

the case b.1). 
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c) after adding all the literals of the clause 𝑒𝑖𝑘
 to the 

clause 𝑐𝑖𝑘
, we proceed to remove from the clause 𝑐𝑖𝑘

 

literals that are not included in the clause 𝑒𝑖𝑘
, as fol-

lows: 

Let 𝑥𝑟
𝛼𝑟  ∈  𝑐𝑖𝑘

 and 𝑥𝑟
𝛼𝑟  ∉  𝑒𝑖𝑘

. 

Removing 𝑥𝑟
𝛼𝑟 from 𝑐𝑖𝑘

 means removing 𝑐𝑖𝑘
 from the sub-

set F𝑟
𝛼𝑟. Note that we can do this using the point (i.3) of the 

Definition 3.1, since 𝑐𝑖𝑘
 is also included in the subset F𝑖

σ𝑖. 

Repeating the procedure according to described points for 

all 𝑖 ∈ {1,..., 𝑛}, we obtain the set 𝑐𝑛𝑆(𝑕) instead of the set 

𝑐𝑛𝑆(𝑓). 

d) by applying the point (i.2) we do the following. For any 

subset H𝑖
σ̅𝑖, which is not included in the special cover-

ing 𝑐𝑛𝑆(𝑕), all clauses included in it are sequentially 

added to the subset F𝑖
σ̅𝑖. 

It is easy to see, that as a result, we obtain the special de-

composition 𝑑𝑛𝑆(𝑕). Therefore, we can assert that first side 

of the theorem is valid, that is, 𝑕(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑓(σ1,..., σ𝑛). 

Similarly, 𝑓(𝑥1,..., 𝑥𝑛) ∈  𝐺𝑕(σ1,..., σ𝑛). ∇ 

Obviously, as a result of any step of the described proce-

dure we obtain a new special decomposition of the set 𝑆(𝑓) 

and a new special covering for the set 𝑆(𝑓) under the ob-

tained decomposition. Then, as a result of any step of the 

procedure, a satisfiable function is generated. 

Applying the admissible changes to the subsets included in 

the special decomposition 𝑑𝑛𝑆(𝑓), actually means perform-

ing the following operations with the clauses of the function 

𝑓: 

- the clause 𝑐𝑗 is removed from the subset F𝑖
𝛼. This means 

the removing of the literal 𝑥𝑖
𝛼 from the clause 𝑐𝑗, 

- the clause 𝑐𝑗 is added to the subset 𝐹𝑖
𝛼. This means add-

ing the literal 𝑥𝑖
𝛼 to the clause 𝑐𝑗, 

- the clause 𝑐𝑗 is moved from the subset F𝑖
𝛼, to the subset, 

F𝑗
𝛿. This means remove the literal 𝑥𝑖

𝛼 from the clause 𝑐𝑗 and 

add the literal 𝑥𝑗
𝛿 to the obtained clause. 

Thus, adding a literal to a certain clause, removing a literal 

from the certain clause or changing a literal with another 

literal according to conditions of admissible changes, we 

obtain a satisfiable function. 

Using the theorems 4.2 and 4.3, it is easy to proof the 

equivalence theorem. 

First, let’s define a binary relation over the Boolean func-

tions of 𝑛 variables and represented in conjunctive normal 

form with 𝑚  clauses. We will denote this relation by 

𝐺𝑚 [σ1 ,..., σ𝑛 ] where (σ1 ,..., σ𝑛 ) is a Boolean assignment 

tuple. 

Suppose that 𝑓 (𝑥1 ,..., 𝑥𝑛 ) and 𝑕(𝑥1 ,..., 𝑥𝑛 ) are Boolean 

function of 𝑛  variables, both in conjunctive normal form 

with 𝑚 clauses. 

(𝑓, 𝑕) will denote the ordered pair of these functions. 

We say that (𝑓, 𝑕) ∈  𝐺𝑚[σ1,..., σ𝑛], if the following con-

ditions are satisfied: 

- 𝑓(σ1,..., σ𝑛) = 1, 

- the function 𝑕(𝑥1 ,..., 𝑥𝑛 ) is generated by the function 

𝑓(𝑥1,..., 𝑥𝑛) as a result of admissible changes under the satis-

fying assignment (σ1,..., σ𝑛). 

Theorem 4.4. For any Boolean assignment (σ1,..., σ𝑛), the 

relation 𝐺[σ1,..., σ𝑛] is an equivalence relation over the satis-

fiable Boolean functions of 𝑛 variables represented in con-

junctive normal form with 𝑚 clauses. 

Proof. Based on description of the relation 𝐺[σ1 ,..., σ𝑛 ] 

and the definition of admissible changes, it is easy to prove 

that 𝐺𝑚 [σ1 ,..., σ𝑛 ] is a reflexive, symmetric and transitive 

relation [2] over the satisfiable Boolean functions. That is: 

- if 𝑓(σ1,..., σ𝑛) = 1, then (𝑓, 𝑓) ∈  𝐺𝑚[σ1,..., σ𝑛]. 

- if (𝑓, 𝑕) ∈  𝐺𝑚[σ1,..., σ𝑛] then (𝑕, 𝑓) ∈  𝐺[σ1,..., σ𝑛]. 

- if (𝑓, 𝑔) ∈  𝐺𝑚 [σ1 ,..., σ𝑛 ] and (𝑔, 𝑕) ∈  𝐺𝑚[σ1 ,..., σ𝑛 ] 

then (𝑓, 𝑕) ∈  𝐺𝑚[σ1,..., σ𝑛]. ∇ 

6. Complexity Estimations 

In the previous sections we described the procedures that 

implement the proofs of theorems, so an important issue is to 

estimate the complexity of these procedures. They are as 

follows: 

a) A procedure for generating a special decomposition of 

the set of clauses of the given Boolean function in con-

junctive normal form. 

b) A procedure for generating a Boolean function in con-

junctive normal form based on a given special decom-

position of a certain set. 

c) A procedure for generating a satisfiable function from 

another satisfiable function by admissible changes un-

der some satisfying assignment. 

Data Representations. 

Let 𝑐1,..., 𝑐𝑚 be the clauses of the function 𝑓 (𝑥1,..., 𝑥𝑛). 

We will represent the function 𝑓 (𝑥1,..., 𝑥𝑛) as an (𝑚 ⨉ 𝑛) 

matrix [13], with elements 0, -1, 1. It will be denoted as 

(𝑓)cnf. 

The rows of the matrix will represent the clauses of the 

function, and the none-zero elements of the rows will repre-

sent the literals included in the clauses. 

(𝑓)cnf(𝑗, 𝑖) = -1, if the negative literal 𝑥𝑖̅ is included in the 

clause 𝑐𝑗, 

(𝑓)cnf(𝑗, 𝑖) = 0, if none of the literals 𝑥𝑖 and 𝑥𝑖̅ is included 

in the clause 𝑐𝑗, 

(𝑓)cnf(𝑗, 𝑖) = 1, if the positive literal 𝑥𝑖 is included in the 

clause 𝑐𝑗. 

Obviously, for any 𝑗 ∈ {1,..., 𝑚}, the 𝑗-th row of the ma-

trix (𝑓)cnf is uniquely determined by the clause 𝑐𝑗  of the 

function. Also, for any 𝑗 ∈ {1,..., 𝑚}, the clause 𝑐𝑗  of the 

function is uniquely determined by the 𝑗-th row of the corre-

sponding matrix (𝑓)cnf. 

In addition, any Boolean function 𝑓(𝑥1,..., 𝑥𝑛) represented 

in conjunctive normal form is uniquely determined by the 

corresponding matrix (𝑓)cnf, 
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It is easy to see, that an (𝑚 ⨉ 𝑛)-matrix with elements 0, -

1, 1 only, represents a Boolean function if and only if it does 

not contain a row with only zeros and a column with only 

zeros. 

Let 𝑑𝑛𝑆 be a special decomposition of the nonempty set 𝑆 

= {𝑒1,..., 𝑒𝑚}: 

𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0, 𝑀𝑛

1)}. 

We will consider 𝑆 as an ordered set [2, 16]. Obviously, it 

will not lead to any ambiguity. 

Similar to the case of Boolean functions, it is technically 

convenient to represent the special decomposition of the set 

𝑆  using an ordered pair of (0,1)-matrices, each of size 

(𝑛 ⨉ 𝑚). 

We will denote these matrices by 𝑠𝑀0 and 𝑠𝑀1, respec-

tively. They will be formed based on the decomposition 𝑑𝑛𝑆 

as follows. For 𝑖 ∈ {1,..., 𝑛} and 𝑗 ∈ {1,..., 𝑚}, 

𝑠𝑀0(𝑖, 𝑗) = {
0, 𝑖𝑓 𝑒𝑗  ∉  𝑀𝑖

0

1, 𝑖𝑓 𝑒𝑗  ∈  𝑀𝑖
0  𝑠𝑀1(𝑖, 𝑗) = {

0, 𝑖𝑓 𝑒𝑗  ∉  𝑀𝑖
1

1, 𝑖𝑓 𝑒𝑗  ∈  𝑀𝑖
1. 

We will say that the ordered pair (𝑠𝑀0, 𝑠𝑀1) corresponds 

to the special decomposition 𝑑𝑛𝑆. 

On the other hand, the special decomposition 𝑑𝑛𝑆 is de-

termined by the corresponding ordered pair of matrices 

(𝑠𝑀0, 𝑠𝑀1). For any 𝑖 ∈ {1,..., 𝑛}, 

𝑀𝑖
𝛼= {𝑒𝑗  ∈  𝑆 / 𝑠𝑀0(𝑖, 𝑗) = 1} and 𝑀𝑖

𝛼̅ = {𝑒𝑗  ∈  𝑆 / 𝑠𝑀1 (𝑖, 𝑗) = 1}, 

Thus, any row of the matrices 𝑠𝑀0 and 𝑠𝑀1 corresponds 

to some subset included in the ordered pairs of a special de-

composition. The ordered pair (𝑀𝑖
0, 𝑀𝑖

1) of the decomposi-

tion 𝑑𝑛𝑆 will be determined by ordered pair of 𝑖-th rows of 

the matrices 𝑠𝑀0 and 𝑠𝑀1. 

We will say that the pair of (0,1)-matrices (𝑠𝑀0, 𝑠𝑀1) is 

generated by the Boolean function 𝑓 (𝑥1,..., 𝑥𝑛), if this pair 

corresponds to the special decomposition 𝑑𝑛𝑆(𝑓). 

Recall that for any 𝑖 ∈ {1,..., 𝑛} the subsets 𝐹𝑖
0 and 𝐹𝑖

1 are 

composed as follows: 

𝐹𝑖
0 = {𝑐𝑗 / 𝑐𝑗 ∈ 𝑆(𝑓) and 𝑐𝑗 contains the literal 𝑥̅𝑖, (𝑗 ∈ {1,..., 𝑚})}, 

𝐹𝑖
1 = {𝑐𝑗 / 𝑐𝑗 ∈ 𝑆(𝑓) and 𝑐𝑗 contains the literal 𝑥𝑖, (𝑗 ∈ {1,..., 𝑚})}. 

𝑐𝑗 is a 𝑗-th clause of the function 𝑓(𝑥1,..., 𝑥𝑛). 

According to Lemma 2.2, the ordered set of the ordered 

pairs of these subsets compose the special decomposition 

𝑑𝑛𝑆(𝑓). 

Let’s denote by ((𝑓 )𝑠𝑀0 , (𝑓 )𝑠𝑀1 ) the pair of (0,1)-

matrices, which is formed as follows: 

(𝑓)𝑠𝑀0(𝑖, 𝑗) = {
0, 𝑖𝑓 𝑐𝑗  ∉  𝐹𝑖

0

1, 𝑖𝑓 𝑐𝑗  ∈  𝐹𝑖
0 (𝑓)𝑠𝑀1(𝑖, 𝑗) = {

0, 𝑖𝑓 𝑐𝑗  ∉  𝐹𝑖
1

1, 𝑖𝑓 𝑐𝑗  ∈  𝐹𝑖
1. 

We will say that the pair of (0,1)-matrices (( 𝑓 ) 𝑠𝑀0 , 

(𝑓)𝑠𝑀1) corresponds to the special decomposition 𝑑𝑛𝑆(𝑓). 

On the other hand, 𝑐𝑗  ∈  𝐹𝑖
𝛼  if the literal 𝑥𝑖

𝛼  is included in 

the clause 𝑐𝑗. So, 

(𝑓)𝑠𝑀0(𝑖, 𝑗) = {
0, 𝑖𝑓 𝑥𝑖

0  ∉  𝑐𝑗

1, 𝑖𝑓 𝑥𝑖
0  ∈  𝑐𝑗

 (𝑓)𝑠𝑀1(𝑖, 𝑗) = {
0, 𝑖𝑓 𝑥𝑖  ∉  𝑐𝑗

1, 𝑖𝑓 𝑥𝑖  ∈  𝑐𝑗
. 

In addition, we will use the following notation for any 𝑖 ∈ 

{1,..., 𝑛}: 

(𝑓)𝑀0(𝑖) = ((𝑓)𝑠𝑀0(𝑖, 1),..., (𝑓)𝑠𝑀0(𝑖, 𝑚)) 

(𝑓)𝑀1(𝑖) = ((𝑓)𝑠𝑀1(𝑖, 1),..., (𝑓)𝑠𝑀1(𝑖, 𝑚)). 

It is obvious, that the ordered pair ((𝑓)𝑀0(𝑖), (𝑓)𝑀1(𝑖)) is 

the ordered pair of 𝑖-th rows of the matrices (𝑓)𝑠𝑀0 and 

(𝑓)𝑠𝑀1, respectively. 

The Complexity of the Described Procedures [1, 4, 5, 8]. 

Let we are given a special decomposition 𝑑𝑛𝑆 , and let 

(𝑠𝑀0, 𝑠𝑀1) be a pair of (0,1)-matrices corresponding to this 

special decomposition. 

Also, let we are given a Boolean function 𝑓(𝑥1,..., 𝑥𝑛) in 

conjunctive normal form, and let (𝑓)cnf be the corresponding 

matrix with the elements 0, -1 and 1. 

We often identify a special decomposition of a nonempty 

set of 𝑚 elements containing 𝑛 ordered pairs of subsets with 

the corresponding pair of (0,1)-matrices of the size (𝑛 ⨉ 𝑚). 

We will also identify a Boolean function of 𝑛 variables, in 

conjunctive normal form with 𝑚  clauses, with the corre-

sponding (𝑚 ⨉ 𝑛)-matrix with the elements 0, -1 and 1. 

Definition 5.1. (i) The total number of 1s in the matrices 

𝑠𝑀0 and 𝑠𝑀1 will be called the length of the input data of 

the special decomposition 𝑑𝑛𝑆. 

(ii) The total number of non-zero elements included in the 

matrix (𝑓)cnf will be called the length of input data of the 

function 𝑓(𝑥1,..., 𝑥𝑛). 

Definition 5.2. The following operations will be called el-

ementary: 

- assigning a value to a function variable or assigning a 

value to an array element, 

- addition and subtraction of numbers, 

- comparison of two numbers. 

Proposition 5.3. If 𝑓(𝑥1,..., 𝑥𝑛) is a Boolean function rep-

resented in conjunctive normal form with 𝑚 clauses, then the 

number of elementary operations required to obtain the pair 

of matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) does not exceed the number 

𝑐 ⨉ 𝑛 ⨉ 𝑚 for some constant 𝑐. 

Proof. We will form the matrices (𝑓 )𝑠𝑀0 and (𝑓 )𝑠𝑀1 

based on the corresponding matrix (𝑓)cnf and using the for-

mulas described in the previous section. 

For any 𝑗 ∈ {1,..., 𝑚 }, we sequentially consider all the 

elements of the 𝑗th row of the matrix (𝑓)cnf and proceed as 

follows: 

if (𝑓)cnf(𝑗, 𝑖) = -1, we assign 1 to the element (𝑓)𝑠𝑀0(𝑖, 

𝑗), 
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if (𝑓)cnf(𝑗, 𝑖) = 1, we assign 1 to the element (𝑓)𝑠𝑀1(𝑖, 𝑗) 

if (𝑓)cnf(𝑗, 𝑖) = 0, we assign 0 to the elements (𝑓)𝑠𝑀0(𝑖, 𝑗) 

and (𝑓)𝑠𝑀1(𝑖, 𝑗). 

Recall that this corresponds to considering all the literals 

of any clause. 

Obviously, all operations in the described procedure are 

elementary, and the number of these operations does not ex-

ceed the number 𝑐 ⨉ (𝑛 ⨉ 𝑚) for some constant 𝑐. ∇ 

Proposition 5.4. Let 𝑆 = {𝑒1,..., 𝑒𝑚} be an ordered set, and 

𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0,  𝑀𝑛

1)}, 

be a special decomposition of the set 𝑆. 

The number of elementary operations required to obtain 

the Boolean function generated by the special decomposition 

𝑑𝑛𝑆 does not exceed the number 𝑐 ⨉ 𝑛 ⨉ 𝑚 for some con-

stant 𝑐. 

Proof. Let 𝑕(𝑥1,..., 𝑥𝑛) denote the function that is generat-

ed by the decomposition 𝑑𝑛𝑆. 

We will form the matrix (𝑕)cnf, which will correspond to 

the function 𝑕(𝑥1,..., 𝑥𝑛), based on the pair of matrices (𝑠𝑀0, 

𝑠𝑀1̅) corresponding to the special decomposition 𝑑𝑛𝑆. 

We will use the procedure described in the section 2.4. 

Recall that 

𝑠𝑀0(𝑖, 𝑗) = 1, if 𝑒𝑗 ∈ 𝑀𝑖
0 and 𝑠𝑀1(𝑖, 𝑗) = 1, if 𝑒𝑗 ∈ 𝑀𝑖

1. 

For any 𝑖 ∈ {1,..., 𝑛}, we consider all elements of the 𝑖-th 

row of the matrix 𝑠𝑀0 and all elements of the 𝑖-th row of the 

matrix 𝑠𝑀1, and do the following for any 𝑗 ∈ {1,..., 𝑚}: 

We assign (𝑕)cnf(𝑗, 𝑖) = -1 if 𝑠𝑀0(𝑖, 𝑗) = 1, 

We assign (𝑕)cnf(𝑗, 𝑖) = 1 if 𝑠𝑀1(𝑖, 𝑗) = 1, 

We assign (𝑕)cnf(𝑗,𝑖) = 0 if 𝑠𝑀0(𝑖, 𝑗) = 0 and 𝑠𝑀1(𝑖, 𝑗) = 

0. 

Obviously, the resulting matrix (𝑕)cnf(𝑗, 𝑖) is formed cor-

rectly, and the number of required elementary operations 

does not exceed the number 𝑐 ⨉ 𝑛 ⨉ 𝑚 for some constant 𝑐. 

∇ 

The Propositions 5.3 and 5.4 prove the following: 

Any Boolean function in conjunctive normal form gener-

ates a special decomposition in polynomial time, and any 

special decomposition of a set generates a Boolean function 

in conjunctive normal form in polynomial time. 

Using Theorems 2.3 and 2.5, as well as Remark 2.6, one 

can state that any decidability procedure for the Boolean 

satisfiability problem leads to a decidability procedure for 

finding a special cover for a set, and vice versa. [5]. 

The Complexity of the Generating Procedure [1, 4, 5, 8, 

10]. 

Theorem 5.5. Let the function 𝑓(𝑥1,..., 𝑥𝑛) be represented 

in CNF with 𝑚 clauses, and let (σ1,..., σ𝑛) be a Boolean as-

signment tuple such that 𝑓(σ1,..., σ𝑛) = 1. 

If 𝑕(𝑥1,..., 𝑥𝑛) is generated by the function 𝑓(𝑥1,..., 𝑥𝑛) as 

a result of admissible changes under the tuple (σ1 ,..., σ𝑛), 

then the number of elementary operations to perform the 

generating procedure does not exceed the number 𝑐 ⨉ 𝑛 ⨉ 𝑚 

for some constant 𝑐. 

Proof. According to Theorem 4.2, 𝑕(σ1,..., σ𝑛) = 1. 

In addition, the following conditions are satisfied by the 

Definition 4.1: 

- the function 𝑓(𝑥1,..., 𝑥𝑛) generates the special decompo-

sition 𝑑𝑛𝑆(𝑓) by Lemma 2.2, 

- the special decomposition 𝑑𝑛𝑆(𝑓) generates the special 

decomposition 𝑑𝑛𝑆(𝑓)𝐺  as a result of admissible changes 

under the assignment tuple (σ1,..., σ𝑛), 

- the special decomposition 𝑑𝑛𝑆(𝑓)𝐺 generates the func-

tion 𝑕(𝑥1,..., 𝑥𝑛). 

Thus, it is enough to estimate the number of required ele-

mentary operations for each of these procedures. According 

to Proposition 5.3, the number of elementary operations re-

quired to obtain the pair of (0,1)-matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) 

generated by the function 𝑓(𝑥1,..., 𝑥𝑛) does not exceed the 

number 𝑐 ⨉ 𝑛 ⨉ 𝑚 for some constant 𝑐. 

According to Proposition 5.4, the number of elementary 

operations required to obtain the Boolean function generated 

by an ordered pair of (0,1)-matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1), does 

not exceed the number 𝑐 ⨉ 𝑛 ⨉ 𝑚 for some constant 𝑐. 

Thus, we need to estimate the number of elementary oper-

ations for generating the special decomposition 𝑑𝑛𝑆(𝑓)𝐺 

based on the special decomposition 𝑑𝑛𝑆(𝑓). 

For convenience, here we will use 𝑑𝑛𝑆(𝑕) instead of the 

notation 𝑑𝑛𝑆(𝑓)𝐺  for the decomposition that generate the 

function 𝑕(𝑥1,..., 𝑥𝑛). 

We will use the pairs of (0,1)-matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) 

and ((𝑕)𝑠𝑀0, (𝑕)𝑠𝑀1) that correspond to the special decom-

positions 𝑑𝑛𝑆(𝑓) and 𝑑𝑛𝑆(𝑕), respectively. 

Since the subsets F𝑖
σ𝑖  and H𝑖

σ𝑖  correspond to the rows 

(𝑓)𝑀σ𝑖(𝑖) and (𝑕)𝑀σ𝑖(𝑖), respectively, then the ordered sets 

𝑐𝑛𝑆(𝑓) = {F1
σ1,..., F𝑛

σ𝑛} and 𝑐𝑛𝑆(𝑕) = {H1
σ1,..., H𝑛

σ𝑛}, corre-

spond respectively to the following ordered sets of the rows: 

{(𝑓)𝑀σ1(1),..., (𝑓)𝑀σ𝑛(𝑛)} and {(𝑕)𝑀σ1(1),..., (𝑕)𝑀σ𝑛(𝑛)}, 

Thus, we will estimate the maximum number of elemen-

tary operations required to generate the pair of (0,1)-matrices 

(( 𝑕 ) 𝑠𝑀0 , ( 𝑕 ) 𝑠𝑀1 ) based on the pair of (0,1)-matrices 

((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) using admissible changes under the tuple 

(σ1,..., σ𝑛). 

We will use the procedure similar to the procedure de-

scribed in the Theorem 4.3. 

Let’s note that we will consider the case when none of the 

rows included in the set 

{(𝑓)𝑀σ1(1), (𝑓)𝑀σ2(2),..., (𝑓)𝑀σ𝑛(𝑛)} 

consist only of zeros, otherwise, we can assign 1 to any suit-

able element of this row in accordance with admissible 

changes. This does not affect the estimation of the complexi-

ty of the entire procedure. The procedure described in the 

Theorem 4.3 actually consists of the following points: 

a) removal of all subsets that are not included in the spe-
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cial covering 𝑐𝑛𝑆(𝑓). 

This means sequentially assign zeros to all elements of the 

rows 

(𝑓)𝑀 σ̅1(1), (𝑓)𝑀 σ̅2(2),..., (𝑓)𝑀σ̅𝑛(𝑛). 

That is, the elements of any row not included in the set 

corresponding to the special covering 𝑐𝑛𝑆(𝑓)  are assigned 

zero. Since the number of elements of any row does not ex-

ceed 𝑚, then the number of elementary operations for this 

point does not exceed the number (𝑛 ⨉ 𝑚). 

b) for any 𝑖 ∈ {1,..., 𝑛} we add all clauses included in the 

subset H𝑖
σ𝑖 to the subset F𝑖

σ𝑖. That is, for any 𝑖 ∈ {1,..., 

𝑛}, we compare the elements of the rows 

(𝑓)𝑀σ𝑖(𝑖) = {(𝑓)𝑠𝑀σ𝑖(𝑖, 1),..., (𝑓)𝑠𝑀σ𝑖(𝑖, 𝑚)}, 

(𝑕)𝑀σ𝑖(𝑖) = {(𝑕)𝑠𝑀σ𝑖(𝑖, 1),..., (𝑕)𝑠𝑀σ𝑖(𝑖, 𝑚)}, 

corresponding to the subsets F𝑖
σ𝑖  and H𝑖

σ𝑖 , respectively, and 

proceed as follows: 

For any 𝑗 ∈ {1,..., 𝑚}, we assign (𝑓)𝑠𝑀σ𝑖 (𝑖, 𝑗) = 1, if 

(𝑕)𝑠𝑀σ𝑖(𝑖, 𝑗) = 1. Obviously, the number of elementary op-

erations for this point also does not exceed the number 

(𝑛 ⨉ 𝑚). 

c) for any 𝑖 ∈ {1,..., 𝑛}, all clauses included in the subset 

F𝑖
σ𝑖 and not included in H𝑖

σ𝑖 will be removed from the 

subset F𝑖
σ𝑖. That is, if for some 𝑗 ∈ {1,..., 𝑚}, 

(𝑓)𝑠𝑀σ𝑖(𝑖, 𝑗) = 1 and (𝑕)𝑠𝑀σ𝑖(𝑖, 𝑗) = 0, then we will as-

sign (𝑓)𝑠𝑀σ𝑖(𝑖, 𝑗) = 0, which means removing the j-th clause 

from the subset F𝑖
σ𝑖. 

It is easy to see (recall the arguments of the proof of Theo-

rem 4.3), that the assignment operation (𝑓)𝑠𝑀σ𝑖 (𝑖, 𝑗) = 0 

corresponds to an admissible change, since for the same val-

ue of 𝑗 and for another value of 𝑖, (𝑓)𝑠𝑀σ𝑖(𝑖, 𝑗) = 1. This 

also means that 𝑐𝑛𝑆(𝑕) will not lose an element. 

Thus, by this point the procedure performs the following 

operations: 

For any 𝑖 ∈ {1,..., 𝑛}, it runs over the 𝑖-th row of the ma-

trix (𝑕)𝑠𝑀σ𝑖 and considers the values of its elements 

(𝑕)𝑀σ𝑖(𝑖) = {(𝑕)𝑠𝑀σ𝑖(𝑖, 1),..., (𝑕)𝑠𝑀σ𝑖(𝑖, 𝑚)}. 

If for some 𝑖 ∈ {1,..., 𝑛} and 𝑗 ∈ {1,..., 𝑚}, 

(𝑕)𝑠𝑀σ𝑖(𝑖, 𝑗) = 0 and (𝑓)𝑠𝑀σ𝑖(𝑖, 𝑗) = 1 

then the element (𝑓)𝑠𝑀σ𝑖(𝑖, 𝑗) of the matrix (𝑓)𝑠𝑀σ𝑖 is as-

signed the value 0. It is easy to see that the described proce-

dure requires no more than 𝑐 ⨉ 𝑛 ⨉ 𝑚 elementary operations 

for some constant 𝑐. 

d) for any pair of rows (𝑓)𝑀 σ̅𝑖(𝑖) and (𝑕)𝑀 σ̅𝑖(𝑖), 

(𝑓)𝑀 σ̅𝑖(𝑖) ∈ {(𝑓)𝑀 σ̅1(1), (𝑓)𝑀 σ̅2(2),..., (𝑓)𝑀σ̅𝑛(𝑛)}, 

(𝑕)𝑀 σ̅𝑖(𝑖) ∈ {(𝑕)𝑀 σ̅1(1), (𝑕)𝑀 σ̅2(2),..., (𝑕)𝑀σ̅𝑛(𝑛)}, 

the elements of the row (𝑓)𝑀 σ̅𝑖(𝑖) are assigned by the corre-

sponding elements of the row (𝑕)𝑀 σ̅𝑖(𝑖). So, the procedure 

for performing this point requires no more than (𝑛 ⨉ 𝑚) el-

ementary operation. Thus, as a result of the procedures de-

scribed in points a), b), c) and d) we obtain the pair of (0,1) 

matrices ((𝑕 )𝑠𝑀0 , (𝑕 )𝑠𝑀1 ) based on the pair of (0,1)-

matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) using admissible changes under 

the assignment tuple (σ1,..., σ𝑛). 

Obviously, the number of all elementary operations for all 

described procedures does not exceed the number 𝑐 ⨉ 𝑛 ⨉ 𝑚 

for some constant 𝑐. ∇ 

Combining the results of the theorems 4.3 and 5.5, we can 

formulate the following: 

Theorem 5.6. Let 𝑓(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛) be arbitrary 

Boolean functions, both represented in conjunctive normal 

form with 𝑚 clauses. If there exists a Boolean assignment 

tuple (σ1,..., σ𝑛) such that 

𝑓(σ1,..., σ𝑛) = 1 and 𝑕(σ1,..., σ𝑛) = 1, 

then the function 𝑓(𝑥1,..., 𝑥𝑛) generates the function 𝑕(𝑥1,..., 

𝑥𝑛) as a result of admissible changes under the assignment 

tuple (σ1,..., σ𝑛) in no more than 𝑐 ⨉ (𝑛 ⨉ 𝑚) elementary 

operations, for some constant 𝑐. 

Proof. The proof follows directly from the Theorems 4.3 

and 5.5. ∇. 

7. Extension of Admissible Changes 

In previous sections we studied admissible changes that 

are made only using elements from different subsets. We will 

extend this concept by adding a new operation to the opera-

tions defined in 3.1. The new operation will deal with or-

dered pairs of special decomposition. 

Let’s consider the Boolean functions and the special de-

compositions generated by them. 

Suppose that 𝑓(𝑥1 ,..., 𝑥𝑛 ) is a Boolean function in con-

junctive normal form, and the set 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1),..., (F𝑛
0, F𝑛

1)} 

is a special decomposition of the set of clauses 𝑆(𝑓) of this 

function. 

Recall that (𝑖1 ,..., 𝑖𝑘 )𝐼 (𝑑𝑛𝑆(𝑓 )) is a decomposition ob-

tained as a result of permuting the components of the ordered 

pairs {(F𝑖1

0 , F𝑖1

1 ),..., (F𝑖𝑘

0 , F𝑖𝑘

1 )} in the special decomposition 

𝑑𝑛𝑆(𝑓). 

According to Lemma 1.3, (𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆(𝑓)) is a special 

decomposition of the set 𝑆(𝑓). 

Theorem 6.1. If the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by 

the special decomposition 

(𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆(𝑓)), then 𝑓(𝑥1,..., 𝑥𝑛) is satisfiable if and 

only if 𝑕(𝑥1,..., 𝑥𝑛) is satisfiable. 

Proof. Let 𝑓(𝑥1,..., 𝑥𝑛) be a satisfiable function, and let the 

set of ordered pairs 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1),..., (F𝑛
0, F𝑛

1)} 
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be a special decomposition of the set 𝑆(𝑓). Then, according 

to Theorem 2.3, there is a special covering for the set 𝑆(𝑓) 

under the special decomposition (𝑑𝑛𝑆(𝑓)). Let it be the set 

𝑐𝑛𝑆(𝑓) = {F1
𝛼1,..., F𝑛

𝛼𝑛}. 

The special decomposition (𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆(𝑓)) is obtained 

by permuting components of the ordered pairs 

{(F𝑖1

0 , 𝐹𝑖1

1 ),..., (F𝑖𝑘

0 , F𝑖𝑘

1 )} 

in the decomposition 𝑑𝑛𝑆(𝑓). So, by definition 

(𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆(𝑓)) ={(F1
σ1, F1

 σ̅1),..., (F𝑛
σ𝑛, F𝑛

 σ̅𝑛)}, 

for σ𝑖 = {
0, 𝑖𝑓 𝑖 ∉ * 𝑖1, . . . , 𝑖𝑘+
1, 𝑖𝑓 𝑖 ∈ * 𝑖1, . . . , 𝑖𝑘+

. 

But then, according to Lemma 1.3 there is a special cover-

ing for the set 𝑆(𝑓)  also under the special decomposition 

(𝑖1 ,..., 𝑖𝑘 )𝐼 (𝑑𝑛𝑆(𝑓 )). Obviously, the following ordered set 

{F1
𝛿1,..., F𝑛

𝛿𝑛}, 

for δ𝑖 = {
𝛼𝑖 , 𝑖 ∉ * 𝑖1, . . . , 𝑖𝑘+

𝛼̅𝑖 , 𝑖 ∈ * 𝑖1, . . . , 𝑖𝑘+
, 

will be a special covering for the set 𝑆(𝑓) under the special 

decomposition (𝑖1,..., 𝑖𝑘)𝐼(𝑑𝑛𝑆(𝑓)). 

In addition, obviously, 𝑕(δ1,..., δ𝑛) = 1. ∇ 

Let's now find out how the clauses of a new function 

𝑕(𝑥1 ,..., 𝑥𝑛 ) differ from the clauses of the given function 

𝑓(𝑥1 ,..., 𝑥𝑛 ) when permuting the components of some or-

dered pair, let it be (F𝑖
0, F𝑖

1), of the special decomposition 

𝑑𝑛𝑆(𝑓). 

Suppose that F𝑖
0 = {𝑐𝑙1

,..., 𝑐𝑙𝑝
} and F𝑖

1 = {𝑐𝑗1
,..., 𝑐𝑗𝑞

}. By 

the definition of these subsets, 

- the literal  x̅𝑖 is included in all clauses of the set 𝑐𝑙1
,..., 

𝑐𝑙𝑝
}, 

- the literal 𝑥𝑖 is included in all clauses of the set {𝑐𝑗1
,..., 

𝑐𝑗𝑞
}. 

- the literals  x̅𝑖 and 𝑥𝑖 are not included in any other claus-

es. 

When permuting the components of the ordered pair (F𝑖
0, 

F𝑖
1), we obtain the special decomposition (𝑖)𝐼(𝑑𝑛𝑆(𝑓)), in 

which the 𝑖-th ordered pair has the form (F𝑖
1, F𝑖

0). The re-

maining ordered pairs coincide with the corresponding or-

dered pairs of 𝑑𝑛𝑆(𝑓). 

(𝑖)𝐼(𝑑𝑛𝑆(𝑓)) = {(F1
0, F1

1),..., (F𝑖
1, F𝑖

0) ,..., (F𝑛
0, F𝑛

1)}. 

Let’s consider the procedure for generating the function 

𝑕(𝑥1,..., 𝑥𝑛) in accordance with Section 2.4 based on the spe-

cial decomposition (𝑖)𝐼(𝑑𝑛𝑆(𝑓)). 

Recall that, having a special decomposition of a set, for 

any element of this set we form a clause corresponding to 

this element, based on the positions of the subsets containing 

this element. 

The ordered sets 𝑑𝑛𝑆(𝑓)) and (𝑖)𝐼(𝑑𝑛𝑆(𝑓)) differ only in 

the 𝑖-th ordered pair. That is, 

F𝑖
0 = {𝑐𝑙1

,..., 𝑐𝑙𝑝
} is located in the 1-domain, 

F𝑖
1 = {𝑐𝑗1

,..., 𝑐𝑗𝑞
} is located in the 0-domain, of the result-

ing decomposition. 

Let’s denote the clauses of the function 𝑕(𝑥1 ,..., 𝑥𝑛 ) as 

𝑐1
′ ,..., 𝑐𝑚

′ , 𝑆(𝑕) = {𝑐1
′ ,..., 𝑐𝑚

′ }. 

Since 𝑕 ( 𝑥1 ,..., 𝑥𝑛 ) is generated by the decomposition 

(𝑖)𝐼(𝑑𝑛𝑆(𝑓)), it is easy to see that: 

- for any 𝑐𝑗𝑟
 ∈ {𝑐𝑗1

,..., 𝑐𝑗𝑞
}, the corresponding new clause 

𝑐𝑗𝑟

′  will contain the literal  x̅𝑖. 

- for any 𝑐𝑙𝑟
 ∈ {𝑐𝑙1

,..., 𝑐𝑙𝑝
}, the corresponding new clause 

𝑐𝑙𝑟

′  will contain the literal 𝑥𝑖. 

Denoting by 𝑑𝑛𝑆(𝑕) = {(H1
0, H1

1),..., (H𝑛
0, H𝑛

1)} the special 

decomposition (𝑖)𝐼(𝑑𝑛𝑆(𝑓)), which generates the function 

𝑕(𝑥1,..., 𝑥𝑛), according to the formation procedure we obtain: 

- the literal  x̅𝑖 is included in any of the clauses included in 

H𝑖
0, 

- the literal 𝑥𝑖 is included in any of the clauses included in 

H𝑖
1. 

At the same time, the clauses of the function 𝑕(𝑥1,..., 𝑥𝑛), 

not included in the subsets H𝑖
0 or H𝑖

1, coincide with the corre-

sponding clauses of the function 𝑓(𝑥1,..., 𝑥𝑛). 

Thus, the function 𝑕(𝑥1,..., 𝑥𝑛) is obtained by replacing the 

literal  x̅𝑖 with the literal 𝑥𝑖 and the literal 𝑥𝑖 with the literal 

 x̅𝑖 in all clauses of the function 𝑓(𝑥1,..., 𝑥𝑛) containing these 

literals. 

Let’s now study the properties of extended changes in a 

special decomposition. 

Consider a special decomposition of a set 𝑆, 

𝑑𝑛𝑆 = {(𝑀1
0, 𝑀1

1),..., (𝑀𝑛
0, 𝑀𝑛

1)} 

such that for some Boolean tuple (𝛼1,..., 𝛼𝑛), 𝑐𝑛𝑆 = {𝑀1
𝛼1,..., 

𝑀𝑛
𝛼𝑛} is a special covering for 𝑆. 

Definition 6.2. We say that the ordered set 𝑑𝑛𝑆𝐺 is gener-

ated by the decomposition 𝑑𝑛𝑆 as a result of extended ad-

missible changes if it is formed in accordance with the fol-

lowing steps: 

- in addition to the admissible changes, a permutation pro-

cedure is also applied to some ordered pairs of the decompo-

sition 𝑑𝑛𝑆, 

- if admissible changes are performed under some tuple of 

superscripts (σ1,..., σ𝑛), and the permuting operation is ap-

plied to some 𝑖-th ordered pair of the decomposition under 

consideration, then admissible changes are continued under 

the tuple of superscripts (σ1,..., σ̅𝑖,..., σ𝑛). 

It is easy to notice that adding a new operation to the oper-

ations of admissible changes actually means admitting 𝐼 -

thansformations in the special decomposition. 
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According to Lemma 1.3, this means that as a result of ap-

plying the new operation, the conditions of the special de-

composition and special covering are preserved. 

Definition 6.3. Let the function 𝑓(𝑥1,..., 𝑥𝑛) be represented 

in conjunctive normal form with 𝑚 clauses. In addition, there 

is an assignment tuple (σ1,..., σ𝑛) such that 

𝑓(σ1,..., σ𝑛) = 1. 

We will say that the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by 

the function 𝑓(𝑥1,..., 𝑥𝑛) as a result of extended admissible 

changes, if: 

- the special decomposition 𝑑𝑛𝑆(𝑕) is generated as a result 

of extended admissible changes in the decomposition 

𝑑𝑛𝑆(𝑓), 

- the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the special de-

composition 𝑑𝑛𝑆(𝑕). 

Theorem 6.4. Let 𝑓 (𝑥1 ,..., 𝑥𝑛 ) be a satisfiable Boolean 

function represented in conjunctive normal form with 𝑚 

clauses. 

If the function 𝑕(𝑥1 ,..., 𝑥𝑛) is generated by the function 

𝑓(𝑥1,..., 𝑥𝑛) as a result of extended admissible changes, then 

𝑕(𝑥1,..., 𝑥𝑛) is a satisfiable function. 

Proof. Let 𝑑𝑛𝑆(𝑓) be a special decomposition generated 

by the function 𝑓(𝑥1,..., 𝑥𝑛). Since 𝑓(𝑥1,..., 𝑥𝑛) is a satisfia-

ble function, then there is some Boolean assignment tuple 

(𝛼1,..., 𝛼𝑛) such that 𝑓(𝛼1,..., 𝛼𝑛) = 1. At the same time, ac-

cording to Theorem 2.3, the ordered set 

𝑐𝑛𝑆(𝑓) = {F1
𝛼1,..., F𝑛

𝛼𝑛} 

is a special covering for the set 𝑆(𝑓) under the decomposition 

𝑑𝑛𝑆(𝑓). 

We will show that as a result of applying any operation of 

extended admissible change, we obtain a special decomposi-

tion in which there will exist a special covering for the set 

𝑆(𝑓). 

Let’s consider two cases: 

a) the permuting operation is not applied during these 

changes. 

In this case, according to Theorem 4.2, as a result of any 

operation we obtain a new special decomposition in which 

there exists a special covering for the set 𝑆(𝑓). 

In addition, the subsets included in the special covering 

have the same superscripts as in the original covering, (𝛼1,..., 

𝛼𝑛). By Theorem 2.3, this means that as a result 

𝑕(𝛼1,..., 𝛼𝑛) = 1. 

b) during the extended admissible changes, we apply the 

permutation procedure to the 𝑖-th ordered pair of the 

current decomposition. Let (σ1,..., σ𝑖,..., σ𝑛) be the tu-

ple of superscripts of the subsets make up the current 

special covering. 

By definition, after the permutation, (σ1,..., σ̅𝑖,..., σ𝑛) will 

be the tuple of superscripts of the subsets in the special cov-

ering. 

According to Theorem 2.3, this means that the function 

generated by this special decomposition takes the value 1 if 

the variables are assigned the values (σ1,..., σ̅𝑖,..., σ𝑛). 

It is easy to see, that the final tuple of superscripts of the 

subset in the special covering will be a satisfying assignment 

for the function 𝑕(𝑥1,..., 𝑥𝑛). ∇ 

Theorem 6.5. Let 𝑓(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛) be arbitrary 

Boolean functions both represented in conjunctive normal 

form with 𝑚  clauses. Let there also exist Boolean assign-

ment tuples (σ1,..., σ𝑛) and (δ1,..., δ𝑛) such that 𝑓(σ1,..., σ𝑛) 

= 1 and 𝑕(δ1,..., δ𝑛) = 1. 

Then, the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the func-

tion 𝑓(𝑥1,..., 𝑥𝑛), and the function 𝑓(𝑥1,..., 𝑥𝑛) is generated 

by the function 𝑕(𝑥1,..., 𝑥𝑛), as a result of extended admissi-

ble changes. 

Proof. Let the ordered sets 

𝑑𝑛𝑆(𝑓) = {(F1
0, F1

1),..., (F𝑛
0, F𝑛

1)} and 

𝑑𝑛𝑆(𝑕) = {(H1
0, H1

1),..., (H𝑛
0, H𝑛

1)} 

be special decompositions of the sets 𝑆(𝑓) and 𝑑𝑛𝑆(𝑕), re-

spectively. 

The functions 𝑓(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛) are satisfiable, 

hence the ordered sets 

𝑐𝑛𝑆(𝑓) = {F1
σ1,..., F𝑛

σ𝑛} and 𝑐𝑛𝑆(𝑕) = {H1
δ1,..., H𝑛

δ𝑛} 

will be special coverings for the sets 𝑆(𝑓) and 𝑆(𝑕), respec-

tively, under these decompositions. 

We will prove that the function 𝑕(𝑥1,..., 𝑥𝑛) is generated 

by the function 𝑓(𝑥1,..., 𝑥𝑛) as a result of extended admissi-

ble changes. 

Consider the tuples (σ1,..., σ𝑛) and (δ1,..., δ𝑛), which also 

are the tuples of superscripts of the subsets included in 

𝑐𝑛𝑆(𝑓) and 𝑐𝑛𝑆(𝑕), respectively. 

We compare whether these tuples are the same. 

- if (σ1,..., σ𝑛) coincides with (δ1,..., δ𝑛), then we use the 

procedure described in Theorem 4.3 to obtain the function 

𝑕(𝑥1,..., 𝑥𝑛). 

- if these tuples do not match, we compare their elements 

in pairs: 

For any 𝑖 ∈ {1,..., 𝑛}, if σ𝑖  ≠  δ𝑖, we assign the value δ𝑖 

to the element σ𝑖. 

It is easy to see that this operation is equivalent to the 

permutation of the components of the ordered pair (F𝑖
0, F𝑖

1), 

which is an admissible change. Therefore, we also permute 

the components of this ordered pair. 

As a result of all these operations the special decomposi-

tion 𝑑𝑛𝑆(𝑓) turns out to another special decomposition. In 

addition, there exists a special covering under this decompo-

sition such that (δ1,..., δ𝑛) will be the tuple of superscripts of 

the subsets included in it. 

On the other hand, the function generated by this special 

decomposition takes the value 1 if the variables are assigned 
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the values (δ1,..., δ𝑛). 

Let’s denote this function by 𝑔(𝑥1,..., 𝑥𝑛). Since the func-

tion 𝑔(𝑥1 ,..., 𝑥𝑛) is generated by the function 𝑓(𝑥1 ,..., 𝑥𝑛), 

then using the Theorem 4.4, it is enough to proof that the 

function 𝑕(𝑥1 ,..., 𝑥𝑛 ) is generated by the function 𝑔(𝑥1 ,..., 

𝑥𝑛). 

Thus, we obtained that δ1,..., δ𝑛) is a satisfying assigning 

tuple for the functions 

𝑔(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛): 

𝑓(δ1,..., δ𝑛) = 1 and 𝑕(δ1,..., δ𝑛) = 1. 

Obviously, the conditions of the Theorem 4.3 are satisfied 

for the functions 𝑔(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛). 

Thus, the function 𝑕(𝑥1,..., 𝑥𝑛) is generated by the func-

tion 𝑓(𝑥1,..., 𝑥𝑛). Therefore, the function 𝑕(𝑥1,..., 𝑥𝑛) is also 

generated by the function 𝑔(𝑥1,..., 𝑥𝑛). In a similar way we 

prove that the function 𝑓(𝑥1,..., 𝑥𝑛) is generated by the func-

tion 𝑕(𝑥1,..., 𝑥𝑛). ∇ 

Theorem 6.6. Let 𝑓(𝑥1,..., 𝑥𝑛) and 𝑕(𝑥1,..., 𝑥𝑛) be arbitrary 

Boolean functions both represented in conjunctive normal 

form with 𝑚  clauses. Let there also exist Boolean assign-

ment tuples (σ1,..., σ𝑛) and (δ1,..., δ𝑛) such that 

𝑓(σ1,..., σ𝑛) = 1 and 𝑕(δ1,..., δ𝑛) = 1. 

Then, the function 𝑓 ( 𝑥1 ,..., 𝑥𝑛 ) generates the function 

𝑕(𝑥1,..., 𝑥𝑛) as a result of extended admissible changes in no 

more than 𝑐 ⨉ (𝑛 ⨉ 𝑚) elementary operations, for some con-

stant 𝑐. 

Proof. Suppose that the pair of (0,1)-matrices ((𝑓)𝑠𝑀0, 

(𝑓)𝑠𝑀1) corresponds to the special decomposition 𝑑𝑛𝑆(𝑓). 

According to Proposition 5.3, the pair of matrices can be 

generated by the function 𝑓(𝑥1,..., 𝑥𝑛) in no more than 𝑐 ⨉ 

(𝑛 ⨉ 𝑚) elementary operations for some constant 𝑐. 

We will use the procedure described during the proof of 

Theorem 6.5. 

So, let 𝑔(𝑥1,..., 𝑥𝑛) be a function which takes the value 1 if 

the variables are assigned the values δ1 ,..., δ𝑛 . Recall that 

𝑔(𝑥1,..., 𝑥𝑛) is the function generated by the ordered pair of 

matrices that is obtained as a result of permutation of some 

ordered pairs of rows included in the ordered pair of (0,1)-

matrices ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1). 

Obviously, the maximum number of elementary opera-

tions required for permuting the components of an ordered 

pair of rows included in ((𝑓)𝑠𝑀0, (𝑓)𝑠𝑀1) does not exceed 

the number 𝑐 ⨉ 𝑚 for some constant 𝑐. 

Hence, maximum number of elementary operations re-

quired for permuting the components of all needed ordered 

pairs does not exceed the number 𝑐 ⨉ (𝑛 ⨉ 𝑚). 

Since 𝑕(δ1,..., δ𝑛) = 1 and 𝑔(δ1,..., δ𝑛) = 1, then according 

to Theorem 5.6, the function 𝑔(𝑥1,..., 𝑥𝑛) generates the func-

tion 𝑕(𝑥1,..., 𝑥𝑛) as a result of admissible changes under the 

assignment tuple (σ1 ,..., σ𝑛) in no more than 𝑐 ⨉ (𝑛 ⨉ 𝑚) 

elementary operations, for some constant 𝑐. Combining these 

results, we can state: 

Under the conditions of the theorem, the function 𝑓(𝑥1,..., 

𝑥𝑛) generates the function 

𝑕(𝑥1,..., 𝑥𝑛) as a result of extended admissible changes in 

no more than 𝑐 ⨉ (𝑛 ⨉ 𝑚) elementary operations, for some 

constant 𝑐. ∇ 

Thus, using the concept of admissible changes we can 

state the following: 

- for any natural numbers 𝑛 and 𝑚, the set of satisfiable 

functions of 𝑛 variables, represented in conjunctive normal 

form with 𝑚 clauses, is partitioned into equivalence classes, 

- the functions included in the same class have a common 

satisfiable assigning tuple. 

- for any function included in a certain class, as a result of 

applying any admissible operation on this function, another 

satisfiable function included in the same class is obtained. 

- any function of any equivalency class can be generated 

by an arbitrary function of the same class in polynomial 

time. 

Extending the rules of the admissible changes, we ob-

tained an interesting result. 

For any natural numbers 𝑛 and 𝑚, all satisfiable functions 

of 𝑛 variables, represented in conjunctive normal form with 

𝑚 clauses, are generated by each other in polynomial time, 

creating a chain of satisfiable functions in parallel. 
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