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Abstract: This study explores the behavior of an anisotropic fluid in a spherically symmetric spacetime by examining
expanding and collapsing solutions to the Einstein Field Equations (EFEs) within the framework of f(R, T ) gravity. This
modified theory of gravity extends General Relativity by allowing the gravitational action to depend on both the Ricci scalar R
and the trace T of the energy-momentum tensor. The work incorporates a cosmological constant to assess its influence on the
evolution of the fluid. A central aim of the study is to understand how the interaction between the Ricci scalar, the expansion
scalar, and the trace of the energy-momentum tensor affects the dynamics of the system. Special attention is given to the
anisotropic nature of the fluid, where radial and tangential pressures differ adding complexity to both expansion and collapse
processes. The presence of a cosmological constant further modifies the pressure and density profiles, revealing how dark
energy-like effects can shape the evolution of matter under gravity. The research identifies the existence of a single horizon in
the system and uses a mass function to analyze the formation of trapped surfaces regions where outgoing light rays begin to
converge, indicating gravitational collapse. Additionally, the relationship between the coupling constants Λ (cosmological
constant) and λ (associated with the f(R, T ) theory) is explored for both collapsing and expanding scenarios. Graphical results
highlight the influence of these parameters on pressure, mass, anisotropy, and energy density, offering valuable insights into
modified gravity’s role in astrophysical phenomena.
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1. Introduction
The contraction of an astronomical object as a result of its

natural gravitational force, which pushes objects toward the
center of gravity, is known as gravitational collapse [1]. One
of the main processes by which structures are formed in the
universe. Following sufficient accretion, an initial, relatively
smooth dispersion of matter over time, such as stars or black
holes, may eventually collapse to a region of higher density a
star’s abrupt collapse near the end of its life cycle, which is an
example of how matter tends to gravitate toward a single center
of mass. Gravitational collapse is the process by which an
object in space, like a star or gas cloud, collapses. It contracts
because of its own incredibly strong gravity.

The Einstein Field Equations (EFEs) are the foundation

of the general theory of relativity, revealing the complex
interaction of space, time, and matter. These equations help
us comprehend the mechanics of gravity. The universe’s
evolution at present, the most prevalent intriguing problem
in gravitation. In order to account for the universe’s
fast expansion, researchers have put proposed a number of
modified gravity concepts. The cosmic constant, which
controls acceleration and dark energy, is one method. The
cosmological constant issue might be resolved by different
models, like f(R, T ) theories [2, 3]. These models provide
a foundation for interpreting cosmic acceleration and involve
linear curvature-matter coupling (R + γT ) and quadratic
gravity (R + γR2). Moreover, various hypotheses argue
that the rapid expansion of the universe can be understood
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through the combination of dark energy and modified gravity.
For example, a modified Einstein action model with the 1/R
scalar has been laid out, proposing that the expansion of the
universe is caused by cosmic scale distortion and curvature,
predominantly by the repulsive gravity of dark energy [4].

General relativity, must be replaced with updated gravity
theories to account for the universe’s expansion. The f(R)
theory, in which the Lagrangian is a generic function of
the Ricci scalar, was initially introduced by Buchdahal in
1970. By setting R to a constant scalar value, general
relativity is restored.The f(R) gravity theory naturally depicts
the transition from slowdown to acceleration in a changing
universe, providing a plausible foundation for comprehending
cosmic expansion. Hawking and Penrose [1, 5, 6] were
interested in singularities in spacetime and they went into
great length about the formation and presence of singularities.
They discussed their theories and noted that when a trapped
surface is generated, the gravitational collapse of large objects
causes singularities in space-time. Penrose proposed two
model conjectures: weak and strong censorship conjectures.
According to a weak form of the conjecture, a singularity
may be concealed behind an event horizon and only be
visible to a nearby observer. A singularity following the
development of a gravitational process cannot be observed by
a nearby or distant observer, according to the strong version
of the conjecture.There was no empirical or mathematical
proof to back up or disprove Penrose’s theories at the
time. Some authors [7–9] challenged Penrose’s work
by providing counterexamples to the Penrose conjectures.
Gravitational lensing was later used by Virbhadra [10] to
improve the articulation of the Penrose conjectures. For
their dust model, Oppenheimer and Snyder [11] investigated
gravitational collapse. Their research produced a black
hole. Numerous researchers used the cosmological constant
to examine gravitational collapse. Sharif and Ahmad [12]
examined perfect fluid collapse with a non-zero cosmological
constant using junction circumstances. It was later extended to
five dimensions by the authors [13].

However, Dabnath et al. [14] investigated dust collapse
with a cosmological constant in quasi-spherical geometry.
Additionally, Sharif and Abbas [15, 16] assessed perfect
fluid collapse in four and five dimensions with a cosmic
constant and electromagnetic field. In Friedman’s model
with charge, Sharif and Abbas [17] also examined perfect
fluid collapse and employed matching conditions. Yousaf and
Sharif [18] investigated the collapse of charged ideal fluids.
They concluded that the collapsing process is slowed down by
electromagnetic fields. Guha and Banerji [19] used a charged
anisotropic fluid to apply the Darmois junction condition for
cylindrical collapse.Using the cosmic constant, Ahmad and
Malik [20] examined the collapsing of anisotropic fluids. Khan
et al. [21] went into additional detail about this work in a five-
dimensional anisotropic fluid with a cosmological constant
present. Ahmad et al. [22] also investigated heat flux and
the collapse process of anisotropic fluid. Prisco et al. [23]
investigated an anisotropic fluid in a cylindrical shear-free
model.

Researchers are still particularly interested in studying
collapsing items when there is an electromagnetic field present
in the background. Sharif and Bhatti utilized their results
for spherical collapse in the electromagnetic background
[24]. According to their research, the electromagnetic field
accelerates the process of stellar collapse by lowering the
internal pressure of a star. Sharif and Abbas conducted
research on the Friedmann model with electromagnetic charge
and total fluid collapse [25]. Researchers have explored
the collapse of charged cylinders with anisotropic fluids,
employing various mathematical techniques. Notably, Guha
and Banerji [19] utilized Darmois junction conditions to
investigate this phenomenon, while Sharif and Fatima [26]
focused on the charged cylindrical collapse of anisotropic
fluid models, providing valuable insights into these complex
astrophysical processes. Maurya and Gupta [27] employed
general relativity to investigate the distribution of charged
fluids to anisotropic fluids. Khan and associates have
investigated the ultimate outcome of charged anisotropic fluid
collapse [28].

The effects of an electromagnetic field on the expansion
and collapse of an anisotropic gravitational source in a
four-dimensional spacetime were recently studied by Abbas
[29]. The collapsing scenario in general relativity and
some modified theories pertaining to higher dimensional
spacetimes were studied by many researchers. Shear-free
relativistic models in higher dimensions with charge and heat
flux were studied by Nyonyi and associates [30]. Recent
studies have delved into the complexities of gravitational
collapse in various contexts. For instance, Shah et al. [31]
explored collapsing solutions in higher-dimensional spaces,
while Khan et al. [32] built upon this work by incorporating
cosmological constants and anisotropic fluids into their higher-
dimensional models. Additionally, Sharif and Atiq [33]
investigated charged collapse in the framework of f(R)
gravity, highlighting the need for continued research into
the intricacies of gravitational collapse. We also find that
this process is assisted by the cosmological constant in field
models. In a comparable manner the fluid’s develop and
the presence of cosmological constant have an immense
effect on the gravitational collapse summons. Researching
spherical gravitational collapse with cosmological constant
and an anisotropic fluid will therefore be beneficial. It will
assist us in establishing out how the cosmological constant and
the anisotropic fluid interact to affect the collapse phase.

In the f(R, T ) theory of gravity, the cosmological constant
is essential for providing a more complex picture of the
evolution of the universe. The concept offers a framework
for investigating the changing character of dark energy and its
consequences for cosmology by permitting Λ to fluctuate with
R and T [34–36]. The impact of the cosmological constant
on gravitational collapse has been investigated recently in a
number of modified gravity theories, such as Gauss-Bonnet
gravity [39], f(R) theory [37], and f(R, T ) theory [38]. All of
these studies have demonstrated that the cosmological constant
can have a substantial effect on the collapse process, changing
the way singularities emerge and how the gravitational field
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behaves.In addition, investigations have looked into how
the cosmological constant affects gravitational collapse in
the setting of modified gravity theories with higher-order
curvature terms [41] and brane cosmology [40]. The
aforementioned studies have shown that the fate of collapsing
objects, such stars and black holes, can be significantly
influenced by the cosmological constant. This field of
study is developing quickly, according to an assessment of
the literature on gravitational collapse in modified gravity
theories with a cosmological constant [42]. Examining the
cosmological constant’s function in gravitational collapse is
crucial as our knowledge of the cosmos and its fundamental
rules of physics advances, especially in light of modified
gravity theories.

Bamba et al. [44] evaluated collapse in f(T ) gravity,
whereas Alavirad and Weller [43] studied gravitational
collapse in f(R) gravity. The consequences of a cosmological
constant on collapse of gravitation in f(R) gravity were studied
by Capozziello et al. [45]. Also, Nojiri et al. [47]
addressed collapse in Gauss-Bonnet gravity, and Harko et
al. [46] analyzed collapse in f(R, T ) gravity. The area of
modified gravity theories and their relevancy to cosmology and
astrophysics are currently covered in a number of books in
addition to these scholarly publications. Nojiri and Odintsov
[49] offered a cohesive framework for comprehending cosmic

history in modified gravity ideas, while Capozziello and
Faraoni [48] offered an extensive review of gravitational
concepts for cosmology and astrophysics.The subject of
modified gravity concepts and gravitational collapse has also
been the subject of numerous review papers. While Sotiriou
[51] examined the consequences of modified gravity concepts
for cosmology, De Felice and Tsujikawa [50] reviewed f(R)
theories. A review of collapse processes in modified gravity
models with a cosmological constant was presented by Harko
et al. [52]. Alternative explanations for dark energy and
dark matter include modified gravity theories f(R, T ) gravity,
scalar-tensor theories and quintessence, phantom energy, and
brane cosmology. Unified approaches combine modified
gravity with quintessence or scalar fields. The study also aim
to explore the new insights into early universe physics. It may
also help in solving cosmological constant problem and will
derive the impact on large-scale structure formation.

This paper examines an anisotropic fluid in a 4-dimensional
gravitational collapsing and expanding solution with a
cosmological constant in f(R, T ) gravity. This paper is
divided into two sections. In the first section, we derived the
spacetime field equations, in the second we derive collapsing
and expanding solution in f(R, T ) theory og gravity and in the
last there is some conclusion.

2. Field Equations
We use 4-dimensional spherically symmetric spacetime in the internal geometry given by

ds2 = L2(t, r)dt2 −A2(t, r)dr2 −H2(t, r)(dθ2 + sin2 θdφ2). (1)

The Ricci scalar (1) for the spacetime is defined by
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2L′′
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− 2L′A′
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− 2Ä
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− 4Ḧ
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+
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(2)

The field equations with the cosmic constant for the aforementioned action are,
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)
+

1

A2

(
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L
+
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H
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H
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The f(R, T ) gravity action with cosmic canstant and
anisotropic contribution is described mathematically as

S =

∫
d4x
√
−g(f(R,T) + Lm) (4)

where g is the determinant of metric gab, and the lagrangian
matter is Lm. In this instance, we choose Lm = ρ. The field
equation in modified theory is

GΨη =
1

fR
[(fT + 1)T

(m)
Ψη − ρgΨηfT +

f−RfR
2

gΨη + (∇Ψ∇η − gΨη2)fR], (5)

In our current investigation, the f(R,T) model can be selected in the way outlined listed below:

f(R, T) = fR + fT , Here we take fR = R, and fT = 2λT (6)

where R is the Ricci scalar, T is the trace of the stress energy tensor, and λ is a positive constant. For annisotropic fluids with a
cosmological constant present, the energy momentum is defined by

T
(m)
Ψη = (ρ+ P⊥)VΨVη − P⊥gΨη + (Pr − P⊥)UΨUη, (7)

Additionally, V Ψ and UΨ are vectors that meet the following relations:

V Ψ = L−1ΨΨ
0 , V

ΨVΨ = 1, UΨ = A−1ΨΨ
1 , U

ΨUΨ = −1, (8)

For interior metric Eq.(1), the factors LΨ, LΨ, A
Ψ and AΨ

are given by

V Ψ = [
1

L
, 0, 0, 0], VΨ = [−L, 0, 0, 0, ],

UΨ = [0,
1

A
, 0, 0], UΨ = [0, A, 0, 0]. (9)

The expansion scalar Θ for the spherically symetric

spacetime (1) is specified by

Θ =
1

L

(
Ȧ

A
+ 2

Ḣ

H

)
, (10)

Here dot stand for derivative with regard to t. The
dimensionless metric of anisotropy is defined as [53]

∆a =
Pr − P⊥
Pr

. (11)

The Eq.(5)) for the spacetime (1) is defined by
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fR
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2

+
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A
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1
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H
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˙f′R
fR

[
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,

G11 =
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2
−
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(
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)
− f′R
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(
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)]

G22 =
H2

fR

[
P⊥ + (ρ+ P⊥)fT +

RfR − f
2

+
f̈R
L2
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L2
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A
− Ḣ
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, (12)

these equations implies that
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(1 + λ)ρ− λPr − 2λP⊥ =
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1
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G33 = G22 = λρ+ λPr + (1 + 4λ)P⊥, (13)

Where Λ is cosmological constant. For the Misner-Sharp mass in 4-dimensions is defined as [54–56]

m(t, r) =
H

2

(
[1 +

Ḣ2

L2
− H ′2

A2
]− ΛH2

3

)
, (14)

For the G01 element in the field equations, we have found an auxiliary solution.

L =
Ḣ

HΨ
, A = HΨ, (15)

where Ψ is arbitrary constant. Now using Eq.(15) in Eq.(10), the expansion scalar becomes

Θ = (2 + Ψ)H(Ψ−1). (16)

now use Eq.(16) into field eqyation we get

(1 + λ)ρ− λPr − 2λP⊥ = (2Ψ + 1)H2Ψ−2 +
1
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− 1
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(
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H
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H
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1
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H
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2Ḣ ′H ′

ḢH
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1
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ḢH
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solving these equation we get
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H
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pr = − 1

(2λ+ 1)(4λ+ 1)
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1
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H
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H
+
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Ḣ
+
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HḢ
+
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+ H−2Ψ(−(
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H
+
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Ḣ
+
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HḢ
+
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1
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+ H−2Ψ(−(
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H
+
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+H−2Ψ(

2Ḣ ′H ′

HḢ

+
(1− 2Ψ)(H ′)2
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The mass function now becomes Eq. (15) in Eq. (14)

2m

H
+

ΛH2

3
− 1 = H2Ψ − H

′2

H2Ψ
. (21)

It is clear from the equation above that trapped surfaces exist
for H ′ = H2Ψ. As a result, the trapped surface condition is
H ′ = H2Ψ. Using H ′ = H2Ψ, Eq.(21) now becomes

ΛH3 − 3H + 6m = 0. (22)

For Λ = 0, we clearly have the Schwarzschild horizon, or
H = 2m, whereas for m = 0, we have a de-Sitter horizon, or

H =

(
3
Λ

) 1
2

.

Using the perturbation approach, we will find an
approximate solution of Eq. (22) up to first order in m and
Λ

Hch = (H)0 +m(H)1 + · · · (23)

be a solution that is specified up to order m in Eq. (21). Once
Eq.(21) is imitated in Eq.(22), a comparison of coefficients of
powers of m provides us with:

(H)0 =

(
3

Λ

) 1
2

. (24)

(H)1 = −1. (25)

After entering (H)0 and (H)1 into Eq. (23), we obtain

Hch =

(
3

Λ

) 1
2

−m · · · (26)

The radius of the cosmic horizon is denoted by Hch.
Regarding Λ, we assume that

Hbh = (H)0 + Λ(H)1 + · · · (27)

serve as the reaction to Eq. (21). After replacing Eq. (21) in
Eq. (27), we may compare the coefficients of powers of Λ and
obtain the following conclusion:

(H)0 = 2m. (28)

(H)1 =
1

3
(2m)3. (29)

Now putting (H)0 and (H)1 in Eq.(27), we get

Hbh = 2m+
Λ

3
(2m)3 · · · (30)

where the black hole horizon’s radius is Hbh.We now obtain
Hbh → 2m (Schwarzschild horizon) and Hch → ∞
(Cosmological horizon does not exist) when Λ → 0.

Additionally, for m → 0, Hbh → 0, and Hch →
(

3
Λ

) 1
2

(de-

Sitter horizon) [57]. Given that H ′ = H2Ψ is the criterion for
a trapped surface, gravitational collapse results in either two
trapping surfaces or a single trapped surface.
The trapping condition’s integral suggests:

H1−2Ψ
trap = (1− 2Ψ)r +B(t), (31)

where a function created during the integration is denoted by
B(t). Equations (15) and (31) provide the source variables in
the explicit form shown below.
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ρ =
1

8λ2 + 6λ+ 1
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2
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1−2Ψ ),

Pr =
1

8λ2 + 6λ+ 1
(b− 2Ψr + r)

2
2Ψ−1 ((b− 2Ψr + r)

1
1−2Ψ )−2Ψ(−4Ψ2λ((b− 2Ψr + r)

4Ψ
1−2Ψ − ((b

− 2Ψr + r)
1

1−2Ψ )4Ψ) + 2λ(Λ(b− 2Ψr + r)
2

1−2Ψ × ((b− 2Ψr + r)
1

1−2Ψ )2Ψ − 2((b− 2Ψr + r)
1

1−2Ψ )2Ψ

− 2((b− 2Ψr + r)
1

1−2Ψ )4Ψ + 2(b− 2Ψr + r)
4Ψ

1−2Ψ ) + 2Ψ(3λ+ 1)((b− 2Ψr + r)
4Ψ

1−2Ψ − ((b− 2Ψr

+ r)
1

1−2Ψ )4Ψ) + Λ(b− 2Ψr + r)
2

1−2Ψ ((b− 2Ψr + r)
1

1−2Ψ )2Ψ − ((b− 2Ψr + r)
1

1−2Ψ )2Ψ − ((b− 2Ψr

+ r)
1

1−2Ψ )4Ψ + (b− 2Ψr + r)
4Ψ

1−2Ψ )

P⊥ =
1

4λ+ 1
((b− 2Ψr + r)

1
1−2Ψ )−2Ψ(Ψ2(

2

(b− 2Ψr + r)2
− 2(b− 2Ψr + r)

2
2Ψ−1 ((b− 2Ψr + r)

1
1−2Ψ )4Ψ)

+ Λ((b− 2Ψr + r)
1

1−2Ψ )2Ψ + Ψ(
1

(b− 2Ψr + r)2
− (b− 2Ψr + r)

2
2Ψ−1 ((b− 2Ψr + r)

1
1−2Ψ )4Ψ)) (32)

3. Generating Solutions

We clarify solutions for various values of Ψ. In collapsing solution, Ψ = − 5
2 , and in expanding solution, Ψ = 3

2 .

3.1. Collapse Solution Ψ = −5
2

Since the rate of collapse for a collapsing system must be negative, Ψ must be smaller than -2. Consequently, we maintain that
Ψ = − 5

2 . The trapping requirement H ′ = H2Ψ becomes H ′ = H−5 for Ψ = − 5
2 , which further provides

Htrap = (6r + b(t))
1
6 . (33)

Here an arbitary function of integration is b(t) = b. The pressures and density equations for Ψ = − 5
2 becomes

ρ =
4λ

(8λ2 + 6λ+ 1) 3
√
b+ 6r

+
1

(8λ2 + 6λ+ 1) 3
√
b+ 6r

2λΛ

8λ2 + 6λ+ 1
− Λ

8λ2 + 6λ+ 1

Pr = − 4λ

(8λ2 + 6λ+ 1) 3
√
b+ 6r

− 1

(8λ2 + 6λ+ 1) 3
√
b+ 6r

+
2λΛ

8λ2 + 6λ+ 1
+

Λ

8λ2 + 6λ+ 1

Pt = − 1

(2λ+ 1)(4λ+ 1)
(λ(

1
3
√
b+ 6r

− Λ) + λ(Λ− 1
3
√
b+ 6r

)− 2λΛ− Λ) (34)

The anisotropy become

∆a = 1 +
2λΛ

λ( 1
Z − Λ)− 3λ(Λ− 1

Z ) + 1
Z + 2λΛ− Λ

+
Λ

λ( 1
Z − Λ)− 3λ(Λ− 1

Z ) + 1
Z + 2λΛ− Λ

(35)

where Z = 3
√
b+ 6r and the misner sharp mass we get

m(t, r) =
1

2
6
√
b+ 6r(1− 1

3
Λ

3
√
b+ 6r). (36)
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Figure 1. For varying values of b(t) = 5, the variation of ‘ρ′ with regards to ‘Λ′, ‘r′

and ‘λ′.

Figure 2. For varying values of b(t) = 5, the variation of Pr with regards to ‘Λ′, ‘r′

and ‘λ′.

Figure 3. For varying values of b(t) = 5, the variation of Pt with regards to ‘Λ′, ‘r′

and ‘λ′.

Figure 4. For varying values of b(t) = 5, the variation of ‘∆′a with regards to ‘Λ′, ‘r′

and ‘λ′.

Figure 5. For varying values of b(t) = 5, the variation of Mt,r with regards to ‘Λ′,
‘r′ and ‘λ′.

Figure 6. For varying of λ = 4 and b(t) = 5, the variation of ρ with regards ‘r′ and
‘Λ′
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Figure 7. For varying of Λ = 0.4 and b(t) = 5, the variation of ρ with regards ‘r′ and
‘λ′

Figure 8. For varying of λ = 4 and b(t) = 5, the variation of Pr with regards ‘r′ and
‘Λ′

Figure 9. For varying of Λ = 0.4 and b(t) = 5, the variation of Pr with regards ‘r′

and ‘λ′

Figure 10. For varying of λ = 4 and b(t) = 5, the variation of Pt with regards ‘r′

and ‘Λ′

Figure 11. For varying of Λ = 0.4 and b(t) = 5, the variation of Pt with regards ‘r′

and ‘λ′

Figure 12. For varying of λ = 4 and b(t) = 5, the variation of ∆a with regards ‘r′

and ‘Λ′

Figure 13. For varying of Λ = 0.4 and b(t) = 5, the variation of ∆a with regards ‘r′

and ‘λ′.

Figure 14. For varying of λ = 4 and b(t) = 5, the variation of Mt,r with regards ‘r′

and ‘Λ′.
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This study examines the graphical behavior of various
physical quantities during gravitational collapse, including
energy density ρ, radial PRand tangential Pt pressures,
anisotropy ∆a, and mass functionmr,t. The results show
that ρ decreases with increasing (′Λ′) cosmological constant
(Figure 1), while remaining a positive function of ′r′ and ′λ′.
In contrast, ′P ′r (Figure 2) remains negative regardless of the
values of ′r′, ′λ′, and ′Λ′, but increases rapidly with higher ′Λ′

values. ′P ′t (Figure 3) exhibits similar behavior to ρ, increasing
with higher ′Λ′ values. ∆a (Figure 4) is a positive function
of ′r′, λ, and ′Λ′, increasing rapidly with higher ′Λ′ values.
Finally, themr,t (Figure 5) is a positive function of ′r′ and ′Λ′,
increasing rapidly with higher ′Λ′ values before stabilizing.
Also these quantities shown in 2d with respect to Λ and λ as
shown in the (Figure 6) to (Figure 14).

Unraveling the intricate relationships between density,
pressure, and anisotropy is essential for comprehending the
universe’s evolution. As the universe expands, matter and
energy density decrease, resulting in a diluted cosmos [58, 59].
The emergence of density fluctuations gives rise to structures,
which in turn shape the universe’s large-scale structure. The
cosmos can continue to expand as pressure, a measurement

of a fluid’s resistance to expansion, falls. Pressure gradients
affect the rate of expansion and, depending on the equation
of state, can either accelerate or decelerate the expansion.
Additionally, as the cosmos expands, anisotropy decreases
and the universe becomes more isotropic. An image of
the early universe’s anisotropies is provided by the cosmic
microwave background, which sheds light on the universe’s
beginnings. The observed behaviours point to a substantial
dark energy component that is accelerating the expansion of
the cosmos. Ultimately, understanding the interplay between
pressure and density is crucial for deciphering the universe’s
fate and expansion history

3.2. Expansion with Ψ = 3
2

When the expansion scalar gains positive values, we have an
expanding solution, therefore Eq. (11) implies that if Ψ > −2,
then Θ > 0,. For ease of use, we assume that Ψ = 3

2

H = (r2 + r2
1) + k(t), (37)

where r1 > 0 and k(t) = k are integration functions. Using
E(t, r) = 1 + k(t)(r2 + r2

1) and H = E
(r2+r2

1)
, we can obtain

ρ =
1

E5(2λ+ 1)(4λ+ 1)(r2 + r2
1)

(4E6(λ+ 1)− E5(2λ+ 1)Λ(r2 + r2
1) + E3(4λ+ 1)(r2 + r2

1)3

− 2E(3r2 − r2
1)(r2 + r2

1)2(λ+ 2(5λ+ 1)r2 + 2(5λ+ 1)r2
1) + 8(7λ+ 1)r2(r2 + r2

1)2)

Pr =
1

E5(2λ+ 1)(4λ+ 1)(r2 + r2
1)

(−4E6(λ+ 1) + E5(2λ+ 1)Λ(r2 + r2
1)− E3(4λ+ 1)(r2 + r2

1)3

+ 2Eλ(r2 + r2
1)2(6r4 + r2(4r2

1 + 3)− r2
1(2r2

1 + 1))− 8(7λ+ 1)r2(r2 + r2
1)2)

Pt =
1

4λ+ 1
(
12r2(r2 + r2

1)

E5
+

(3r2 − r2
1)(r2 + r2

1)(λ(4r2 + 4r2
1 − 2)− 1)

E4(2λ+ 1)
− 6E

r2 + r2
1

+ Λ) (38)

Anisotropy in gravitational collapse and expansion can have
a big effect on how the system behaves. Increased density and
pressure gradients, elongated structures, and faster collapse
can result from positive anisotropy, when the pressure or ′ρ′ is
higher in one direction [60]. The implications of anisotropy on
both collapse and expansion have been intensively explored.
The collapse phase may slow down in instances where pressure
or density fluctuates in various directions, culminating in

flattened structures and diminished pressure and density
contrasts. Development on anisotropic cosmos models has
demonstrated that anisotropy may profoundly impact the
cosmic evolution [61–64]. Moreover, anisotropy can influence
the polarization and amplitude of gravitational waves, and it
can also influence the formation of black holes and neutron
stars. Then anisotropic fluid is

∆a = (−6E6(2λ+ 1) + E5(2λ+ 1)ΛG+ E(3r2 − r2
1)×G2(λ(4r2 + 4r2

1 − 2)− 1) + 12(2λ+ 1)r2G2)G

÷ (4E6(λ+ 1)− E5(2λ+ 1)Λ + E3(4λ+ 1)G3G− 2Eλ(3r2 − r2
1)G2(2r2 + 2r2

1 + 1) + 8(7λG

+ 1)r2G2) + 1 (39)

where G = (r2 + r2
1) and the misner sharp mass is

m =
E( E3

(r2−r2
1)3 − 4r2

E3(r2−r2
1)
− E2Λ

3(r2−r2
1)2 + 1)

2(r2 − r2
1)

(40)
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Figure 15. For varying of value of k(t) = 5, the variation of ‘ρ′ with regards to ‘Λ′,
‘r′ and 1λ′.

Figure 16. For varying of value of k(t) = 5, the variation of ‘P ′r with regards to ‘Λ′,
‘r′ and ‘λ′.

Figure 17. For varying of value of k(t) = 5, the variation of ‘P ′t with regards to ‘Λ′,
‘r′ and ‘λ′.

Figure 18. For varying of value of k(t) = 5, the variation of ‘∆′a with regards to ‘Λ′,
‘r′ and ‘λ′.

Figure 19. For varying of value of k(t) = 5, the variation of ‘M ′t,r with regards to ‘Λ′

and ‘r′.

Figure 20. For varying of value of λ = 4 and k(t) = 5, the variation of ρ with regards
to ‘Λ′and ‘r′

Figure 21. For varying of value of Λ = 0.4 and k(t) = 5, the variation of ρ with
regards to λ and ‘r′.
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Figure 22. For varying of value of λ = 4 and k(t) = 5, the variation of Pr with
regards to r and Λ.

Figure 23. For varying of value of Λ = 0.4 and k(t) = 5, the variation of Pr with
regards to r and λ.

Figure 24. For varying of value of λ = 4 and k(t) = 5, the variation of Pt with
regards to r and Λ.

Figure 25. For varying of value of Λ = 0.4 and k(t) = 5, the variation of Pt with
regards to r and λ.

Figure 26. For varying of value of λ = 4 and k(t) = 5, the variation of ∆a with
regards to r and Λ.

Figure 27. For varying of value of Λ = 0.4 and k(t) = 5, the variation of∆a with
regards to r and λ.

Figure 28. For varying of value of λ = 4 and k(t) = 5 the variation of Mt,r with
regards to r and Λ.

The energy density (′ρ′), radial pressure (′P ′r), tangential
pressure (′P ′r), and anisotropy ′∆′a throughout gravitational
expansion are all graphically addressed in the present study.
The results show that ′ρ′ is a positive function of ′r′, ′λ′,
and ′Λ′ (Figure 15), increasing as the ′Λ′ increases. In
contrast, ′P ′r (Figure 16)and ′P ′t pressures (Figure 17) remain
negative regardless of the values of ′r′, ′λ′, and ′Λ′. However,
′P ′r decreases monotonically with increasing ′Λ′, while ′P ′t
pressure increases. The ′∆′a (Figure 18) of the system is found
to be a negative function of ‘r′, ′λ′, and ′Λ′, decreasing as the
′Λ′ increases. Finally, the mr,t mass (Figure 19)is a positive
function of ′r′, lambda, and ′Λ′, increasing as these values
increase. Also we shown these quantities in 2d graph wrt to
λ and Λ in Figure 20 to Figure 28.
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4. Conclusion

Based on the fundamental work of Abbas and Ahmed [65],
this study investigates the gravitational collapse and expansion
of anisotropic fluids within the context of f(R, T ) gravity.
Notably, they did not take into account the existence of a ′Λ′

when studying the collapse and expansion of anisotropic fluids
in the context of f(R, T ) gravity. By including the effects of
the ′Λ′ on the collapse and expansion of anisotropic fluids, the
new study builds on this work. The thermal energy released
during gravitational collapse is examined and a novel solution
for the confined surface of the inner matter distribution is
obtained. This study adds to the current body of knowledge
in f(R, T ) gravity, which has attracted a lot of interest lately
because of its potential to explain intricate astrophysical events
[66–68].

A 4x4 matrix referred as the stress-energy tensor offers
important insights into the momentum flux, pressure, and
energy density of an entire system. The statement ρ +
p = µ, where µ corresponds to energy density, describes
the interaction between pressure (p) as well as density (ρ)
in general relativity. Pressure and density are related by the
equation of state, which is frequently referred to as p = wρ,
where w is the equation of state parameter. Interpreting
the behavior of cosmic objects and the universe’s evolution
depends heavily on this characteristic. Different kinds of
matter and energy are represented by different values of
w. As an illustration, non-relativistic matter, like galaxy
clusters and stars, is indicated by w = 0, although relativistic
stuff, like photons and neutrinos, is characterized by w =
1/3. Stiff matter can be expressed by a value of w =
1, which denotes exceedingly high pressure. On the other
hand, w < −1/3 shows negative pressure, which is linked
to dark energy and propels the universe’s rapid expansion.
Determining the behavior of pressure and density is crucial
in modified gravity models. A fundamentally realistic model
necessitates an expanding universe with positive density and
pressure that decrease over cosmic time.Dark energy-related
negative pressure has the ability to speed up this expansion.
Additionally, we look at the potential for singularities, which
can happen when the pressure-to-density ratio is zero or less
than −1/3. The presence or absence of singularities depends
critically on the pressure to density ratio. [69–80] suggests
that a naked singularity might exist if this ratio is less than
−1/3. Due to favorable attractive effects, the expansion may
be slowed down in some situations when the density and
pressure stay positive.

A thorough examination of ′ρ′, ′P ′r,
′P ′t , mr,t, and ′∆′a with

respect to collapsing and expanding solutions has been carried
out in the framework of f(R, T ) gravity. Although it lowers as
′Λ′ increases, the ′ρ′ (Figure 1) is found to be positively linked
with ′r′, λ, and ′Λ′. In contrast, regardless of the values of ′r′,
λ, and ′Λ′, the ′P ′r (Figure 2) stays negative. Interestingly, as
′Λ′ increases, the ′P ′r falls, and its negative value implies a link
to dark energy. Additionally, the ratio of ′P ′r to ′ρ′ is smaller
than 1/3, suggesting that a naked singularity may exist.On the

other hand, the tangential pressure (Figure 3) increases with
the ′Λ′ and behaves equivalent to ′ρ′. Additionally, ′r′ and ′Λ′

are discovered to have a positive correlation with anisotropy
(Figure 4), which causes a faster collapse in the direction
of positive anisotropy. Lastly, it is discovered that the mass
function (Figure 5) is an exponential function of ′r′ and ′Λ′,
growing quickly with larger ′Λ′ values before stabilizing.

Interesting patterns may be seen when examining the
graphical behavior of ′ρ′, ′P ′r,

′P ′t , mr,t, and ′∆′a during
gravitational expansion. It is shown that ′ρ′ (Figure 15) is
exactly proportional to ′r′, λ, and ′Λ′, with ′ρ′ increasing
noticeably as ′Λ′ increases. The values of ′r′, λ, and ′Λ′, on the
other hand, always stay negative for ′P ′r (Figure 16) and ′P ′t
(Figure 17). While ′P ′t shows an inverse connection, growing
with rising values of the ′Λ′, ′r′, and λ, ′P ′r steadily declines
as the ′Λ′ grows. In addition, the system’s ′∆′a (Figure 18)
shows a negative correlation with ′r′, λ, and ′Λ′, suggesting
that these variables interact intricately during gravitational
expansion. Additionally, we observed that the system’s ′∆′a
drops as the value of Λ increases. Because of the reduced
pressure or ′ρ′, the collapse may proceed more slowly in the
direction of negative ′∆′a. It may be more difficult to detect
and investigate the collapse if the ′∆′a is negative since it can
decrease the emission of gravitational waves.The stability and
eventual fate of the collapsing system, including the creation
of a neutron star or a black hole, can be influenced by ′∆′a. A
positive function of r, λ, and Λ is the misner sharp mass. As
we increase the value of r and Λ and r, as illustrated in Figure
19, the misner sharp mass increases as well. In summary, the
existence of anisotropy in gravitational collapse and expansion
can have a substantial effect on the system’s behavior, affecting
the universe’s evolution, structure building, and gravitational
wave emission.
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