
American Journal of Software Engineering and Applications

2024, Vol. 12, No. 1, pp. 23-35

https://doi.org/10.11648/j.ajsea.20241201.14

*Corresponding author:

Received: 5 February 2024; Accepted: 30 April 2024; Published: 30 May 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Predicting Attack Paths from Application Security

Vulnerabilities Using a Multi-Layer Perceptron

Santanam Kasturi
1, *

, Xiaolong Li
2
, Peng Li

3
, John Pickard

3

1
Department of Technology Management, Indiana State University, Terre Haute, USA

2
Department of Electronics and Computer Engineering, Indiana State University, Terre Haute, USA

3
Department of Technology Systems, East Carolina University, Greenville, USA

Abstract

This paper is in the series of continuing research and proposes an approach to predicting possible attack paths from application

security vulnerability-based attack trees. The attack trees are formed by stringing together weaknesses discovered in an

application code and a group of applications within a domain. The Common Weakness Enumeration (CWE) and Common

Vulnerabilities and Exposures (CVE) linked together as a string of vulnerabilities in the attack trees can be visualized as

pathways for attacks. These pathways become potential attacks that can spread vertically and horizontally leading to a multi-path

attack that can involve multiple software applications. With more data, and huge number of vulnerabilities, it will become

impossible to identify all attack paths unless a full-scale implementation of an autonomous processing mechanism is in place.

Machine Learning (ML) and Deep Learning (DL) techniques have been adopted in the cybersecurity space for decades, however

all the studies have been around networks, endpoints, and device monitoring. This paper focuses on application security and

building on earlier work cited, the use of a vulnerability map that uses attack vectors in a Deep Learning (DL) method

implementing a Multi-Layer Perceptron (MLP) forms the basis for developing a predictive model that relates a set of linked

vulnerabilities to an attack path. The results are encouraging, and this approach will help in identifying successful or failed attack

paths involving multiple applications, isolated or grouped, and will help focus on the right applications and the vulnerabilities

associated as priority for remediation.

Keywords

Attack Surface, Attack Path, Attack Vector, Vulnerability Map, Deep Learning, Artificial Neural Network,

Multi-Layer Perceptron

1. Introduction

There exists an exhaustive amount of work in cybersecurity,

and more importantly application security, of various deep

learning methods to identify patterns and signatures of attacks.

Some relevant literature has been cited for an initial summa-

rization of such methods focusing on multiple problems in

cybersecurity that includes discouraging the notion of treating

an attack as an isolated incident, of detecting malware be-

havior, of resolving performance issues with recurrent neural

http://www.sciencepg.com/journal/ajsea
http://www.sciencepg.com/journal/137/archive/1371201
http://www.sciencepg.com/
https://orcid.org/0009-0002-7978-8138
https://orcid.org/0009-0002-7978-8138
https://orcid.org/0009-0002-7978-8138

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

24

networks used for analytics, of looking at system behavior to

detect anomaly in real time, and many more. The over-

whelming observation is an emphasis on using DL methods

that reliably provide us promising results for evolving an

autonomous solution for attack prediction. Some citations are

discussed starting with a comprehensive survey on deep

learning methods for cybersecurity.

Starting with a survey paper [1], and associated research [1,

4], that discusses different types of cyber applications, attacks

and outcomes using DL methods in detail including detection

and classifications [2]. Malware, botnets, network intrusions,

drive by download attacks, file type detections, verification if

keystrokes were human entry, network traffic identifications,

SPAM identification, insider threat detection, user authenti-

cation, border gateway protocol anomaly detection, false data

injection attack detection [1]. Associating unusual system

behavior due to high consumption of resources shown by way

of a CPU utilization, or unexplained volume, performance

degradation, growing server heap size can all be because of

malware injection. A neural network model for a mechanism

of visual pattern recognition is proposed in the previous study

[3]. The network is self-organized by “learning without a

teacher” and acquires an ability to recognize stimulus patterns

based on the geometrical similarity of their shapes without

being affected by their positions. The Artificial Neural Net-

work (ANN) can be trained to recognize these patterns by way

of an optical character recognition-based algorithm.

The main inadequacy current approaches are that they treat

the different attack types in isolation [1]. The proposed ap-

proach in this research extends the concept of cascading

connection of malicious activities throughout an attack

lifecycle (e.g., breach, exploitation, command and control,

data theft, etc.,) through a vulnerability map that links security

vulnerabilities in multiple software applications as an attack

tree [5-7]. This approach can be used to predict attack paths

using a Multi-Layer Perceptron (MLP) implementation. Two

scenarios are cited to highlight the challenges in identifying a

dormant attack, which unpacks the payload after staying in-

active for some time, botnets, and malware. The best solution

for this is to follow the attack path as defined by vulnerability

linkages, and then predict the most likely path that an attacker

could use to exploit weakness in the application code [6, 7].

Once an initial exploitation has been achieved, the attacker

can then use other vulnerabilities to travel laterally. Depend-

ing upon other vulnerabilities found along the path, the at-

tacker can begin unpacking the payload that can be a mali-

cious code injection / SQL injection or crippling a system by

overwhelming the resources causing a denial of service (DoS).

A Cross-site scripting (XSS) attack is another most commonly

employed attack used by threat actors. Correlation studies

have revealed there exists a pattern for incoming transactions

that are blocked by a WAF as a malicious request with a target

host application that has a vulnerability [5]. If a WAF blocks a

malicious SQLI request and the attack path indicates that the

target is a hosted application that has a SQLI vulnerability, the

attacker would then try another path. This path could be from

another weakness that can be exploited and then travel side-

ways to the same weakness that was protected by a blocked

request by the WAF in the first scenario. That attacker has

succeeded in reaching the target. If there is prior knowledge of

all likely attack paths, then it can be predicted. All predicted

attack paths can be addressed by remediating vulnerabilities,

an approach this research is proposing.

Botnets, malware, and system malfunction due to

cyber-attacks are all behavioral anomalies and are hard to

detect. To detect and identify these anomalies it requires ob-

serving the transaction paths, and there can be hundreds of

attack paths a threat actor can choose, and it will be buried in a

huge volume of vulnerability data. To identify the right attack

paths and follow each one of them is a huge task; secondly

there are difficulties in identifying what is an anomaly. The

reason for the difficulties of these anomalies being detected is

discussed briefly.

1. Botnets are a serious problem, and some of them can be

dormant for many weeks and go unnoticed before they

trigger, after gathering enough data that triggers an ac-

tion when the critical threshold is reached. As explained

above, if an attack pattern can be graphed, then the

behavioral analysis approach aims to look at the com-

mon patterns that Botnets follow across their life cycle.

[8]. This approach can be generalized to detect unseen

Botnet traffic. The authors provide an analysis of the

viability of Recurrent Neural Networks (RNN) to detect

the behavior of network traffic by modeling it as a se-

quence of states that change over time [8]. Detection of

botnets is critical in today‟s world, especially with the

global connectivity, and accessibility of the latest tools

of attack available to a threat actor. An undetected

Botnet, lying dormant and gathering data quietly until

triggered by a global network of neurons, can be cata-

strophic. The paper also provides a means of using RNN

to study the behavior of network traffic to detect unseen

Botnets, rather than trying to probe the behavior of a

Botnet that can be nearly impossible. So, it is an indirect

method of catching the botnet [8].

2. Malware acts in a similar manner to Botnets; it can

camouflage and go undetected. Variants can do the trick

to avoid anti-virus detection. Past approaches for gen-

erating signatures for malware programs were reviewed,

and a novel method based on deep belief networks is

proposed [2]. Instead of targeting malware, the authors

have proposed a deep learning algorithm that detects

behavior of malware rather than the signature or to-

ken-based approaches for detecting the malware [2].

Considering the above cited scenarios involving botnets

and malware, it becomes imperative to identify all exploitable

vulnerabilities and prioritize their remediation immediately.

So, based on earlier cited works, developing an attack tree to

mimic a threat model [5-7, 9, 10], adopting DL methods to

predict an attack [11, 12], and using these predictive analytics

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

25

approaches to ingest threat alerts into a threat intelligence

system [6, 7, 13, 14] are critical for improving the security

posture of the organization. The proposed research work aims

to develop that concept into a tangible approach suitable for

application security. Future research opportunities related to

developing new datasets to motivate work in developing new

DL approaches for cyber security are identified. The need for

approaches to be developed that take the adversary into con-

sideration as to how they may use DL as a tool to subvert DL

detection mechanisms becomes necessary [1].

2. Predicting Attack Path from the

Neural Network Analysis

With more data, and huge number of vulnerabilities, it will

become impossible to identify attack paths that a threat actor

would exploit unless a full-scale implementation of an au-

tonomous processing mechanism is implemented. Machine

Learning (ML) and Deep Learning (DL) techniques have been

adopted in the cybersecurity space for decades, however as

mentioned before all the studies have been in the area of

networks, endpoints, and device monitoring. As far as appli-

cation security is concerned, DL and Artificial Intelligence

(AI) studies are limited to detection and monitoring tech-

niques. This is at the very front end and does not solve what

happens deep down in the code and the hosting environment

where the code interacts with the systems. Pursuant to the

methods described in the previous sections where a data

platform consolidating all application security vulnerabilities

and further to that doing a correlation analysis, a missing

piece in the end analysis is the predictive modeling and

feeding the analysis into a threat intelligence and incident

response system [13].

2.1. Attack Path Architecture

Determining attack paths from attack trees is a gradual step

by step method using a neural network. A multi-layer per-

ceptron is used here to analyze vulnerability data and attack

trees to identify and predict the possible attack paths. The first

step is to identify the attack vectors in an application security

context that allow threat actors to attack an organization for

whatever motive, and it is necessary to identify those [15].

The pathway for a threat actor is to exploit open vulnerabili-

ties that exist in any exposed attack surface. In a web appli-

cation the attack surface is a vast space, and reconnaissance

by a threat actor would reveal a huge number of software

security issues. Now, Cyber-attacks are no longer a random

recon activity or short time attack that exposes lack of controls.

These are now called as Advanced Persistent Threats (APT)

where an attacker enters a system through a weakness that is

easily exploitable, stays dormant till a more possible avenue

or pathway to spread laterally provides an opportunity to

make a severe attack. While literature covers more of end

point attack vectors, the motive and modus operandi of attacks

through attack vectors is common to all cyber-attacks [16].

When dealing with a complex prediction problem requiring

higher level feature extraction, DL networks are used [9]. As

an example, the problem of detecting neurons lying dormant

and embedded in a commonly used business application and

disguising as human users, has strong implications. Neurons

can collect data on user interactions and use that data for

creating a perception that a software is used in a certain way,

rather than following the real user‟s navigation and creating

useless business requirements. DL algorithms can help greatly

in detecting these neurons and identify APT attacks.

The point to focus on is that vulnerabilities that remain

open, even if of lower priority from a remediation standpoint,

are still possible pathways for an attack, equally applicable in

application security as in infrastructure security [15, 16, 1].

Despite an organization‟s best efforts to plug in gaps in con-

trols, there will still be some loose ends that a threat actor can

see as remaining for too long. Many probabilistic methods

exist that model the complexity of an organization and look

for solutions, however in a dynamically changing scenario

where the network and infrastructure keep adding more pieces,

the inter-dependence between the segments of the network

and infrastructure become a complex issue to define through

any model. The most challenging scenario being a compro-

mised employee in the form of an internal threat, third party

and open-source software, and mobile devices that come in

thousands [17]. Moreover, APT attacks are designed to be not

easily detectible, and operate in stealth where an attacker

gains control through initial intrusion, then spread laterally,

discover more weakness as they spread to gain control of a

wider set of resources, and gain full control through privilege

escalation, and finally deploy the payload [18]. In order to

visualize the path that possibly will be taken by an attacker it

requires an attack path and simulation modeling exercises to

predict an attack. Attack trees, threat modeling, and vulnera-

bility visualization maps become essential to understand the

full lay of the land [6, 7, 19, 20].

In their paper the authors reinforce the limitations of Web

Application Firewall (WAF) and Runtime Application Self

Protect (RASP) if they are only dependent on signature,

anomaly, policy, and hybrid rules that have advantages and

disadvantages [14]. Unless the threat intelligence system is

fed with data that projects a possible path to an attack, as

proposed in [6, 7, 13], it will still have the same issues in the

proposed approach of [14]. A simple reason for that is when

dealing with thousands of vulnerabilities that have remained

unremedied for many years, and to determine what is the right

path for a threat actor will be daunting.

The data flow into the MLP is structured in three steps and

is shown in Figure 1. The first step is data collection and

classification of vulnerabilities into independent variables and

covariates. The second step is developing the attack tree based

on threat modeling principles, using CWE-CVE linkages, and

application-to-application CWE-CVE linkages [6, 7]. The

final step is to define the output variable and ingest the dif-

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

26

ferent input variables from the attack tree into the MLP.

Figure 1. An architecture for Attack Path identification incorporating an MLP.

2.1.1. Step 1

In the context of application security, the research proposes

classifying the attack vectors into three categories, and asso-

ciating each vulnerability class to the application where it was

discovered, is the first step, Figure 1:

1. The first attack vector, like XSS, SQLI/Code/Command

Injection, or DoS vulnerability, is linked to the CWE

discovered from detection / testing tools and the asso-

ciated vulnerability, severity, exploitability, and a CWE

score.

2. The second attack vector, like XSS,

SQLI/Code/Command Injection, or DoS vulnerability,

is linked to the CVE discovered from detection / testing

tools and the associated vulnerability.

3. The third attack vector is predominantly an alternate

vulnerability besides what is listed in the first attack

vector. Some CWEs suggest multiple vulnerabilities,

e.g., a CWE could have multiple exploits available to

the threat actor, the attack could exploit a weakness to

do a code injection that can result in a command exe-

cution or a DoS.

2.1.2. Step 2

The attack vectors, the CWE/CVE information, the link-

ages of the CWE and CVE associated with the application,

severity and exploitability of the vulnerabilities associated

with the specific CWEs and CVEs in the application, and

CWE/CVE score are the variables ingested into developing

the attack tree, depending on the security profile of the ap-

plication, Figure 1, [6, 7, 9, 10, 21-27].

1. The attack tree shows a vulnerability topology, and all

the paths that are open to an attacker.

2. Each path uses a CWE-CVE, or a CVE-CVE vulnera-

bility linkages. Applications use multiple open-source

components that could have many associated CVEs and

could have multiple CWEs discovered through a scan or

a test [5].

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

27

3. The vulnerability map provides a horizontal and vertical

distribution of weakness across many applications, a

map that an attacker can build with multiple recon-

naissance of the enterprise‟s exposed attack surface

[28].

2.1.3. Step 3

The variables from Step 1 and Step 2 define the attack path,

Figure 1. The attack paths are then categorized as all paths,

likely paths, and vulnerability specific paths.

1. All attack paths show all the vulnerability linkages from

the UI to deep down into the code. This is the parent tree

or a forest [6, 7].

2. Likely attack paths are the ones that cross a threshold.

The threshold is derived with a combination of factors

that suggest a higher risk potential of an easier path for

an attacker. Vulnerability scores, severity, exploitability

with more than one attack vector in the path.

3. Top Tier Attack paths are a subset of Likely Attack path

category with an additional threshold of having CWEs

in the KEV Top 10 [27].

4. Vulnerability specific attack paths are an even narrower

option for an attacker, but more easily exploitable, as it

directly corresponds to a specific vulnerability as a

single attack vector that is common for a CWE and

CVE. It can be an XSS, SQLI or a DoS weakness that an

application can have at the code and component level,

meaning the CWE and the CVE could be pointing to a

XSS vulnerability [5].

2.2. Keys to Chain Linking CWEs and CVEs

Common Weakness Enumeration (CWE) is a communi-

ty-developed list of common software (and hardware) weak-

ness where a “weakness” is due to a developer introduced

flaw that can be exploited by a threat actor to expose it as a

vulnerability. The 2023 CWE Top 25 Most Dangerous Soft-

ware Weaknesses list points to specific parts of code that are

flawed in design as well as in coding and require immediate

attention. The “On the Cusp” weaknesses beyond the 25 add

up to 40, an additional 15, that in due course could rise to the

top 25. The Cybersecurity and Infrastructure Security Agency

(CISA) published the “Known Exploited Vulnerabilities

(KEV) Catalog in 2021” [27]. These categories of CWEs have

been reported through the Common Vulnerabilities and Ex-

posures (CVE) program and are either monitored to be likely

or have been exploited and it is recommended that the KEV

Top 10 CWEs are continuously monitored for updates along

with CWE Top 25 and on-the-cusp lists [21-27].

Using the information provided in MITRE, CISA, OWASP,

and NVD data, and the rankings and scores given to each

CWE and CVE one can identify what can be a potential

high-risk weakness and vulnerability, and address that as a

priority [21-27]. When dealing with hundreds of applications

having thousands of vulnerabilities chain linking helps in

further focusing on attack paths that a threat actor may choose

to follow a transaction with intersecting vulnerabilities. It is

necessary to identify all attack paths first, and then funnel

down to the most likely attack paths. This will help narrow

down the list of vulnerabilities and vulnerable paths and en-

sure these are addressed immediately. In a vulnerability report,

a vulnerability is assigned a unique CVE and is categorized

into one or many CWEs. Similarly, a CWE could have mul-

tiple CVEs referred to it. Grouping vulnerabilities and chain

linking them helps fix vulnerabilities on priority.

For example, CVE-2021-37701 is mapped to two CWEs 22,

59. CWE 22 is a path traversal weakness capable of code or

command execution from an integrity and availability

standpoint and from a confidentiality standpoint it can be

either a command / code execution or a denial-of-service

weakness. CWE 59 is a link following weakness capable of

bypassing protection mechanism from an access control and

confidentiality standpoint and command / code execution

from an integrity standpoint. As for CVE-2021-37701, it is a

directory traversal vulnerability. A likely path for a threat

actor to bypass protection is to use CWE 22 as an entry and

traverse laterally through CVE-2021-37701 and attack CWE

59. This is called an attack path identified using chain linking

of weaknesses and vulnerabilities. In another use case of an

attack path, CVE-2023-20863 is mapped to two CWEs 400

and 917. CWE400 is an uncontrolled resource consumption

weakness leading to a denial of service or bypass protection

mechanism from an availability standpoint. CWE917 is an

express language injection weakness that can lead to a com-

mand/code injection threat. As for CVE-2023-20863, is again

a denial-of-service vulnerability. So, a likely path could be to

attack CWE400 to bypass protection, and travel laterally

through CVE-2023-20863 causing a denial-of-service attack

and further attack CWE917 to inject malicious code. As-

signing CWEs to CVEs is another laborious task, especially if

there are too many CVEs associated with a CWE. This was

done manually in this research but can be performed using an

automated solution proposed in [29].

CWE22 is in the top 25 most dangerous weaknesses,

CWE400 and CWE59 are in the On-the-cusp list in the top 40.

CWE22 is also in the Top 10 KEV list [21-27]. The next step

is to define dependent, independent, and covariate variables.

2.3. MLP Implementation in This Research and

the Associated Variables

An Artificial Neural Network conceptually resembles the

human brain and is designed structurally to function and mimic a

brain‟s identification process and trains itself to perfect the iden-

tification process to recognize variants. The knowledge it ac-

quires in the training process is stored as synaptic weights and

each neuron passes the pieces of the knowledge to the output and

make the whole identification process complete. The multi-layer

perceptron (MLP) is one of the reliable implementations of

neural networks and has been widely used in medical sciences,

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

28

weather forecasting, pattern recognition, multi-spectral image

processing, experimental physics, and many other fields of sci-

ence, engineering, and technology [11, 30-32].

IBM SPSS Neural Network is used in this work [33]. The

neural network module in Statistical Product and Service

Solutions (SPPS) has two features:

1. MLP

2. Radial Basis Function

The MLP has been used in this research [33]. MLP‟s are a su-

pervised network, and they require an expected output in order to

learn and train. The expected outcome is split into training and test

components, and once the network has trained, it then uses its

training knowledge and applies it to test and predict for the re-

mainder of the cases. MLPs consist of an input layer with neurons

(independent input variables), an output layer with neurons (de-

pendent variables), and one or more hidden layers containing

neurons to help capture the nonlinearity in the data. The discussion

that follows explains the step-by-step approach to include various

parameters to see how the neural network‟s prediction improves or

degrades. Four runs of the model were executed to study how the

data behaved and to analyze the prediction accuracy. Optimal

execution is determined as an intermediate assessment between

when the model underperforms or over performs where the pre-

dictions tend to be less accurate than when the model performs

optimally. There are many types of activation functions that can be

used for the hidden layers, however non-linear activation functions

differentiate the complex relationship that may exist in the varia-

bles. The executions are termed as „runs‟ and are labeled as such.

With each run with the same variables, the model uses the model

parameters and training data to retrain for better prediction. For

this implementation, Run 1 - Run 3 the hidden layer function that

was used is the Hyperbolic Tangent function, while Run 4 was

executed using the Sigmoid activation function for the hidden

layer. While both activation functions produced similar results, the

Hyperbolic Tangent function is recommended as better perform-

ing and for faster convergence of the learning algorithm in an

MLP [31, 32].

2.3.1. Variables and Runs

Section 2.1, 2.2, and 2.3 provided all the needed infor-

mation to define the variables to set up the MLP and do the

model “runs.” Here is a summary of the variables that will be

used in the runs in this research.

1. Dependent Variables: All Attack Paths, Likely Attack

Paths, and Top Tier Attack paths (for this research not

included in scope is predicting Vuln Specific Attack

Paths)

2. Covariates: CWE and CVE severity scores

3. Independent Variables: CWE and CVE scores, CWE

and CVE exploitability scores, attack vector 1, attack

vector 2, and attack vector 3 (based on vulnerability and

weakness classification, defined in section 2.1.1 Step 1.

The details of the individual „runs‟ along with the MLP

results are given in the following sections.

2.3.2. Run-1

Run 1: With the hidden layer activation function chosen as

a Hyperbolic Tangent, dependent variables are the All Attack

Paths, Likely Attack Paths, and Top Tier Paths; covariates are

Vulnerability Severities (of CWE and CVE). The independent

variables are Exploitability (known from CWE and CVE),

CWE and CVE scores, KEV Top 10, and Attack Vector 1 and

Attack Vector 2 (as explained in section 2.1.1 step 1).

2.3.3. Run-2

Run 2: With the hidden layer activation function chosen as a

Hyperbolic Tangent, dependent variables are the All Attack Paths,

Likely Attack Paths; and Top Tier Paths, covariates are Vulnera-

bility Severities (of CWE and CVE). The independent variables

are Exploitability (known from CWE and CVE), CWE and CVE

scores, KEV Top 10 and Attack Vector 1, Attack Vector 2, and

Attack Vector 3 (as explained in section 2.1.1 step 1).

2.3.4. Run-3

Run 3: Is a re-run of Run 2 executions with the hidden layer

activation function chosen as a Hyperbolic Tangent, where

dependent variables are the All Attack Paths, Likely Attack

Paths; and Top Tier Paths covariates are Vulnerability Sever-

ities (of CWE and CVE). The independent variables are Ex-

ploitability (known from CWE and CVE), CWE and CVE

scores, KEV Top 10 and Attack Vector 1, Attack Vector 2, and

Attack Vector 3 (as explained in section 2.1.1 step 1).

2.3.5. Run-4

Run 4: Is a re-run of Run 3 executions with the hidden layer

activation function chosen as a Sigmoid, where dependent

variables are the All Attack Paths, Likely Attack Paths; and

Top Tier Paths, covariates are Vulnerability Severities (of

CWE and CVE). The independent variables are Exploitability

(known from CWE and CVE), CWE and CVE scores, and

Attack Vector 1, Attack Vector 2, and Attack Vector 3 (as

explained in section 2.1.1 step 1).

3. Summary of Results of the MLP

Implementation

The objective of using an MLP is to predict the attack paths.

When the CWE-CVE relationship is clearly established it is

easy to create an attack path by linking the vulnerabilities. The

vulnerabilities defined in CVE are mapped to a CWE that de-

scribes a weakness in the code that is sometimes not very intu-

itive and needs to be tracked with Common Attack Pattern

Enumeration and Classification (CAPEC) that stores attack

patterns. These attack patterns provide details of how an attack

can take shape through the CWE weakness. CAPEC attack

patterns are descriptions of common attributes and approaches

employed by adversaries to exploit known weaknesses. The

challenge however is that the CVE vulnerability can be linked

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

29

to the attack pattern only through a CWE for extracting CAPEC

attack patterns. This was done manually, however an approach

to link the two repositories is proposed by tracing CVE vul-

nerability information to CAPEC attack patterns using lan-

guage processing techniques [12]. In the current research this

was done manually to establish the linkages.

The details of the individual „runs‟ are given in the fol-

lowing section.

1. For all runs, the model adjusted to just one middle layer,

and depending upon the number of independent variables

the number of nodes were also automatically determined.

This is in view of the data size. The sample included

vulnerability data for only seven applications. With more

applications and a larger volume of data, the MLP would

require more hidden layers, with more nodes.

2. Run 2 (Table 1, Table 2, and Table 3) and Run 3 have

the same variables and network structure. Run 2 had

74.5 % training and 25.5 % testing samples, Table 1.

Run 3 showed confidence in the model by using less

data samples for training compared to Run 2, Table 4,

and this is due to the fact Run 3 was executed with same

structure and variables after Run 2. Run 3 had 70%

training and 30 % testing samples and yet performed

better. This shows the model had trained well from Run

2 and had more confidence in the training with less

samples in Run 3. The overall percentage correct for

training in Run 2 was 100% and for testing was 95.7%,

Table 3. The overall percentage correct for training in

Run 3 was 99.3% and testing was 99.7%, Table 5. The

model adjusted on the variables of importance based on

the training from Run 2, Table 6, Figure 2 represent data

for Run 2; Table 7 and Figure 3 represent Run 3.

Table 1. Run 2 Case Processing Summary.

 N Percent

Sample
Training 120 75.5%

Testing 39 24.5%

Valid 159 100.0%

Excluded 145

Total 304

Table 2. Run 2 Network Information.

Input Layer

Factors

1 Attack Vector 1

2 Attack Vector 2

3 Attack Vector 3

4 CWE Scores

5 CVE Scores

6 CWE Exploitability Score

7 CVE Exploitability Score

Covariates
1 CWE Severity

2 CVE Severity

Number of Unitsa 86

Rescaling Method for Covariates Standardized

Hidden Layer(s)

Number of Hidden Layers 1

Number of Units in Hidden Layer 1a 3

Activation Function Hyperbolic tangent

Output Layer

Dependent Variables

1 All Attack Paths

2 Likely Attack Paths

3 Top Tier Paths

Number of Units 6

Activation Function Softmax

Error Function Cross-entropy

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

30

Table 3. Run 2 Overall Percent Correct.

Sample Overall Percent Correct

Training 100.00%

Testing 95.70%

Table 4. Run 3 Case Processing Summary.

N Percent

Sample Training 112 70.00%

Testing 48 30.00%

Valid

160 100.00%

Excluded

144

Total

304

Table 5. Run 3 Overall Percent Correct.

Sample Overall Percent Correct

Training 99.70%

Testing 99.30%

Table 6. Run 2 Independent Variable Importance.

Importance Normalized Importance

Attack Vector 1 0.136 76.20%

Attack Vector 2 0.084 47.00%

Attack Vector 3 0.065 36.60%

CWE Scores 0.171 95.30%

CVE Scores 0.133 74.60%

CWE Exploitability Score 0.055 30.80%

CVE Exploitability Score 0.179 100.00%

CWE Severity 0.031 17.20%

CVE Severity 0.145 81.30%

Table 7. Run 3 Independent Variable Importance.

Importance Normalized Importance

Attack Vector 1 0.146 77.90%

Attack Vector 2 0.077 41.10%

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

31

Importance Normalized Importance

Attack Vector 3 0.104 55.30%

CWE Scores 0.188 100.00%

CVE Scores 0.146 77.60%

CWE Exploitability Score 0.115 61.00%

CVE Exploitability Score 0.112 59.70%

CWE Severity 0.017 9.30%

CVE Severity 0.094 50.20%

Figure 2. Run 2 Normalized Importance.

Figure 3. Run 3 Normalized Importance of Independent Variables.

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

32

Run 4 was also executed by applying the activation func-

tion for the hidden layer as Sigmoid to study the perfor-

mance. Although no perceivable difference is seen, it is

recommended to use the Hyperbolic Tangent function [31,

32]. Compared to Run 3, it is seen the training sample per-

centage increased to 71.3% and the testing sample percent-

age dropped to 28.7, Table 8. The model is trying to adapt to

the new function by increasing the training samples. The

overall percentage correct is 100 % for training and 97% for

testing, Table 9, compared to Run 3 which had 99.7 % for

training and 99.3 % for testing. The top 5 influencing in-

dependent variables for Run 3 are CWE Scores, Attack

Vector 1, CVE Scores, CWE Exploitability, and CVE Ex-

ploitability as shown in Figure 3. For Run 4 the top 5 in-

fluencing independent variables are CWE Scores, CVE

Exploitability Scores, CVE Severity, Attack Vector 1, and

Attack Vector 2 as seen in Figure 4. The key output is the

Receiver Operating Characteristics (ROC) and Area Under

the Curve (AUC). The ROC for Likely Paths and Top Tier

Paths for Hyperbolic Tangent function and the Sigmoid

function for Run 3 and Run 4 showed perfect prediction. The

ROC and AUC for the All Attack Paths for both functions

showed a slight difference, but nothing significant. For Run

3 the ROC using Hyperbolic Tangent functions for All At-

tack Paths is shown in Figure 5 and the AUC in Table 11. For

Run 4 using the Sigmoid function the All Attack Paths is

shown in Figure 6 and the AUC in Table 12. The perfor-

mance is comparable, and the prediction is excellent. This

method can be implemented in larger efforts with more

applications.

Table 8. Run 4 Case Processing Summary.

N Percent

Sample Training 114 71.30%

Testing 46 28.70%

Valid

160 100.00%

Excluded

144

Total

304

Table 9. Run 4 Overall Percent Correct.

Sample Overall Percent Correct

Training 100.00%

Testing 97.10%

Table 10. Run 4 Independent Variable Importance.

Importance
Normalized

Importance

Attack Vector 1 0.107 50.40%

Attack Vector 2 0.106 50.20%

Attack Vector 3 0.064 30.00%

CWE Scores 0.212 100.00%

CVE Scores 0.099 46.70%

CWE Exploitability Score 0.075 35.30%

CVE Exploitability Score 0.166 78.40%

CWE Severity 0.011 5.20%

CVE Severity 0.161 76.20%

Figure 4. Run 4 Normalized Importance of Independent Variables.

Figure 5. Run 3 ROC for All Attack Paths.

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

33

Figure 6. Run 4 ROC for All Attack Paths.

Table 11. Run 3 Area Under the Curve for All Attack Paths.

Area

All Attack Paths Failed 1.000

Successful 1.000

Likely Attack Paths Failed 1.000

Successful 1.000

Top Tier Paths Failed 1.000

Successful 1.000

Table 12. Run 4 Area Under the Curve for All Attack Paths.

Area

All Attack Paths Failed 0.999

Successful 0.999

Likely Attack Paths Failed 1.000

Successful 1.000

Top Tier Paths Failed 1.000

Successful 1.000

Overall, the MLP with available data has predicted the at-

tack path very accurately. The objective of identifying the

attack paths that a threat actor could use to penetrate is

demonstrated through this research. The next step is to predict

an attack and integrate this solution into a threat intelligence

system to set up alerts for security operations teams to act. The

study of correlation between an incoming WAF monitored

requests with existing vulnerabilities as proposed in [5] can

now be further explored by following the attack paths identi-

fied and looking at the transaction behavior [34]. The need for

end point behavior study and correlation of host behavior with

application vulnerabilities through a specific attack path be-

comes essential and can be achieved as an extension of the

current research. Another key to achieving this end-to-end

integration is to consolidate all application security vulnera-

bilities information obtained through monitoring, scans, and

tests [35]. This will help in easier handling of data for corre-

lation, ML, and enabling autonomous processing of all in-

termediate segments to chain link the vulnerabilities [5-7, 12,

29, 35].

4. Conclusions

The paper provides a solution to develop a predictive sys-

tem from attack trees using Deep Learning techniques. By

employing an Artificial Neural Network like the MLP the

proposed approach has shown how to predict existing and

potential attack paths in real time.

The benefits of an attack tree are that it gives the security

specialists a topology of vulnerability distribution that is

otherwise buried and lost in silos, in an ever-growing security

technical debt. Taking the next step forward is to use this

topology of vulnerability to identify attack paths. With hun-

dreds of applications and thousands of vulnerabilities it is

impossible to process the information and plan for a call for

action. An autonomous deep learning technique needs to be

adopted to pin-point and focus on specific attack paths that are

available to a threat actor. In the proposed approach using an

MLP implementation results provide confidence in predicting

exploitable attack paths that can help in simulation exercises

to determine if the vulnerable attack paths do indeed suggest

the likely route an attacker might choose. These likely and top

priority attack paths then become the focus of security opera-

tions to ingest the exploitability factor into a threat intelli-

gence system.

Future efforts should focus along the lines proposed by this

research and findings.

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

APT Advanced Persistent Threat

AUC Area Under the Curve

CAPEC Common Attack Pattern Enumeration and

Classification

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DOS Denial of Service

DL Deep Learning

DNN Deep Neural Network

KEV Known Exploited Vulnerabilities

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

34

ML Machine Learning

MLP Multi-Layer Perceptron

OSS Open-Source Software

OWASP Open Worldwide Application Security Project

RASP Runtime Application Self Protect

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristic

SPSS Statistical Product and Service Solutions

SQLI SQL Injection

XSS Cross-Site Scripting

WAF Web Application Firewall

Acknowledgments

This research has been supported and guided by Dr. Xiao-

long Li of Indiana State University, USA, and Dr. John Pick-

ard and Dr. Peng Li of East Carolina University, USA.

Conflicts of Interest

The authors declare no conflicts of interests.

References

[1] Berman, D. S., Buczak, A. L., Chavis, J. S., and Corbett, C. L.

(2019), “A Survey of Deep Learning Methods for Cyber Se-

curity”, Information 2019, 10(4), 122; Machine Learning for

Cyber-Security, Available from:

https://doi.org/10.3390/info10040122

[2] David, O. E. and Netanyahu, N. S. (2015) "DeepSign: Deep

learning for automatic malware signature generation and clas-

sification”, in 2015 International Joint Conference on Neural

Networks, IJCNN 2015, Article 7280815 (Proceedings of the

International Joint Conference on Neural Networks; Vol.

2015-September). Institute of Electrical and Electronics En-

gineers Inc., Available from:

https://doi.org/10.1109/IJCNN.2015.7280815

[3] Fukushima, K. (1980). “Neocognitron: A Self-organizing

Neural Network Model for a Mechanism of Pattern Recogni-

tion Unaffected by Shift in Position”, Biol Cybernetics 36,

193-302 (1980).

[4] Pascanu, R., Mikolov, T. and Bengio, Y. (2013). “On the

difficulty of training recurrent neural networks”, In Proceed-

ings of the 30th International Conference on Machine Learn-

ing, 28(3): 1310-1318, Available from

https://proceedings.mlr.press/v28/pascanu13.html

[5] Kasturi, S., Li, X., Pickard, J., and Li, P. (2023) “Under-

standing Statistical Correlation of Application Security

Vulnerability Data from Detection and Monitoring Tools”,

2023 33rd International Telecommunication Networks and

Applications Conference, Melbourne, Australia, 2023, pp.

289-296,

https://doi.org/10.1109/ITNAC59571.2023.10368476

[6] Kasturi, S., Li, X., Li, P., Pickard, J. (2024). “A Proposed

Approach to Integrate Application Security Vulnerability Data

with Incidence Response Systems”, American Journal of

Networks and Communications, 13(1), 19-29.

https://doi.org/10.11648/j.ajnc.20241301.12

[7] Kasturi, S., Li, X., Pickard, J., Li, P. (2024). “Prioritization of

Application Security Vulnerability Remediation Using Metrics,

Correlation Analysis, and Threat Model”, American Journal of

Software Engineering and Applications, 12(1), 5-13.

https://doi.org/10.11648/j.ajsea.20241201.12

[8] Torres, P.; Catania, C.; Garcia, S.; Garino, C. G. (2016). “An

Analysis of Recurrent Neural Networks for Botnet Detection

Behavior”, In Proceedings of the 2016 IEEE Biennial Con-

gress of Argentina (ARGENCON), Buenos Aires, Argentina,

15–17 June 2016; pp. 1–6,

https://doi.org/10.1109/ARGENCON.2016.7585247

[9] Hajrić, A., Smaka, T., Baraković, S., and Husić, J. B. (2020)

“Methods, Methodologies, and Tools for Threat Modeling with

Case Study”, Telfor Journal, Vol. 12, No. 1, 2020.

[10] Xiong, W., Legrand, E., Aberg, O., and Lagerstrom, R. (2022).

“Cyber security threat modeling based on the MITRE Enter-

prise ATT&CK Matrix”, Software and Systems Modeling

(2022) 21: 157–177

https://doi.org/10.1007/s10270-021-00898-7

[11] SÜT, N., and ÇELİK, Y. (2012). "Prediction of mortality in

stroke patients using multilayer perceptron neural networks”,

In Turkish Journal of Medical Sciences: Vol. 42: No. 5, Article

20. https://doi.org/10.3906/sag-1105-20

[12] Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo,

T., Kato, T., Kanuka, H., Hazeyama, A., Yoshioka, N. (2021).

"Tracing CVE Vulnerability Information to CAPEC Attack

Patterns Using Natural Language Processing Techniques",

Information 2021, 12, 298.

https://doi.org/10.3390/info12080298

[13] Reversing Labs. (2023). “How to Evaluate Threat Intelligence

Feeds, eBook-How-to-Evaluate-Threat-Intelligence-Feeds”,

Reversing Labs, Available from:

https://www.reversinglabs.com/resources/how-to-evaluate-thr

eat-intelligence-feeds

[14] Sevri, M., & Karacan, H. (2022). "Two Stage Deep Learning

Based Stacked Ensemble Model for Web Application Securi-

ty," In KSII Transactions on Internet and Information Systems,

vol. 16, no. 2, pp. 632-657, 2022,

http://doi.org/10.3837/tiis.2022.02.014

[15] Suskailo, V., Opirskyy, I., and Vasilylyshyn, S. (2020).

"Analysis of the attack vectors used by threat actors during the

pandemic," 2020 IEEE 15th International Conference on

Computer Sciences and Information Technologies (CSIT),

Zbarazh, Ukraine, 2020, pp. 261-264,

https://doi.org/10.1109/CSIT49958.2020.9321897

[16] Karantzas, G., and Patsakis, C. (2021). “An Empirical As-

sessment of Endpoint Detection and Response Systems against

Advanced Persistent ThreatsWidely Used Attack Vectors”, J.

Cybersecur. Priv. 2021, 1, 387–421.

https://doi.org/10.3390/jcp1030021

http://www.sciencepg.com/journal/ajsea

American Journal of Software Engineering and Applications http://www.sciencepg.com/journal/ajsea

35

[17] Tiwari, V. K., and Dwivedi, R. (2016). "Analysis of cyber

attack vectors," 2016 International Conference on Computing,

Communication and Automation (ICCCA), Greater Noida, In-

dia, 2016, pp. 600-604

https://doi.org/10.1109/CCAA.2016.7813791

[18] Mern, J., Hatch, K., Silva, R., Hickert, C., Sookoor, T., and

Kochenderfer, M. J. (2022) "Autonomous Attack Mitigation

for Industrial Control Systems," In 2022 52nd Annual

IEEE/IFIP International Conference on Dependable Systems

and Networks Workshops (DSN-W), Baltimore, MD, USA,

2022, pp. 28-36, Available from:

https://doi.org/10.1109/DSN-W54100.2022.00015

[19] Kalogeraki, E.-M., Papastergiou, S., and Panayiotopoulos, T.

(2022). “An Attack Simulation and Evidence Chains Genera-

tion Model for Critical Information Infrastructures”. Elec-

tronics 2022, 11, 404.

https://doi.org/10.3390/electronics11030404

[20] Lohmann, P., Albuquerque, C., and Machado, R. C. S. (2023).

“Systematic Literature Review of Threat Modeling Concepts”,

In Researchgate Conference Paper, March 2023

https://doi.org/10.5220/0000168400003405

[21] MITRE. (2023). “CWE Top 25 Most Dangerous Software

Weaknesses”, MITRE, CWE - 2023 CWE Top 25 Most Dan-

gerous Software Weaknesses mitre.org

[22] MITRE. (2023). “2023 On the Cusp”-Other Dangerous Soft-

ware Weaknesses”, MITRE,

https://cwe.mitre.org/top25/archive/2023/2023_onthecusp_list

.html#top25list

[23] OWASP (2021). “OWASP Top 10. OWASP”,

https://owasp.org/Top10/

[24] MITRE. (2018) “Common Vulnerabilities and Exposures

(CVE) Numbering Authority (CNA) Rules”, MITRE,

https://cve.mitre.org/cve/cna/CNA_Rules_v2.0.pdf

[25] Mell, P., Scarfone, K., and Romanosky, S. (2007). "A Complete

Guide to the Common Vulnerability Scoring System Version

2.0", National Institute of Standards and Technology (NIST)

and Carnegie Mellon University,

https://www.first.org/cvss/v2/cvss-v2-guide.pdf

[26] First. (2019). "Common Vulnerability Scoring System version

3.1Specification Document Revision 1", by FIRST. Org, Inc.,

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf

[27] CISA. (2021). “Reducing the Significant Risk of Known Ex-

ploited Vulnerabilities”, Cybersecurity and Infrastructure Se-

curity Agency (CISA),

https://www.cisa.gov/known-exploited-vulnerabilities

[28] Miller, L. (2023). “Attack Surface Management For Dummies”,

Palo Alto Networks Special Edition, 2023 by John Wiley &

Sons, Inc., Hoboken, New Jersey.

[29] Liu, P., Ye, W., Duan, H., Li, X., Zhang, S., Yao, C., and Li, Y.

(2023).” Graph neural network based approach to automati-

cally assigning common weakness enumeration identifiers for

vulnerabilities”, In Cybersecurity 6, 29(2023).

https://doi.org/10.1186/s42400-023-00160-1

[30] Popescu, M-C., Balas, V., & Perescu-Popescu, L., and Masto-

rakis, N. (2009). “Multilayer perceptron and neural networks”,

In WSEAS Transactions on Circuits and Systems, Vol 8, Issue 7,

pp. 579-588, Available from:

https://www.researchgate.net/publication/228340819_Multila

yer_perceptron_and_neural_networks

[31] Özkan, C., and Erbek, D.S. (2003) "The Comparison of Acti-

vation Functions for Multispectral Landsat TM Image Classi-

fication", American Society for Photogrammetry and Remote

Sensing (ASPRS),

https://www.asprs.org/wp-content/uploads/pers/2003journal/n

ovember/2003_nov_1225-1234.pdf

[32] Karrach, L., and Pivarčiová, E. (2023). “Using Different Types

of Artificial Neural Networks to Classify 2D Matrix Codes and

Their Rotations - A Comparative Study”, J. Imaging 2023, 9,

188. https://doi.org/10.3390/jimaging9090188

[33] IBM. (2021). “IBM SPSS Statistics”, IBM Corporation North

Castle Drive, MD-NC119 Armonk, NY 10504-1785 US,

Available from:

https://www.ibm.com/docs/en/SSLVMB_29.0.0/pdf/IBM_SP

SS_Neural_Network.pdf

[34] Vartouni, A. M., Teshnehlab, M., and Kashi, S. S. (2019).

“Leveraging deep neural networks for anomaly-based web

application firewall”, IET Information Security,

https://doi.org/10.1049/iet-ifs.2018.5404

[35] Kasturi, S., Li, X., Li, P., and Pickard, J. (2024). "On the Ben-

efits of Vulnerability Data Consolidation in Application Secu-

rity", Vol. 19 No. 1(2024): In Proceedings of The 19th Inter-

national Conference on Cyber Warfare and Security, pp.

455-462, https://doi.org/10.34190/iccws.19.1.2086

Biography

Dr. Xiaolong Li is a professor in the Department of Electronics and

Computer Engineering Technology at Indiana State University. He

received his PhD in Computer Engineering from the University of

Cincinnati in 2006. His primary areas of research include modeling

and performance analysis of MAC protocol, Internet of Things,

Wireless Ad Hoc networks, and sensor networks.

Dr. John Pickard is a professor of Information and Cybersecurity

Technology at East Carolina University, North Carolina, USA. He

received his PhD in Technology Management from Indiana State

University in 2014. His main research areas are internet protocols,

convergence of information and operations technologies, and Inter-

net of Things applications.

Dr. Peng Li received his Ph. D. in Electrical Engineering from the

University of Connecticut. His professional certifications include

CISSP, RHCE and VCP. Dr. Li is currently an Associate Professor at

East Carolina University. He teaches undergraduate and graduate

courses in programming, computer networks, information security,

web services and virtualization technologies. His research interests

include virtualization, cloud computing, cybersecurity, and integra-

tion of information technology in education.

http://www.sciencepg.com/journal/ajsea
https://doi.org/10.1049/iet-ifs.2018.5404
https://doi.org/10.34190/iccws.19.1.2086

