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Abstract 

This study compares the effectiveness of Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in 

optimizing the thermal diffusivity of mild steel Tungsten Inert Gas (TIG) welds. The analysis evaluates the predictive accuracy 

and optimization efficiency of both techniques, providing insights into their suitability for modeling thermal behavior in 

welding applications. The set of tools, including power hacksaw cutting and grinding machines, mechanical vice, emery (sand) 

paper and sander was used to prepare the mild steel coupons for welding. The produced coupons were evaluated for their 

Thermal Diffusivity. The two expert systems used to determine the effect of the interaction of welding current, welding voltage 

and gas flowrate on the Thermal Diffusivity were the Response Surface Methodology and Artificial Neural Network. The 

models were validated using the model summary values between the experimental results compared to RSM (R
2
 = 94.49%) 

and ANN (R
2
 = 97.83%) values. This shows that ANN is a better predictor as compared to RSM. 
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1. Introduction 

Thermal diffusivity is a fundamental property that de-

scribes how efficiently a material conducts thermal energy in 

relation to its ability to store heat. It is mathematically de-

fined as the ratio of thermal conductivity (k) to the product 

of density (ρ) and specific heat capacity (Cp), expressed as: 

α = k/ρCP 

where α represents thermal diffusivity (m²/s), k is thermal 

conductivity (J/m·K·s), ρ is density (kg/m³), and Cp is spe-

cific heat capacity (J/kg·K) [1]. Due to its role in heat trans-

fer, thermal diffusivity is sometimes referred to as "tempera-

ture conductivity." 

In the context of flame spread over porous solids soaked in 

liquid fuel, variations in thermal diffusivity significantly in-

fluence combustion behavior. Research has shown that the 

intensity of combustion differs across materials with differ-

ent thermal diffusivities [2, 3]. For instance, flames exhibit 

more vigorous combustion over steel beads compared to 

sand and zeolite, a phenomenon attributed to differences in 

thermal diffusivity. Steel beads possess a thermal diffusivity 

approximately ten times greater than sand beds and about 
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five times higher than zeolite beds. 

This distinction highlights a critical aspect of flame dy-

namics: materials with higher thermal diffusivity exhibit 

faster thermal response times to temperature changes. Con-

sequently, the rate of flame spread is notably affected, with 

higher diffusivity materials facilitating more rapid heat trans-

fer, thereby influencing combustion efficiency and fire prop-

agation behavior. 

Thermal Diffusivity is a material property that determines 

how fast heat can be conducted through a material. In weld-

ing, the Thermal Diffusivity of the base metal can affect the 

quality of the weld joint. In a study [4], it was found that the 

Thermal Diffusivity of the base metal had a significant effect 

on the formation of solidification cracks in the weld joint. 

The study observed that materials with low Thermal Diffu-

sivity were more susceptible to solidification cracks. 

A discussion on the accuracy of the method of determin-

ing the Thermal Diffusivity of solids using the solution of the 

inverse heat conduction equation was presented in their pa-

per. A new procedure for data measurement processing was 

proposed to improve the effectivenessof the method. Using 

the numerical model [5], an analysis of the sensitivity of the 

method of Thermal Diffusivity determination to changes in 

operational and environmental parameters of the test was 

carried out. Their results showed that the method was insen-

sitive to the parameters of the thermal excitation impulse, the 

thickness of the tested sample, and this significantly influ-

ence the accuracy of the cooling convection. The work was 

completed with the formulation of general conclusions con-

cerning the conditions for determining the Thermal Diffu-

sivity of materials with the use of the described method. 

Thermal Diffusivity, thermal phase lag, conductance, 

thermal resistivity, thermal conductivity and thermal difffu-

sivity were determined for two pieces of brick a new made 

sample and an old one. Samples were then coated with ce-

ment and measurements were repeated [6]. Thermal Diffu-

sivity of the samples were found to range from 6.8×10P -7 

PmP 2 PsP -1 P to 18×10P -7 PmP 2 PsP -1 P, thermal phase 

lag ranged between 5.6 hP -1 P and 29 hP -1 P while con-

ductance ranged from 1.2 WmP - P²KP -1 P to 1.7 WmP - 

P²KP -1 P thermal resistivity ranged between 0.83m²K.WP -

1 P and 0.58 m²K.WP -1 P thermal conductivity was found 

to range from 1.6 WmP -1 PKP -1 Pto 2.02 WmP -1 PKP -1 

P whereas Thermal Diffusivity was found to range from 

12.28×10P 2 P23TWsP 1/2P/mP 2 PK23T to 23×10P 2 P23T 

WsP 1/2P/mP 2 PK23T. All results were compared with pre-

vious studies. 

In [7], estimates of thermal diffusivity (κ, K) for hydrocar-

bon-bearing horizons in the Chad Basin, northeastern Nige-

ria, obtained from density log data, show close agreement 

with values derived from temperature-time measurements. 

The observed scatter in the first estimation is attributed to 

random fluctuations, while the underestimation in the latter 

is likely due to data quality limitations. The trend of thermal 

diffusivity across these horizons suggests a common source 

for intrusive formations. While pressure-induced variations 

in thermal diffusivity are considered negligible, temperature-

induced effects are found to be significant. Furthermore, the 

rapid cooling of intrusions is believed to impact hydrocarbon 

maturation, potentially influencing hydrocarbon exploration 

and discovery. 

The Thermal Diffusivity of three food products, Pent land 

Dell potato, malt bread and wheat flour, was determined us-

ing a Thermal Diffusivity tube under transient heat transfer 

conditions by two different methods, the log method and the 

slope method, both based on the solutions of the Fourier 

equation [8]. Both methods gave similar results for potato, 

1.30 × 10
−7

 and 1.44 × 10
−7

 m
2
 s

−1
, flour, 1.00 × 10

−7
 and 

1.04 × 10
−7

 m
2
 s

−1
, but different results for bread, 1.17 × 10

−7
 

and 2.56 × 10
−7

 m
2
 s

−1
. The values were compared with a 

prediction model and with previously documented values. 

The measured values for potato and flour were found to be 

close to those calculated by the prediction model. The value 

for bread, calculated by the log method, was also close to the 

predicted value, but its Thermal Diffusivity calculated by the 

slope method was close to literature values. 

The thermal diffusivity of various steel types was meas-

ured in [9] using the laser flash method, which relies on pre-

cise specimen thickness for accuracy. Additionally, the ther-

mal expansion of steel was recorded over a temperature 

range from room temperature to 1676 K. At high tempera-

tures, a decrease in steel thickness was observed and quanti-

fied using quenched samples. By integrating these findings, 

reliable thermal diffusivity values were determined for dif-

ferent steel compositions. 

2. Material and Methods 

2.1. Sample Preparation 

According to the Experimental Matrix presented in Table 

1, twenty sets of experiment were performed and 5 speci-

mens were usedfor each run. The plate sample was 60 mm 

long with a wall thickness of 10mm. The sample was cut 

longitudinally with a single-V joint preparation as shown in 

Figure 1. 

 
Figure 1. Weld specimen design. 

The set of tools including power hacksaw cutting and 
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grinding machines, mechanical vice, emery (sand) paper and 

sander presented in Figure 2 was used to prepare the mild 

steel coupons for welding. 

  
Figure 2. Set of equipment for coupon preparation. 

The set of tungsten inert gas welding equipment presented 

in figure 3 was used in welding the plates after the edges 

have been machined and bevelled. 

 
Figure 3. Tungsten Inert Gas Welding Equipment. 

Shield gas was used to protect the weld specimen from 

atmospheric interaction during the welding process. 100% 

pure Argon gas was used for this study. The weld samples 

were made from 10mm thickness of mild steel plate; the 

plate was cut to size with the power hacksaw. The edges 

grinded and surfaces polished with emery paper and the 

joints welded. 

2.2. Data Collection 

After grinding and polishing of the sample edges, welding 

work was carried out, and the responses were measured, rec-

orded and presented in Table 1. 

The Department of Welding and Fabrication Technology, 

Petroleum Training Institute laboratory was used for the TIG 

welding process, thermal measurements, post weld tests and 

calculations. 

Table 1. Design of Experiment (DoE) Matrix. 

S/N I Amp E, Volt GFR L/min 

1 165.000 17.500 14.500 

2 180.000 16.000 16.000 

3 150.000 19.000 16.000 

4 165.000 17.500 14.500 

5 165.000 17.500 14.500 

6 165.000 20.023 14.500 

7 180.000 19.000 16.000 

8 165.000 17.500 14.500 

9 150.000 19.000 13.000 

10 165.000 17.500 14.500 

11 180.000 16.000 13.000 

12 139.773 17.500 14.500 

13 180.000 19.000 13.000 

14 165.000 14.977 14.500 

15 190.227 17.500 14.500 

16 165.000 17.500 11.977 

17 165.000 17.500 17.023 

18 150.000 16.000 13.000 

19 150.000 16.000 16.000 

20 165.000 17.500 14.500 
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3. Result and Discussion 

To analyse the data, the following expert models were em-

ployed: 

1. Response surface methodology (RSM); 

2. Artificial Neural Network (ANN). 

3.1. Response Surface Methodology (RSM) 

For analysis of design data, Design Expert Statistical 

Software, in order to obtain the effects, coefficients, standard 

deviations of coefficients, and other statistical parameters 

Version 13.0 was engaged for the fitted models. The behav-

iour of the system which was used to evaluate the relation-

ship between the response variables (YT,) and the independ-

ent variables (X1, X2, and X3) was explained using the empir-

ical second-order polynomial equation [10]. 

1
2

0

1 1 1, 2

q q q q

i i ii i ij i j

i i i i j j

Y x x x x    



    

               (1) 

where, 

X1, X2, X3… Xk = input variables; 

Y, β0, βi, βii, and βij = the known parameters, and ƹ = the 

random error. 

The Response Surface Model extends simple linear re-

gression by incorporating second-order effects to account for 

non-linear relationships. It is a widely used optimization 

technique for identifying the optimal combination of varia-

bles to achieve a desired response. RSM is particularly valu-

able in modeling complex systems, as it helps analyze the 

interactions between multiple predictor variables and their 

corresponding responses [11]. 

3.2. Artificial Neural Network 

The implementation of the Artificial Neural Network 

(ANN) in this study followed a structured approach, which is 

detailed in the following sections. 

3.2.1. Experimental Design and Data Collection 

A Central Composite Design (CCD) was employed to de-

fine the experimental conditions, specifying a total of 20 

experimental runs. These experiments were conducted under 

varying welding current, welding voltage, and gas flowrate 

to generate the dataset required for the ANN model. 

3.2.2. Data Normalization 

To ensure consistency and improve model stability, the 

experimental results were normalized before further pro-

cessing. The input and output variables were scaled within 

the range of 0.1 to 1.0 using a standard normalization equa-

tion [12], as presented in Equation 2. This step was crucial in 

preventing large variations in data from affecting the effi-

ciency of the neural network training process. 

min

max min

0.1i

x x
x

x x


 


                        (2) 

where, 

xi = the normalized value of input and output data 

xmin and xmax are the minimum and maximum value of in-

put and output data 

x = the input and output data. 

3.2.3. Data Partitioning 

Following normalization, the dataset was randomly divid-

ed into three subsets to facilitate model training and evalua-

tion: 

1. Training set (70%) – Used for model learning and pa-

rameter adjustment. 

2. Validation set (15%) – Used to monitor model perfor-

mance and prevent overfitting. 

3. Testing set (15%) – Used to assess the predictive accu-

racy of the final trained model. 

By following this structured approach, the ANN was ef-

fectively trained and evaluated using the experimental data, 

ensuring reliable and accurate predictions. 

The optimal equation which shows the individual effects 

and combine interactions of the selected input variables 

(current, voltage and gas flowrate) against the mesured 

Thermal Diffusivity is presented based on the coded 

variables in equation 3. 

1/Sqrt(Y𝑇) = +0.5857 + 0.0501A + 0.0454B +

0.0358C + 0.0283AB − 0.0171AC − 0.0036BC +

0.0024𝐴2 + 0.0224𝐵2 + 0.0346𝐶2          (3) 

Where, YT = Thermal Diffusivity 

ANN produced equation 4. with Table 2 as its model 

summary. 

EXP = 0.1272 + 0.9428 RSM                    (4) 

Table 2. Model Summary for RSM Thermal Diffusivity. 

S R-sq R-sq(adj) 

0.146883 94.49% 94.18% 
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Table 3. Experimental observed value RSM predicted vs ANN predicted result of Thermal Diffusivity responses. 

S/N 

Input parameters 

Exp 

RSM prediction 

ANN 

Responses Prediction 

Current voltage GFR Thermal Diffusivity Thermal Diffusivity Thermal Diffusivity 

1 165.000 17.500 14.500 2.849 2.924 2.916 

2 180.000 16.000 16.000 2.370 2.253 2.405 

3 150.000 19.000 16.000 2.221 2.395 2.368 

4 165.000 17.500 14.500 3.016 2.924 2.916 

5 165.000 17.500 14.500 2.855 2.924 2.916 

6 165.000 20.023 14.500 1.931 1.813 1.914 

7 180.000 19.000 16.000 1.625 1.651 1.612 

8 165.000 17.500 14.500 3.014 2.924 2.916 

9 150.000 19.000 13.000 3.210 3.175 3.186 

10 165.000 17.500 14.500 2.855 2.924 2.916 

11 180.000 16.000 13.000 2.867 3.115 2.732 

12 139.773 17.500 14.500 3.877 3.729 3.746 

13 180.000 19.000 13.000 1.737 1.741 1.665 

14 165.000 14.977 14.500 3.004 3.479 3.005 

15 190.227 17.500 14.500 2.191 2.078 2.305 

16 165.000 17.500 11.977 2.531 2.476 2.659 

17 165.000 17.500 17.023 1.839 1.885 1.696 

18 150.000 16.000 13.000 3.666 3.661 3.691 

19 150.000 16.000 16.000 2.5161 2.605 2.599 

20 165.000 17.500 14.500 2.905 2.924 2.916 

 

Table 3 presents the comparison between the experimental 

value, RSM and the ANN predicted value for Thermal 

Diffusivity responses against the welding current, welding 

voltage and the gas flowrate. 

The model summary values between the experimental re-

sults compared to RSM (R
2
 = 94.49%) and ANN (R

2
 = 

97.83%) values. This shows that ANN is a better predictor as 

compared to RSM. 

Figure 4 presents the time series plot showing the predic-

tion accuracies of RSM and ANN to experimental for indi-

vidual run number. 

A time series plot is a graphical representation of data 

points collected over time, allowing for the visualization of 

trends, patterns, or seasonal variations in the data. Figure 4 

shows the prediction accuracy of the two expert systems 

used against the experimental for predicting Thermal Diffu-

sivity response. By examining the plot, one can see, that 

even with the limited data set for training, validation and 

testing, ANN performance is also in close approximation 

with the experimental trend. 
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Figure 4. Time series plot showing the prediction accuracy of ANN and RSM in comparison to Experimental for Thermal Diffusivity re-

sponses. 

4. Conclusion 

1. Results obtained in this study showed that the interac-

tive combination of current and voltage has a very sig-

nificant influence on Thermal Diffusivity. 

2. Increase in current and voltage increased the Thermal 

Diffusivity. 

3. The optimum result from RSM indicated a desirability 

value of 91.5% at the gas flowrate of 13L/min. 

4. The ANN results showed significant compliance and 

validation of the experimental and numerical results, 

with ANN having better prediction accuracy. 

Abbreviations 

ANN Artificial Neural Network 

CCD Central Composite Design 

DoE Design of Experiment 

EXP Experiment 

GFR Gas Flowrate 

RSM Response Surface Methodology 
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