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Abstract 

The analysis and interpretation of time series data is of great importance across different fields, including economics, finance, 

and engineering, among other fields. This kind of data, characterized by sequential observations over time, sometimes exhibits 

complex patterns and trends that some commonly used models, such as linear autoregressive (AR) and simple moving average 

(MA) models, cannot capture. This limitation calls for the development of more sophisticated and flexible models that can 

effectively capture the complexity of time series data. In this study, a more sophisticated model, the Self-Exciting Threshold 

Autoregressive (SETAR) model, is used to model the Nairobi Securities Exchange (NSE) 20 Share Index, incorporating a 

Bayesian parameter estimation approach. The objectives of this study are to analyze the properties of the NSE 20 Share Index 

data, to determine the estimates of SETAR model parameters using the Bayesian approach, to forecast the NSE 20 Share Index 

for the next 12 months using the fitted model, and to compare the forecasting performance of the Bayesian SETAR with the 

frequentist SETAR and ARIMA model. Markov Chain Monte Carlo (MCMC) techniques, that is, Gibbs sampling and the 

Metropolis-Hastings Algorithm, are used to estimate the model parameters. SETAR (2; 4, 4) model is fitted and used to forecast 

the NSE 20 Share Index. The study's findings generally reveal an upward trajectory in the NSE 20 Share Index starting 

September 2024. Even though a slight decline is predicted in November, an upward trend is predicted in the following months. 

On comparing the performance of the models, the Bayesian SETAR model performed better than the linear ARIMA model for 

both short and longer forecasting horizons. It also performed better than its counterpart model, which uses the frequentist 

approach for a longer forecasting horizon. These results show the applicability of SETAR modeling in capturing non-linear 

dynamics. The Bayesian approach incorporated for parameter estimation advanced the model even further by providing a 

flexible and robust way of parameter estimation and accommodating uncertainty. 
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1. Introduction 

Over the years, nonlinear time series models have been 

introduced and developed, with many researchers aiming at 

capturing the dynamics of time series data. One class of 

these models is the Threshold Autoregressive (TAR) models 
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first introduced by Tong in 1978. This class of models in-

corporates regime shifts in time series data, dividing the data 

into distinct regimes. Each regime has a specific set of pa-

rameters that capture the underlying dynamics. Self-Exciting 

Threshold Autoregressive (SETAR) is an extension of 

Tong’s TAR, which was proposed to incorporate the concept 

of self-exciting behavior [1]. These models consider the past 

behavior of a series in determining the regime shifts, al-

lowing for the number of regimes to be specified using the 

data. This feature makes SETAR models a more promising 

choice in modeling the nonlinear dynamics in time series 

data like financial data, where the thresholds and number of 

regimes may change over time. When using SETAR models, 

there are typically many parameters to be estimated due to 

the different regimes, and the estimation process can be 

challenging, especially when the researcher is dealing with 

high-dimensional or noisy financial data. This requires so-

phisticated yet flexible and simple approaches, such as the 

Bayesian approach, to be incorporated into the Self-Exciting 

Threshold Autoregressive modeling. In this study, the 

strengths of SETAR models in capturing nonlinear dynamics 

are combined with the Bayesian approach, which provides a 

flexible and robust way of parameter estimation that also 

accommodates uncertainty. 

Comparative studies have been done between SETAR and 

other models, including STAR models, AR models, ARIMA, 

Seasonal ARIMA, NNETTs, AAR, and LSTAR, among 

others [2-6]. These studies have shown SETAR models to be 

an improvement on linear models in regards to capturing 

volatility. They have also shown that SETAR models have 

good prediction capabilities. Recently, SETAR models have 

even been used in a study of COVID-19 [7]. Additionally, 

studies have investigated the utilization of the Bayesian 

approach in parameter estimation in TAR models, and it has 

been established that the approach is effective and feasible in 

practice [8-10]. The findings of these studies are promising 

in regard to the application of SETAR models and the 

Bayesian framework. In this study, Bayesian SETAR will be 

used to model and forecast the Nairobi Securities Exchange 

(NSE) 20 Share index. By combining the flexibility of 

Bayesian methods with the strengths of SETAR models, this 

study aims to provide more accurate parameter estimates, 

enhancing the model’s performance. This has the potential to 

lead to a more robust and accurate model that will help with 

decision-making and risk management in the financial 

market. 

2. Materials and Methods 

This study focuses on TAR models, particularly SETAR 

models. The methodology of this study centers on the appli-

cation of Bayesian Inference to SETAR models. 

 

2.1. Threshold Autoregressive (TAR) Models 

Within the framework of threshold time series models, it is 

assumed that the process has different regimes, determined by 

a threshold. The basic idea is that the process will behave 

differently when a variable’s values go beyond a certain 

threshold, meaning that different models apply when the 

values are below and above the threshold. 

Suppose a series { }
t

y  is observed at discrete time points t. 

TAR(p), a TAR model of order p and two regimes can be 

written as 

(1)

0
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where t
z  is the threshold variable, and 

( )j

t
a  are independ-

ent Gaussian white noise processes with mean zero and var-

iance 
2

j
 , with j = 1,2. i

  and j
  are real-valued parame-

ters and r is the threshold. 

SETAR model is a type of TAR models. Considering the 

above TAR model with two regimes (1), if the tz  value is 

replaced with previous values of the time series ty  as below, 

the TAR model is then referred to as SETAR model. 

(1)

0
1

(2)

0
1

, if

, if

p

i t i t t d
i

t p

i t i t t d
i

y a y r

y

y a y r

 

 

 


 


   


 
   


       (2) 

The switch of regimes is therefore influenced by the past 

values of t
y , that is, t d

y
 , where d represents the delay pa-

rameter. 

The SETAR model can be generalized to include multiple 

regimes. Let 1n   be a positive finite integer and 

{ | 0,..., }
j

r j n  a real number sequence with 

0 1 2 1
...

n n
r r r r r


         where   and   are 

regarded as real numbers. Then a time series t
y  is a 

m-regime SETAR (p) model if it satisfies 
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where t d
y

  is the threshold variable and 0d   is the delay 

parameter. 

In SETAR models, there exists many free parameters that 

need to be chosen and approximated in building the models. 
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These parameters include the number of regimes/ thresholds, 

threshold values, orders of the AR models, and the model 

coefficients. The Bayesian approach provides a promising 

way of estimating the model parameters. 

2.2. Bayesian Estimation of the Model 

Parameters 

In the Bayesian statistical perspective, parameters are 

viewed as random variables to account for uncertainty in their 

values. Bayesian analysis involves specifying a likelihood, 

which is the conditional density of data given the parameters, 

together with a prior distribution for the parameters derived 

from past knowledge or beliefs. The joint density of data and 

parameters is obtained by multiplying the prior and likelihood. 

To get the marginal density of the data, the parameters have to 

be integrated out. The posterior density, which represents the 

parameters given the data, is then derived by dividing the joint 

density by the marginal density. This posterior contains all the 

information about parameter values and serves as the foun-

dation for Bayesian inference. 

Suppose m observations 1:m
y  are collected of a time series 

t
y . Suppose that each data point, t

y , is associated with a 

probability distribution which can be expressed as a function 

of a parameter or many parameters   so that the relation-

ship between t
y  and   is described by a pdf ( | )

t
p y  . 

When ( | )
t

p y   is considered as a function of   instead of 

t
y , it is referred to as the likelihood function. By applying 

Bayes' theorem, the posterior pdf ( | )
t

p y  can be derived, 

that is, the posterior pdf of   given t
y , by multiplying the 

likelihood with the prior density, ( )p  . That is, 

( ) ( | )
( | )

( )

t

t

t

p p y
p y

p y

 
                (4) 

where ( ) ( ) ( | )
t t

p y p p y d     

( )
t

p y  defines what is known as predictive density func-

tion. The prior distribution provides a means to include re-

searcher's initial beliefs or assumptions regarding  , and 

Bayes' theorem enables the revision and updating of these 

assumptions once the data is observed. 

2.2.1. Obtaining Priors 

For this study, conjugate priors will be used. The natural 

conjugate priors are selected as follows; 1
  and 2

  are 

taken as independent and normally distributed as 
1

0
( , )

i i
N M 

, 

while 
2

1
  and 

2

2
  are taken as independent with inverse 

gamma distribution inverse gamma ( / 2, / 2)
i i i

   . The hy-

per-parameters d and r are assumed to be known. r is pre-

sumed to have a uniform distribution on ( , )   while d is 

presumed to take a discrete uniform distribution on 1,2,..., D. 

2.2.2. Obtaining Posterior Distributions 

The primary interest of the analysis is to obtain the mar-

ginal posterior distributions of the parameters i
 's, 2 s, r, 

and d. Determining the posterior distribution is frequently 

achallenging task due to the need for complex numerical 

integration in high-dimensional spaces. Therefore, Gibbs 

Sampler and the Metropolis-Hastings algorithm will be used 

in this study to find the conditional posterior distributions of 

the unknown parameters. 

(i). Gibbs Sampler 

The Gibbs sampler, which is a Markov Chain Monte Carlo 

(MCMC) technique, is used to estimate target posterior dis-

tributions from conditional distributions. Gibbs Sampling is 

specifically designed to sample from multivariate distribu-

tions by sequentially updating each variable while condi-

tioning on the current values of the other variables. 

Consider a scenario where the random variable   can be 

broken down into components 1
( ,..., )

r
    and the condi-

tional densities 

1 1 1 1 1 1
| ,..., , ,..., ~ ( | ,..., , ,..., )

j j j r j j j j r
f         

    can be simu-

lated for 1,...,j r . Then, to sample from the joint density of 

1
( ,..., )

r
   using Gibbs sampler, the following algorithm is 

followed: 

1. Given the sample 
( ) ( )

1
( ,..., )m m

r
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2. 
( 1) ( ) ( ) ( )

1 1 1 2 3
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2 2 2 1 3
~ ( | , ,..., )m m m m

r
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, 
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. 

. 

r. ( 1) ( ) ( ) ( )

1 2 1
~ ( | , ,..., )m m m m

r r r r
f    

 . 

The conditional densities of the unknown parameters 

can be derived except for the conditional density of r. 

Therefore, these conditional distributions will be used 

alongside the Gibbs sampling technique described above 

to obtain the marginal posterior distributions for the un-

known parameters. Regarding r, the Metropolis algorithm 

will be used. 

(ii). The Metropolis-Hastings Algorithm 

For r, the conditional posterior probability function is 
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with 1
n  and 2

n  being functions of r. 

Let the conditional density above (5) be denoted by f(k), 

and as before, the assumption that k's prior distribution is 

uniform over ( , )   is made. Hence, a transition kernel 
*( , )h k k  with * log( ) / ( )k k k     can be utilized to map 

( , )   into ( , )  . The Metropolis algorithm will then 

work in the following manner; 

1. Begin with an initial value, (0)k  drawn from the prior 

( , )U    and set the indicator j  to 0. 

2. Utilizing the transition kernel ( ) *( , )jh k k , generate a 

new point *k . 

3. With a probability of * ( )min1, ( ) / ( )jp f k f k , update 
( )jk  to ( 1) *jk k   and remain at ( )jk  with a probabil-

ity of (1 )p . 

4. By increasing the indicator, repeat steps 2 and 3 until a 

stationary distribution is attained. 

2.3. Test for Linearity 

SETAR models were introduced to handle non-linear time 

series data, and hence, before proceeding with modeling, it is 

essential to check for non-linearity to ensure the model se-

lected is appropriate. The non-linearity tests that will be used 

are Tsay’s F test and BDS test. 

2.3.1. Tsay’s F Test 

In Tsay’s F test, the null hypothesis of linearity is tested 

against the alternative hypothesis that there exists a threshold 

model. 

Considering a TAR(p) process with two regimes, the test is, 
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    (6) 

2.3.2. BDS Test for Nonlinearity 

The BDS test investigates the spatial dependence of a time 

series. The series is represented in a multi-dimensional space 

(m-space), and the dependence of x is investigated by count-

ing close points, which are data points that are within a dis-

tance of ’eps’ from each other. 

H0: The data is independently and identically distributed 

(iid). 

H1: The residuals exhibit an underlying structure, poten-

tially of a non-linear nature. 

 

2.4. Test for Stationarity 

Stationarity tests assess whether the time series is sta-

tionary, i.e, whether it exhibits stable statistical properties 

over time, including the mean, variance, and autocorrelation. 

Many time series models, Autoregressive models included, 

assume stationarity as it simplifies the analysis and allows 

for more reliable forecasts. The stationarity tests that will be 

employed are the ADF Test and the Zivot and Andrews 

(1992) test. 

2.4.1. ADF Test 

ADF test tests for the existence of unit roots in the data, 

which are indicators of non-stationarity. The ADF test's 

null hypothesis suggests that the time series possesses unit 

roots, rendering it non-stationary, while the alternative 

hypothesis suggests the absence of unit roots, indicating 

stationarity. 

0
: 1 H         (has unit roots) 

1
: 1H            (no unit roots) 

2.4.2. Zivot-Andrews Unit Root Test 

The null hypothesis is that the time series represents an 

integrated process devoid of structural changes. Conversely, 

the alternative hypothesis proposes that the process is 

trend-stationary, characterized by a singular break occurring 

at an unspecified moment in time. 

0
: 1

i
H    (series has a unit root with drift) 

1
: 1

i
H    (series is stationary with break(s)) 

3. Results 

3.1. Data 

The data that is utilized in this study is the NSE 20 Share 

Index historical data from December 1997 to August 2024. 

The NSE 20 Share Index is basically a price-weighted Index, 

which is calculated as the mean of the top 20 

best-performing companies in Kenya. The NSE20 Index 

generally tracks the performance of the 20 largest and 

best-performing companies listed on the Nairobi Securities 

Exchange (NSE) in Kenya. 

Figure 1 below shows the data. The time series is asym-

metrical, and this insinuates a lack of stable statistical prop-

erties, which is a challenge when doing estimation with both 
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linear and non-linear models. 

 

Figure 1. Time Series of NSE 20 share index monthly: Dec 1997 - Aug 2024. 

3.2. Non-Linearity Test 

3.2.1. Tsay’s F-Test 

Tsay's threshold non-linearity test is conducted using dif-

ferent working orders (1 to 10). The following table shows the 

results of the tests showing the order of the model used for 

testing, the F test statistic, and the p-value obtained. 

Table 1. Test for Threshold Non-Linearity using Tsay’s F-Test. 

Working Orders Test statistic P-value 

1 1.246 0.2652 

2 1.871 0.1345 

3 1.671 0.1276 

4 1.59 0.1085 

Working Orders Test statistic P-value 

5 1.634 0.06407 

6 2.272 0.001457 

7 2.453 0.000116 

8 2.273 0.0001182 

9 2.18 8.27e-05 

10 2.273 1.068e-05 

The results support threshold non-linearity when orders 6, 

7, 8, 9, and 10 are used. Therefore, at 5% level of signifi-

cance, the null hypothesis that suggests linearity is rejected. 

3.2.2. BDS Test 

The results obtained from running the BDS test are as 

shown below. 

Table 2. Test for Non-Linearity using BDS Test. 

P-values 

Embedding Dimension ε (standard deviation) 

 0.5 1.0 1.5 2.0 

2 2.2 e-16 2.2 e-16 2.2 e-16 2.2 e-16 

3 2.2 e-16 2.2 e-16 2.2 e-16 2.2 e-16 
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From the results, the null hypothesis, stating that the data 

is i.i.d is rejected for all m and ε combinations at the standard 

significance levels. Given the lack of apparent linear patterns 

in the data, the outcomes of the BDS test indicate nonlinear 

structures within the data. 

3.3. Test for Stationarity 

The ADF test yields a p-value of 0.6862, leading to the 

retention of the null hypothesis, as the obtained p-value ex-

ceeds the 0.05 significance level. Upon running the Zi-

vot-Andrews Unit Root Test, the t-statistic of the Z-A test 

exceeds the critical values, leading to the retention of the null 

hypothesis, signifying the presence of a unit root in the time 

series. Both tests imply that the time series is non-stationary. 

The time series data is non-stationary, and hence, it will be 

transformed to stationarity by logarithmic transformation of 

the series and then differencing. The following is the trans-

formed time series. 

 
Figure 2. Time Series of Change in NSE 20 Share Index. 

After logarithmic transformation followed by differencing, 

stationarity of the series is tested again and the results show 

that the series is now stationary. 

3.4. Selection of Regimes and the Orders for the 

Regimes 

Looking at Figure 2, positive values indicate growth in the 

NSE20 Index, which can be interpreted as good health or 

performance of the Kenyan stock market, while negative 

values and values close to zero indicate poor performance or 

stagnation. With these observations, a two-regime model will 

be used to model these growths and declines. This translates 

to just one r value, which can informally be envisioned as a 

horizontal line separating the growth from the drop seasons. 

Therefore, the SETAR model will have two regimes and will 

take the form 1 2(2; , )SETAR p p . 

To develop the SETAR model, we need to find the orders of 

the two models, for the two identified regimes, p1 and p2, and 

the lag parameter d. We use ACF and PACF to get the lag 

order. From the ACF and PACF plots Figure 3 and Figure 4 

below, an order of 4 will be used for both models. 

 

Figure 3. ACF Plot. 
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Figure 4. PACF Plot. 

3.5. Bayesian Parameter Estimation 

Next, the unknown parameters 
(1) (2) 2 2

1 2
, , , , ,d r     are es-

timated using the Bayesian approach. The Gibbs sampler 

was executed for 1,000 iterations, and the initial 500 itera-

tions were disregarded as the burn-in sample. The estimates 

of the parameters alongside their standard errors are as 

shown in the table below; 

Table 3. Parameter Estimation for the SETAR Model. 

Parameter Mean Median Standard Deviation 

1

0  -0.0332 -0.0327 0.0109 

1

1  -0.2871 -0.2894 0.1590 

1

2  0.0739 0.0677 0.1353 

1

3  -0.0866 -0.0818 0.1369 

1

4  0.3277 0.3282 0.1194 

2

0  0.0023 0.0020 0.0042 

2

1  0.1288 0.1301 0.0963 

2

2  0.0532 0.0566 0.0584 

2

3  0.1191 0.1162 0.0593 

2

4  0.0616 0.0607 0.0668 

2

1  0.0033 0.0032 0.0005 

2

2  0.0024 0.0024 0.0002 

r -0.0218 -0.0215 0.0037 

d 1 1 0.0000 

Using the above results, the following model is obtained; 

 

 

𝑦𝑡 = {
−0.0332 − 0.2871𝑦𝑡−1 + 0.0739𝑦𝑡−2 − 0.0866𝑦𝑡−3 + 0.3277𝑦𝑡−4 + 𝑎𝑡

(1)
,        if 𝑦𝑡−1 ≤ −0.0218

0.0023 + 0.1288𝑦𝑡−1 + 0.0532𝑦𝑡−2 + 0.1191𝑦𝑡−3 + 0.0616𝑦𝑡−4 + 𝑎𝑡
(2)

,     if 𝑦𝑡−1  > −0.0218
  

 

where 2

1
0.0033   and 2

2
0.0024  . The estimated value of 

d is 1. 

3.6. Forecasting 

Next, the SETAR model obtained above will be used to 

predict future values of the NSE20. To gauge the effective-

ness of the Bayesian SETAR model, its forecasting perfor-

mance is compared with that of a SETAR model estimated 

through a frequentist approach and an ARIMA model. 

3.6.1. Forecasting with the Bayesian SETAR (2;4,4) 

Model 

For the forecasting process, the one-step-ahead recursive 

method was employed. This method involves a step-by-step 

prediction process, where the first forecast is initiated by 

estimating the next value using our Bayesian SETAR (2;4,4) 

model. Subsequently, this predicted value is integrated into 

the existing data, and the model is re-estimated. This cycle 

continues, step by step, to predict future values. 

NSE 20 Share Index values for the next 12 months starting 

from September 2024 to August 2025 forecasted using the 

Bayesian SETAR model are as shown in Figure 5 and Table 4 

below. 

 
Figure 5. Predicted Future Changes of the NSE20 Index Are Indi-

cated by the Red line. 

http://www.sciencepg.com/journal/ajtas


American Journal of Theoretical and Applied Statistics http://www.sciencepg.com/journal/ajtas 

 

210 

Table 4. Predicted Values of the NSE 20 Share Index for September 

2024 to August 2025. 

Predictions 

Month/Year Mean Lower Upper 

Sep 2024 1683.5889 1661.17926 1703.74326 

Oct 2024 1689.9987 1667.50375 1711.25625 

Nov 2024 1665.6705 1613.37418 1688.30953 

Dec 2024 1671.6777 1645.47278 1692.53558 

Jan 2025 1677.5389 1654.05153 1697.62081 

Feb 2025 1684.2624 1661.51153 1707.66638 

Mar 2025 1693.7208 1664.00567 1738.85656 

Apr 2025 1698.9795 1676.19736 1719.14616 

May 2025 1704.7658 1680.7292 1723.79413 

June 2025 1713.6537 1685.10479 1753.52448 

Predictions 

Month/Year Mean Lower Upper 

Jul 2025 1718.9743 1697.45106 1739.20437 

Aug 2025 1723.9665 1700.33918 1743.90657 

3.6.2. Evaluation of the Model's Forecasting 

Ability 

In evaluating the forecasting precision of the model, the 

Bayesian SETAR model, developed with data from January 

1998 to December 2023, was compared with a SETAR model 

estimated using the frequentist approach and an ARIMA 

model. The primary interest was forecasting the NSE 20 Share 

Index changes from January 2024 to August 2024. To assess 

the accuracy of these forecasts, Root Mean Square Errors 

(RMSE) were calculated for the three models. The results are 

as follows; 

Table 5. RMSE for the Bayesian SETAR, Normal SETAR, and ARIMA Models (8 Months). 

 Bayesian SETAR Frequentist SETAR ARIMA 

RMSE 0.05074525 0.04949407 0.05102666 

From the above results, the Bayesian SETAR model outperformed ARIMA, even though its frequentist counterpart performed 

best in forecasting the NSE20 changes for a short period (eight months). Next, a comparison is made for a longer forecasting 

horizon, where structural breaks are expected. The models were fitted for data from January 1998 to Aug 2019, and forecasts 

were made for September 2019 to August 2024 (60 months). The performance results are as follows; 

Table 6. RMSE for the Bayesian SETAR, Normal SETAR, and ARIMA Models (60 Months). 

 Bayesian SETAR Frequentist SETAR ARIMA 

RMSE 0.03947424 0.05351723 0.04191522 

 
Figure 6. Original Data and Forecasted Values using Bayesian SETAR and using ARIMA. 
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For a longer forecasting horizon, the Bayesian SETAR had 

a better predictive power. 

4. Discussion 

The effectiveness of SETAR models in capturing non-linear 

dynamics has been demonstrated in prior studies. In one study, 

for instance, it was found that the SETAR (2,2,1) model out-

performed an ARIMA (3,1,3) model for modeling crude oil 

production fluctuations, underscoring SETAR's capability to 

capture complex, non-linear patterns more effectively than 

traditional linear models [11]. Another study highlighted that 

SETAR models could better depict the dynamics of the US 

public debt-to-GDP ratio over several decades, outperforming 

other threshold models like ESTAR and LSTAR, particularly 

in reflecting shifts before and after major economic events such 

as the Global Financial Crisis [12]. While these studies, among 

others [2-6], have demonstrated the capabilities of SETAR 

models, they primarily utilized frequentist approaches for pa-

rameter estimation, which does not fully accommodate uncer-

tainty in parameter estimation. Hence, this study expands on 

this to explore the utilization of the Bayesian approach for 

parameter estimation in SETAR models. 

Bayesian analysis that utilizes prior information will often 

give better inference compared to frequentist analysis that 

ignores prior information [13]. Recently, Bayesian time series 

analysis techniques have been widely applied to solve dif-

ferent problems [14-17]. However, the integration of Bayes-

ian techniques into SETAR models and their application is 

still an emerging area, and hence, this study sought to fill this 

gap in the literature by applying the approach to the NSE20 

share index. 

The NSE20 time series data was explored for attributes 

including stationarity and linearity, which, in turn, laid the 

groundwork for fitting a SETAR model. The data portrayed 

non-linearity, making the SETAR model suitable for model-

ing the data. Through an analysis of the data, SETAR (2;4,4) 

was the most adequate for the data. Using the Bayesian ap-

proach, the model parameters were estimated, including au-

toregressive coefficients θ(1) and θ(2), regime-switching pa-

rameter (r), error variances, and the delay parameter (d). The 

estimated Bayesian SETAR model was then used to generate 

forecasts for the next 12 months of the NSE20 Index. Con-

sidering the forecasts obtained, the NSE 20 Share Index is 

expected to generally continue upward in the coming months, 

even though a slight drop is predicted for November, followed 

by an upward trajectory. The implications of these findings 

extend to different stakeholders in the financial market, in-

cluding investors, investment firms, and policymakers. 

On forecasting performance, the Bayesian SETAR model 

outperformed both the SETAR model utilizing the Frequentist 

approach and the ARIMA model for a longer forecasting 

horizon and during periods characterized by high fluctuations. 

Additionally, in both cases (short and long forecasting horizons, 

Bayesian SETAR outperformed ARIMA, a commonly used 

linear model. These findings underscore the Bayesian SETAR 

model's resilience and adaptability, particularly in scenarios 

characterized by volatility. Additionally, the findings of this 

study highlight the applicability of SETAR modeling in cap-

turing the nonlinear dynamics inherent in financial time series 

data. The results highlight the advantages of incorporating 

Bayesian techniques for modeling and forecasting nonlinear 

financial time series. On top of providing a flexible and robust 

way of parameter estimation, the inclusion of the Bayesian 

approach provides a way of incorporating uncertainty. 

Future research can extend this study's comparison to in-

clude other nonlinear time series models. Additionally, natu-

ral conjugate priors were chosen for mathematical conven-

ience in this study. Hence, future studies can also investigate 

how variations in prior distributions for the model parameters 

affect the results. Two regimes were also selected for the 

study. Future studies can extend the study to incorporate more 

than two regimes. Expanding the scope to include mul-

ti-regimes may better capture the data's underlying patterns 

and nonlinear relationships that may not be fully revealed in a 

two-regime framework. 

5. Conclusions 

In conclusion, the findings of this study highlight the ap-

plicability of SETAR modeling in capturing the non-linear 

dynamics inherent in financial time series data. The Bayesian 

SETAR model, specifically, exhibited superior performance, 

particularly in scenarios marked by high volatility and fluc-

tuations and for a longer forecasting horizon by outperform-

ing its counterparts. This underscores the model’s resilience 

and adaptability, positioning it as a robust tool for forecast-

ing in financial environments characterized by dynamic and 

unpredictable changes. Its ability to handle non-linearities 

and volatile conditions suggests practical applications in de-

cision-making processes, risk management, and strategic 

planning within the financial sector. As the Kenyan financial 

market continues to navigate complex and evolving condi-

tions, the Bayesian SETAR model emerges as a valuable 

asset for stakeholders seeking reliable insights into market 

behavior and trends. 

Abbreviations 

SETAR Self-Exciting Threshold Autoregressive 

NSE Nairobi Securities Exchange 

NSE20 NSE 20 Share Index 

pdf Probability Density Function 
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MA Moving Average 

ARIMA Autoregressive Integrated Moving Average 

i.i.d Independently and Identically Distributed 
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