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Abstract 

This paper is in the series of continuing research and proposes an approach to predicting possible attack paths from application 

security vulnerability-based attack trees. The attack trees are formed by stringing together weaknesses discovered in an 

application code and a group of applications within a domain. The Common Weakness Enumeration (CWE) and Common 

Vulnerabilities and Exposures (CVE) linked together as a string of vulnerabilities in the attack trees can be visualized as 

pathways for attacks. These pathways become potential attacks that can spread vertically and horizontally leading to a multi-path 

attack that can involve multiple software applications. With more data, and huge number of vulnerabilities, it will become 

impossible to identify all attack paths unless a full-scale implementation of an autonomous processing mechanism is in place. 

Machine Learning (ML) and Deep Learning (DL) techniques have been adopted in the cybersecurity space for decades, however 

all the studies have been around networks, endpoints, and device monitoring. This paper focuses on application security and 

building on earlier work cited, the use of a vulnerability map that uses attack vectors in a Deep Learning (DL) method 

implementing a Multi-Layer Perceptron (MLP) forms the basis for developing a predictive model that relates a set of linked 

vulnerabilities to an attack path. The results are encouraging, and this approach will help in identifying successful or failed attack 

paths involving multiple applications, isolated or grouped, and will help focus on the right applications and the vulnerabilities 

associated as priority for remediation. 
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1. Introduction 

There exists an exhaustive amount of work in cybersecurity, 

and more importantly application security, of various deep 

learning methods to identify patterns and signatures of attacks. 

Some relevant literature has been cited for an initial summa-

rization of such methods focusing on multiple problems in 

cybersecurity that includes discouraging the notion of treating 

an attack as an isolated incident, of detecting malware be-

havior, of resolving performance issues with recurrent neural 
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networks used for analytics, of looking at system behavior to 

detect anomaly in real time, and many more. The over-

whelming observation is an emphasis on using DL methods 

that reliably provide us promising results for evolving an 

autonomous solution for attack prediction. Some citations are 

discussed starting with a comprehensive survey on deep 

learning methods for cybersecurity. 

Starting with a survey paper [1], and associated research [1, 

4], that discusses different types of cyber applications, attacks 

and outcomes using DL methods in detail including detection 

and classifications [2]. Malware, botnets, network intrusions, 

drive by download attacks, file type detections, verification if 

keystrokes were human entry, network traffic identifications, 

SPAM identification, insider threat detection, user authenti-

cation, border gateway protocol anomaly detection, false data 

injection attack detection [1]. Associating unusual system 

behavior due to high consumption of resources shown by way 

of a CPU utilization, or unexplained volume, performance 

degradation, growing server heap size can all be because of 

malware injection. A neural network model for a mechanism 

of visual pattern recognition is proposed in the previous study 

[3]. The network is self-organized by “learning without a 

teacher” and acquires an ability to recognize stimulus patterns 

based on the geometrical similarity of their shapes without 

being affected by their positions. The Artificial Neural Net-

work (ANN) can be trained to recognize these patterns by way 

of an optical character recognition-based algorithm. 

The main inadequacy current approaches are that they treat 

the different attack types in isolation [1]. The proposed ap-

proach in this research extends the concept of cascading 

connection of malicious activities throughout an attack 

lifecycle (e.g., breach, exploitation, command and control, 

data theft, etc.,) through a vulnerability map that links security 

vulnerabilities in multiple software applications as an attack 

tree [5-7]. This approach can be used to predict attack paths 

using a Multi-Layer Perceptron (MLP) implementation. Two 

scenarios are cited to highlight the challenges in identifying a 

dormant attack, which unpacks the payload after staying in-

active for some time, botnets, and malware. The best solution 

for this is to follow the attack path as defined by vulnerability 

linkages, and then predict the most likely path that an attacker 

could use to exploit weakness in the application code [6, 7]. 

Once an initial exploitation has been achieved, the attacker 

can then use other vulnerabilities to travel laterally. Depend-

ing upon other vulnerabilities found along the path, the at-

tacker can begin unpacking the payload that can be a mali-

cious code injection / SQL injection or crippling a system by 

overwhelming the resources causing a denial of service (DoS). 

A Cross-site scripting (XSS) attack is another most commonly 

employed attack used by threat actors. Correlation studies 

have revealed there exists a pattern for incoming transactions 

that are blocked by a WAF as a malicious request with a target 

host application that has a vulnerability [5]. If a WAF blocks a 

malicious SQLI request and the attack path indicates that the 

target is a hosted application that has a SQLI vulnerability, the 

attacker would then try another path. This path could be from 

another weakness that can be exploited and then travel side-

ways to the same weakness that was protected by a blocked 

request by the WAF in the first scenario. That attacker has 

succeeded in reaching the target. If there is prior knowledge of 

all likely attack paths, then it can be predicted. All predicted 

attack paths can be addressed by remediating vulnerabilities, 

an approach this research is proposing. 

Botnets, malware, and system malfunction due to 

cyber-attacks are all behavioral anomalies and are hard to 

detect. To detect and identify these anomalies it requires ob-

serving the transaction paths, and there can be hundreds of 

attack paths a threat actor can choose, and it will be buried in a 

huge volume of vulnerability data. To identify the right attack 

paths and follow each one of them is a huge task; secondly 

there are difficulties in identifying what is an anomaly. The 

reason for the difficulties of these anomalies being detected is 

discussed briefly. 

1. Botnets are a serious problem, and some of them can be 

dormant for many weeks and go unnoticed before they 

trigger, after gathering enough data that triggers an ac-

tion when the critical threshold is reached. As explained 

above, if an attack pattern can be graphed, then the 

behavioral analysis approach aims to look at the com-

mon patterns that Botnets follow across their life cycle. 

[8]. This approach can be generalized to detect unseen 

Botnet traffic. The authors provide an analysis of the 

viability of Recurrent Neural Networks (RNN) to detect 

the behavior of network traffic by modeling it as a se-

quence of states that change over time [8]. Detection of 

botnets is critical in today‟s world, especially with the 

global connectivity, and accessibility of the latest tools 

of attack available to a threat actor. An undetected 

Botnet, lying dormant and gathering data quietly until 

triggered by a global network of neurons, can be cata-

strophic. The paper also provides a means of using RNN 

to study the behavior of network traffic to detect unseen 

Botnets, rather than trying to probe the behavior of a 

Botnet that can be nearly impossible. So, it is an indirect 

method of catching the botnet [8]. 

2. Malware acts in a similar manner to Botnets; it can 

camouflage and go undetected. Variants can do the trick 

to avoid anti-virus detection. Past approaches for gen-

erating signatures for malware programs were reviewed, 

and a novel method based on deep belief networks is 

proposed [2]. Instead of targeting malware, the authors 

have proposed a deep learning algorithm that detects 

behavior of malware rather than the signature or to-

ken-based approaches for detecting the malware [2]. 

Considering the above cited scenarios involving botnets 

and malware, it becomes imperative to identify all exploitable 

vulnerabilities and prioritize their remediation immediately. 

So, based on earlier cited works, developing an attack tree to 

mimic a threat model [5-7, 9, 10], adopting DL methods to 

predict an attack [11, 12], and using these predictive analytics 
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approaches to ingest threat alerts into a threat intelligence 

system [6, 7, 13, 14] are critical for improving the security 

posture of the organization. The proposed research work aims 

to develop that concept into a tangible approach suitable for 

application security. Future research opportunities related to 

developing new datasets to motivate work in developing new 

DL approaches for cyber security are identified. The need for 

approaches to be developed that take the adversary into con-

sideration as to how they may use DL as a tool to subvert DL 

detection mechanisms becomes necessary [1]. 

2. Predicting Attack Path from the 

Neural Network Analysis 

With more data, and huge number of vulnerabilities, it will 

become impossible to identify attack paths that a threat actor 

would exploit unless a full-scale implementation of an au-

tonomous processing mechanism is implemented. Machine 

Learning (ML) and Deep Learning (DL) techniques have been 

adopted in the cybersecurity space for decades, however as 

mentioned before all the studies have been in the area of 

networks, endpoints, and device monitoring. As far as appli-

cation security is concerned, DL and Artificial Intelligence 

(AI) studies are limited to detection and monitoring tech-

niques. This is at the very front end and does not solve what 

happens deep down in the code and the hosting environment 

where the code interacts with the systems. Pursuant to the 

methods described in the previous sections where a data 

platform consolidating all application security vulnerabilities 

and further to that doing a correlation analysis, a missing 

piece in the end analysis is the predictive modeling and 

feeding the analysis into a threat intelligence and incident 

response system [13]. 

2.1. Attack Path Architecture 

Determining attack paths from attack trees is a gradual step 

by step method using a neural network. A multi-layer per-

ceptron is used here to analyze vulnerability data and attack 

trees to identify and predict the possible attack paths. The first 

step is to identify the attack vectors in an application security 

context that allow threat actors to attack an organization for 

whatever motive, and it is necessary to identify those [15]. 

The pathway for a threat actor is to exploit open vulnerabili-

ties that exist in any exposed attack surface. In a web appli-

cation the attack surface is a vast space, and reconnaissance 

by a threat actor would reveal a huge number of software 

security issues. Now, Cyber-attacks are no longer a random 

recon activity or short time attack that exposes lack of controls. 

These are now called as Advanced Persistent Threats (APT) 

where an attacker enters a system through a weakness that is 

easily exploitable, stays dormant till a more possible avenue 

or pathway to spread laterally provides an opportunity to 

make a severe attack. While literature covers more of end 

point attack vectors, the motive and modus operandi of attacks 

through attack vectors is common to all cyber-attacks [16]. 

When dealing with a complex prediction problem requiring 

higher level feature extraction, DL networks are used [9]. As 

an example, the problem of detecting neurons lying dormant 

and embedded in a commonly used business application and 

disguising as human users, has strong implications. Neurons 

can collect data on user interactions and use that data for 

creating a perception that a software is used in a certain way, 

rather than following the real user‟s navigation and creating 

useless business requirements. DL algorithms can help greatly 

in detecting these neurons and identify APT attacks. 

The point to focus on is that vulnerabilities that remain 

open, even if of lower priority from a remediation standpoint, 

are still possible pathways for an attack, equally applicable in 

application security as in infrastructure security [15, 16, 1]. 

Despite an organization‟s best efforts to plug in gaps in con-

trols, there will still be some loose ends that a threat actor can 

see as remaining for too long. Many probabilistic methods 

exist that model the complexity of an organization and look 

for solutions, however in a dynamically changing scenario 

where the network and infrastructure keep adding more pieces, 

the inter-dependence between the segments of the network 

and infrastructure become a complex issue to define through 

any model. The most challenging scenario being a compro-

mised employee in the form of an internal threat, third party 

and open-source software, and mobile devices that come in 

thousands [17]. Moreover, APT attacks are designed to be not 

easily detectible, and operate in stealth where an attacker 

gains control through initial intrusion, then spread laterally, 

discover more weakness as they spread to gain control of a 

wider set of resources, and gain full control through privilege 

escalation, and finally deploy the payload [18]. In order to 

visualize the path that possibly will be taken by an attacker it 

requires an attack path and simulation modeling exercises to 

predict an attack. Attack trees, threat modeling, and vulnera-

bility visualization maps become essential to understand the 

full lay of the land [6, 7, 19, 20]. 

In their paper the authors reinforce the limitations of Web 

Application Firewall (WAF) and Runtime Application Self 

Protect (RASP) if they are only dependent on signature, 

anomaly, policy, and hybrid rules that have advantages and 

disadvantages [14]. Unless the threat intelligence system is 

fed with data that projects a possible path to an attack, as 

proposed in [6, 7, 13], it will still have the same issues in the 

proposed approach of [14]. A simple reason for that is when 

dealing with thousands of vulnerabilities that have remained 

unremedied for many years, and to determine what is the right 

path for a threat actor will be daunting. 

The data flow into the MLP is structured in three steps and 

is shown in Figure 1. The first step is data collection and 

classification of vulnerabilities into independent variables and 

covariates. The second step is developing the attack tree based 

on threat modeling principles, using CWE-CVE linkages, and 

application-to-application CWE-CVE linkages [6, 7]. The 

final step is to define the output variable and ingest the dif-
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ferent input variables from the attack tree into the MLP. 

 
Figure 1. An architecture for Attack Path identification incorporating an MLP. 

2.1.1. Step 1 

In the context of application security, the research proposes 

classifying the attack vectors into three categories, and asso-

ciating each vulnerability class to the application where it was 

discovered, is the first step, Figure 1: 

1. The first attack vector, like XSS, SQLI/Code/Command 

Injection, or DoS vulnerability, is linked to the CWE 

discovered from detection / testing tools and the asso-

ciated vulnerability, severity, exploitability, and a CWE 

score. 

2. The second attack vector, like XSS, 

SQLI/Code/Command Injection, or DoS vulnerability, 

is linked to the CVE discovered from detection / testing 

tools and the associated vulnerability. 

3. The third attack vector is predominantly an alternate 

vulnerability besides what is listed in the first attack 

vector. Some CWEs suggest multiple vulnerabilities, 

e.g., a CWE could have multiple exploits available to 

the threat actor, the attack could exploit a weakness to 

do a code injection that can result in a command exe-

cution or a DoS. 

2.1.2. Step 2 

The attack vectors, the CWE/CVE information, the link-

ages of the CWE and CVE associated with the application, 

severity and exploitability of the vulnerabilities associated 

with the specific CWEs and CVEs in the application, and 

CWE/CVE score are the variables ingested into developing 

the attack tree, depending on the security profile of the ap-

plication, Figure 1, [6, 7, 9, 10, 21-27]. 

1. The attack tree shows a vulnerability topology, and all 

the paths that are open to an attacker. 

2. Each path uses a CWE-CVE, or a CVE-CVE vulnera-

bility linkages. Applications use multiple open-source 

components that could have many associated CVEs and 

could have multiple CWEs discovered through a scan or 

a test [5]. 
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3. The vulnerability map provides a horizontal and vertical 

distribution of weakness across many applications, a 

map that an attacker can build with multiple recon-

naissance of the enterprise‟s exposed attack surface 

[28]. 

2.1.3. Step 3 

The variables from Step 1 and Step 2 define the attack path, 

Figure 1. The attack paths are then categorized as all paths, 

likely paths, and vulnerability specific paths. 

1. All attack paths show all the vulnerability linkages from 

the UI to deep down into the code. This is the parent tree 

or a forest [6, 7]. 

2. Likely attack paths are the ones that cross a threshold. 

The threshold is derived with a combination of factors 

that suggest a higher risk potential of an easier path for 

an attacker. Vulnerability scores, severity, exploitability 

with more than one attack vector in the path. 

3. Top Tier Attack paths are a subset of Likely Attack path 

category with an additional threshold of having CWEs 

in the KEV Top 10 [27]. 

4. Vulnerability specific attack paths are an even narrower 

option for an attacker, but more easily exploitable, as it 

directly corresponds to a specific vulnerability as a 

single attack vector that is common for a CWE and 

CVE. It can be an XSS, SQLI or a DoS weakness that an 

application can have at the code and component level, 

meaning the CWE and the CVE could be pointing to a 

XSS vulnerability [5]. 

2.2. Keys to Chain Linking CWEs and CVEs 

Common Weakness Enumeration (CWE) is a communi-

ty-developed list of common software (and hardware) weak-

ness where a “weakness” is due to a developer introduced 

flaw that can be exploited by a threat actor to expose it as a 

vulnerability. The 2023 CWE Top 25 Most Dangerous Soft-

ware Weaknesses list points to specific parts of code that are 

flawed in design as well as in coding and require immediate 

attention. The “On the Cusp” weaknesses beyond the 25 add 

up to 40, an additional 15, that in due course could rise to the 

top 25. The Cybersecurity and Infrastructure Security Agency 

(CISA) published the “Known Exploited Vulnerabilities 

(KEV) Catalog in 2021” [27]. These categories of CWEs have 

been reported through the Common Vulnerabilities and Ex-

posures (CVE) program and are either monitored to be likely 

or have been exploited and it is recommended that the KEV 

Top 10 CWEs are continuously monitored for updates along 

with CWE Top 25 and on-the-cusp lists [21-27]. 

Using the information provided in MITRE, CISA, OWASP, 

and NVD data, and the rankings and scores given to each 

CWE and CVE one can identify what can be a potential 

high-risk weakness and vulnerability, and address that as a 

priority [21-27]. When dealing with hundreds of applications 

having thousands of vulnerabilities chain linking helps in 

further focusing on attack paths that a threat actor may choose 

to follow a transaction with intersecting vulnerabilities. It is 

necessary to identify all attack paths first, and then funnel 

down to the most likely attack paths. This will help narrow 

down the list of vulnerabilities and vulnerable paths and en-

sure these are addressed immediately. In a vulnerability report, 

a vulnerability is assigned a unique CVE and is categorized 

into one or many CWEs. Similarly, a CWE could have mul-

tiple CVEs referred to it. Grouping vulnerabilities and chain 

linking them helps fix vulnerabilities on priority. 

For example, CVE-2021-37701 is mapped to two CWEs 22, 

59. CWE 22 is a path traversal weakness capable of code or 

command execution from an integrity and availability 

standpoint and from a confidentiality standpoint it can be 

either a command / code execution or a denial-of-service 

weakness. CWE 59 is a link following weakness capable of 

bypassing protection mechanism from an access control and 

confidentiality standpoint and command / code execution 

from an integrity standpoint. As for CVE-2021-37701, it is a 

directory traversal vulnerability. A likely path for a threat 

actor to bypass protection is to use CWE 22 as an entry and 

traverse laterally through CVE-2021-37701 and attack CWE 

59. This is called an attack path identified using chain linking 

of weaknesses and vulnerabilities. In another use case of an 

attack path, CVE-2023-20863 is mapped to two CWEs 400 

and 917. CWE400 is an uncontrolled resource consumption 

weakness leading to a denial of service or bypass protection 

mechanism from an availability standpoint. CWE917 is an 

express language injection weakness that can lead to a com-

mand/code injection threat. As for CVE-2023-20863, is again 

a denial-of-service vulnerability. So, a likely path could be to 

attack CWE400 to bypass protection, and travel laterally 

through CVE-2023-20863 causing a denial-of-service attack 

and further attack CWE917 to inject malicious code. As-

signing CWEs to CVEs is another laborious task, especially if 

there are too many CVEs associated with a CWE. This was 

done manually in this research but can be performed using an 

automated solution proposed in [29]. 

CWE22 is in the top 25 most dangerous weaknesses, 

CWE400 and CWE59 are in the On-the-cusp list in the top 40. 

CWE22 is also in the Top 10 KEV list [21-27]. The next step 

is to define dependent, independent, and covariate variables. 

2.3. MLP Implementation in This Research and 

the Associated Variables 

An Artificial Neural Network conceptually resembles the 

human brain and is designed structurally to function and mimic a 

brain‟s identification process and trains itself to perfect the iden-

tification process to recognize variants. The knowledge it ac-

quires in the training process is stored as synaptic weights and 

each neuron passes the pieces of the knowledge to the output and 

make the whole identification process complete. The multi-layer 

perceptron (MLP) is one of the reliable implementations of 

neural networks and has been widely used in medical sciences, 
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weather forecasting, pattern recognition, multi-spectral image 

processing, experimental physics, and many other fields of sci-

ence, engineering, and technology [11, 30-32]. 

IBM SPSS Neural Network is used in this work [33]. The 

neural network module in Statistical Product and Service 

Solutions (SPPS) has two features: 

1. MLP 

2. Radial Basis Function 

The MLP has been used in this research [33]. MLP‟s are a su-

pervised network, and they require an expected output in order to 

learn and train. The expected outcome is split into training and test 

components, and once the network has trained, it then uses its 

training knowledge and applies it to test and predict for the re-

mainder of the cases. MLPs consist of an input layer with neurons 

(independent input variables), an output layer with neurons (de-

pendent variables), and one or more hidden layers containing 

neurons to help capture the nonlinearity in the data. The discussion 

that follows explains the step-by-step approach to include various 

parameters to see how the neural network‟s prediction improves or 

degrades. Four runs of the model were executed to study how the 

data behaved and to analyze the prediction accuracy. Optimal 

execution is determined as an intermediate assessment between 

when the model underperforms or over performs where the pre-

dictions tend to be less accurate than when the model performs 

optimally. There are many types of activation functions that can be 

used for the hidden layers, however non-linear activation functions 

differentiate the complex relationship that may exist in the varia-

bles. The executions are termed as „runs‟ and are labeled as such. 

With each run with the same variables, the model uses the model 

parameters and training data to retrain for better prediction. For 

this implementation, Run 1 - Run 3 the hidden layer function that 

was used is the Hyperbolic Tangent function, while Run 4 was 

executed using the Sigmoid activation function for the hidden 

layer. While both activation functions produced similar results, the 

Hyperbolic Tangent function is recommended as better perform-

ing and for faster convergence of the learning algorithm in an 

MLP [31, 32]. 

2.3.1. Variables and Runs 

Section 2.1, 2.2, and 2.3 provided all the needed infor-

mation to define the variables to set up the MLP and do the 

model “runs.” Here is a summary of the variables that will be 

used in the runs in this research. 

1. Dependent Variables: All Attack Paths, Likely Attack 

Paths, and Top Tier Attack paths (for this research not 

included in scope is predicting Vuln Specific Attack 

Paths) 

2. Covariates: CWE and CVE severity scores 

3. Independent Variables: CWE and CVE scores, CWE 

and CVE exploitability scores, attack vector 1, attack 

vector 2, and attack vector 3 (based on vulnerability and 

weakness classification, defined in section 2.1.1 Step 1. 

The details of the individual „runs‟ along with the MLP 

results are given in the following sections. 

2.3.2. Run-1 

Run 1: With the hidden layer activation function chosen as 

a Hyperbolic Tangent, dependent variables are the All Attack 

Paths, Likely Attack Paths, and Top Tier Paths; covariates are 

Vulnerability Severities (of CWE and CVE). The independent 

variables are Exploitability (known from CWE and CVE), 

CWE and CVE scores, KEV Top 10, and Attack Vector 1 and 

Attack Vector 2 (as explained in section 2.1.1 step 1). 

2.3.3. Run-2 

Run 2: With the hidden layer activation function chosen as a 

Hyperbolic Tangent, dependent variables are the All Attack Paths, 

Likely Attack Paths; and Top Tier Paths, covariates are Vulnera-

bility Severities (of CWE and CVE). The independent variables 

are Exploitability (known from CWE and CVE), CWE and CVE 

scores, KEV Top 10 and Attack Vector 1, Attack Vector 2, and 

Attack Vector 3 (as explained in section 2.1.1 step 1). 

2.3.4. Run-3 

Run 3: Is a re-run of Run 2 executions with the hidden layer 

activation function chosen as a Hyperbolic Tangent, where 

dependent variables are the All Attack Paths, Likely Attack 

Paths; and Top Tier Paths covariates are Vulnerability Sever-

ities (of CWE and CVE). The independent variables are Ex-

ploitability (known from CWE and CVE), CWE and CVE 

scores, KEV Top 10 and Attack Vector 1, Attack Vector 2, and 

Attack Vector 3 (as explained in section 2.1.1 step 1). 

2.3.5. Run-4 

Run 4: Is a re-run of Run 3 executions with the hidden layer 

activation function chosen as a Sigmoid, where dependent 

variables are the All Attack Paths, Likely Attack Paths; and 

Top Tier Paths, covariates are Vulnerability Severities (of 

CWE and CVE). The independent variables are Exploitability 

(known from CWE and CVE), CWE and CVE scores, and 

Attack Vector 1, Attack Vector 2, and Attack Vector 3 (as 

explained in section 2.1.1 step 1). 

3. Summary of Results of the MLP  

Implementation 

The objective of using an MLP is to predict the attack paths. 

When the CWE-CVE relationship is clearly established it is 

easy to create an attack path by linking the vulnerabilities. The 

vulnerabilities defined in CVE are mapped to a CWE that de-

scribes a weakness in the code that is sometimes not very intu-

itive and needs to be tracked with Common Attack Pattern 

Enumeration and Classification (CAPEC) that stores attack 

patterns. These attack patterns provide details of how an attack 

can take shape through the CWE weakness. CAPEC attack 

patterns are descriptions of common attributes and approaches 

employed by adversaries to exploit known weaknesses. The 

challenge however is that the CVE vulnerability can be linked 
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to the attack pattern only through a CWE for extracting CAPEC 

attack patterns. This was done manually, however an approach 

to link the two repositories is proposed by tracing CVE vul-

nerability information to CAPEC attack patterns using lan-

guage processing techniques [12]. In the current research this 

was done manually to establish the linkages. 

The details of the individual „runs‟ are given in the fol-

lowing section. 

1. For all runs, the model adjusted to just one middle layer, 

and depending upon the number of independent variables 

the number of nodes were also automatically determined. 

This is in view of the data size. The sample included 

vulnerability data for only seven applications. With more 

applications and a larger volume of data, the MLP would 

require more hidden layers, with more nodes. 

2. Run 2 (Table 1, Table 2, and Table 3) and Run 3 have 

the same variables and network structure. Run 2 had 

74.5 % training and 25.5 % testing samples, Table 1. 

Run 3 showed confidence in the model by using less 

data samples for training compared to Run 2, Table 4, 

and this is due to the fact Run 3 was executed with same 

structure and variables after Run 2. Run 3 had 70% 

training and 30 % testing samples and yet performed 

better. This shows the model had trained well from Run 

2 and had more confidence in the training with less 

samples in Run 3. The overall percentage correct for 

training in Run 2 was 100% and for testing was 95.7%, 

Table 3. The overall percentage correct for training in 

Run 3 was 99.3% and testing was 99.7%, Table 5. The 

model adjusted on the variables of importance based on 

the training from Run 2, Table 6, Figure 2 represent data 

for Run 2; Table 7 and Figure 3 represent Run 3. 

Table 1. Run 2 Case Processing Summary. 

  N Percent 

Sample 
Training 120 75.5% 

Testing 39 24.5% 

Valid 159 100.0% 

Excluded 145   

Total 304   

 

Table 2. Run 2 Network Information. 

Input Layer 

Factors 

1 Attack Vector 1 

2 Attack Vector 2 

3 Attack Vector 3 

4 CWE Scores 

5 CVE Scores 

6 CWE Exploitability Score 

7 CVE Exploitability Score 

Covariates 
1 CWE Severity 

2 CVE Severity 

Number of Unitsa 86 

Rescaling Method for Covariates Standardized 

Hidden Layer(s) 

Number of Hidden Layers 1 

Number of Units in Hidden Layer 1a 3 

Activation Function Hyperbolic tangent 

Output Layer 

Dependent Variables 

1 All Attack Paths 

2 Likely Attack Paths 

3 Top Tier Paths 

Number of Units 6 

Activation Function Softmax 

Error Function Cross-entropy 
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Table 3. Run 2 Overall Percent Correct. 

Sample Overall Percent Correct 

Training 100.00% 

Testing 95.70% 

Table 4. Run 3 Case Processing Summary. 

  

N Percent 

Sample Training 112 70.00% 

 
Testing 48 30.00% 

Valid 
 

160 100.00% 

Excluded 
 

144 
 

Total 

 

304 

 

Table 5. Run 3 Overall Percent Correct. 

Sample Overall Percent Correct 

Training 99.70% 

Testing 99.30% 

Table 6. Run 2 Independent Variable Importance. 

 

Importance Normalized Importance 

Attack Vector 1 0.136 76.20% 

Attack Vector 2 0.084 47.00% 

Attack Vector 3 0.065 36.60% 

CWE Scores 0.171 95.30% 

CVE Scores 0.133 74.60% 

CWE Exploitability Score 0.055 30.80% 

CVE Exploitability Score 0.179 100.00% 

CWE Severity 0.031 17.20% 

CVE Severity 0.145 81.30% 

Table 7. Run 3 Independent Variable Importance. 

 

Importance Normalized Importance 

Attack Vector 1 0.146 77.90% 

Attack Vector 2 0.077 41.10% 
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Importance Normalized Importance 

Attack Vector 3 0.104 55.30% 

CWE Scores 0.188 100.00% 

CVE Scores 0.146 77.60% 

CWE Exploitability Score 0.115 61.00% 

CVE Exploitability Score 0.112 59.70% 

CWE Severity 0.017 9.30% 

CVE Severity 0.094 50.20% 

 
Figure 2. Run 2 Normalized Importance. 

 
Figure 3. Run 3 Normalized Importance of Independent Variables. 
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Run 4 was also executed by applying the activation func-

tion for the hidden layer as Sigmoid to study the perfor-

mance. Although no perceivable difference is seen, it is 

recommended to use the Hyperbolic Tangent function [31, 

32]. Compared to Run 3, it is seen the training sample per-

centage increased to 71.3% and the testing sample percent-

age dropped to 28.7, Table 8. The model is trying to adapt to 

the new function by increasing the training samples. The 

overall percentage correct is 100 % for training and 97% for 

testing, Table 9, compared to Run 3 which had 99.7 % for 

training and 99.3 % for testing. The top 5 influencing in-

dependent variables for Run 3 are CWE Scores, Attack 

Vector 1, CVE Scores, CWE Exploitability, and CVE Ex-

ploitability as shown in Figure 3. For Run 4 the top 5 in-

fluencing independent variables are CWE Scores, CVE 

Exploitability Scores, CVE Severity, Attack Vector 1, and 

Attack Vector 2 as seen in Figure 4. The key output is the 

Receiver Operating Characteristics (ROC) and Area Under 

the Curve (AUC). The ROC for Likely Paths and Top Tier 

Paths for Hyperbolic Tangent function and the Sigmoid 

function for Run 3 and Run 4 showed perfect prediction. The 

ROC and AUC for the All Attack Paths for both functions 

showed a slight difference, but nothing significant. For Run 

3 the ROC using Hyperbolic Tangent functions for All At-

tack Paths is shown in Figure 5 and the AUC in Table 11. For 

Run 4 using the Sigmoid function the All Attack Paths is 

shown in Figure 6 and the AUC in Table 12. The perfor-

mance is comparable, and the prediction is excellent. This 

method can be implemented in larger efforts with more 

applications. 

Table 8. Run 4 Case Processing Summary. 

  

N Percent 

Sample Training 114 71.30% 

 
Testing 46 28.70% 

Valid 
 

160 100.00% 

Excluded 
 

144 
 

Total 

 

304 

 

Table 9. Run 4 Overall Percent Correct. 

Sample Overall Percent Correct 

Training 100.00% 

Testing 97.10% 

 

Table 10. Run 4 Independent Variable Importance. 

 

Importance 
Normalized 

Importance 

Attack Vector 1 0.107 50.40% 

Attack Vector 2 0.106 50.20% 

Attack Vector 3 0.064 30.00% 

CWE Scores 0.212 100.00% 

CVE Scores 0.099 46.70% 

CWE Exploitability Score 0.075 35.30% 

CVE Exploitability Score 0.166 78.40% 

CWE Severity 0.011 5.20% 

CVE Severity 0.161 76.20% 

 
Figure 4. Run 4 Normalized Importance of Independent Variables. 

 
Figure 5. Run 3 ROC for All Attack Paths. 
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Figure 6. Run 4 ROC for All Attack Paths. 

Table 11. Run 3 Area Under the Curve for All Attack Paths. 

  

Area 

All Attack Paths Failed 1.000 

 
Successful 1.000 

Likely Attack Paths Failed 1.000 

 
Successful 1.000 

Top Tier Paths Failed 1.000 

 

Successful 1.000 

Table 12. Run 4 Area Under the Curve for All Attack Paths. 

  

Area 

All Attack Paths Failed 0.999 

 
Successful 0.999 

Likely Attack Paths Failed 1.000 

 
Successful 1.000 

Top Tier Paths Failed 1.000 

 

Successful 1.000 

Overall, the MLP with available data has predicted the at-

tack path very accurately. The objective of identifying the 

attack paths that a threat actor could use to penetrate is 

demonstrated through this research. The next step is to predict 

an attack and integrate this solution into a threat intelligence 

system to set up alerts for security operations teams to act. The 

study of correlation between an incoming WAF monitored 

requests with existing vulnerabilities as proposed in [5] can 

now be further explored by following the attack paths identi-

fied and looking at the transaction behavior [34]. The need for 

end point behavior study and correlation of host behavior with 

application vulnerabilities through a specific attack path be-

comes essential and can be achieved as an extension of the 

current research. Another key to achieving this end-to-end 

integration is to consolidate all application security vulnera-

bilities information obtained through monitoring, scans, and 

tests [35]. This will help in easier handling of data for corre-

lation, ML, and enabling autonomous processing of all in-

termediate segments to chain link the vulnerabilities [5-7, 12, 

29, 35]. 

4. Conclusions 

The paper provides a solution to develop a predictive sys-

tem from attack trees using Deep Learning techniques. By 

employing an Artificial Neural Network like the MLP the 

proposed approach has shown how to predict existing and 

potential attack paths in real time. 

The benefits of an attack tree are that it gives the security 

specialists a topology of vulnerability distribution that is 

otherwise buried and lost in silos, in an ever-growing security 

technical debt. Taking the next step forward is to use this 

topology of vulnerability to identify attack paths. With hun-

dreds of applications and thousands of vulnerabilities it is 

impossible to process the information and plan for a call for 

action. An autonomous deep learning technique needs to be 

adopted to pin-point and focus on specific attack paths that are 

available to a threat actor. In the proposed approach using an 

MLP implementation results provide confidence in predicting 

exploitable attack paths that can help in simulation exercises 

to determine if the vulnerable attack paths do indeed suggest 

the likely route an attacker might choose. These likely and top 

priority attack paths then become the focus of security opera-

tions to ingest the exploitability factor into a threat intelli-

gence system. 

Future efforts should focus along the lines proposed by this 

research and findings. 

Abbreviations 

AI Artificial Intelligence 

ANN Artificial Neural Network 

APT Advanced Persistent Threat 

AUC Area Under the Curve 

CAPEC Common Attack Pattern Enumeration and  

Classification 

CVE Common Vulnerabilities and Exposures 

CWE Common Weakness Enumeration 

DOS Denial of Service 

DL Deep Learning 

DNN Deep Neural Network 

KEV Known Exploited Vulnerabilities 
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ML Machine Learning 

MLP Multi-Layer Perceptron 

OSS Open-Source Software 

OWASP Open Worldwide Application Security Project 

RASP Runtime Application Self Protect 

RNN Recurrent Neural Networks 

ROC Receiver Operating Characteristic 

SPSS Statistical Product and Service Solutions 

SQLI SQL Injection 

XSS Cross-Site Scripting 

WAF Web Application Firewall 
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