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Abstract: In various application areas, data is frequently collected and analyzed using basic statistical distributions such as
exponential, Poisson, and gamma distributions. However, these traditional distributions often fail to adequately capture the
inherent heterogeneity present in real-world data. This limitation highlights the need for more flexible distributions that can
address these complexities. Such distributions can be generated through techniques like reparameterization, generalization,
compounding, and mixing. This paper focuses on deriving generators for survival functions of discrete mixtures using minimum
and maximum order statistic distributions. The approach leverages the probability generating function (PGF) techniques of
mixing distributions, including zero-truncated Poisson, shifted geometric, zero-truncated binomial, zero-truncated negative
binomial, and logarithmic series distributions. Specifically, the derived generator was applied to Lomax distributions to
construct survival functions. Consequently, the probability density function (PDF) and failure rate of the resulting discrete
mixtures were also obtained. Furthermore, the paper examines the shapes of the PDF and failure rate for discrete mixtures
derived from the zero-truncated Poisson distribution. Notably, the failure rates of discrete mixtures generated using minimum
and maximum order statistics from the Lomax distribution exhibited distinct behaviors. The failure rate for the minimum order
statistic was observed to decrease, while the failure rate for the maximum order statistic showed a combination of
non-decreasing and bathtub-shaped patterns.
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1. Introduction

Combining or mixing multiple distributions to create a new
one is a method used in constructing probability distributions.
The resulting combined distribution is referred to as a mixture.
There are three main types of mixture distributions discussed
in the literature: finite, continuous, and discrete. This paper
focuses on discrete mixtures, which can be derived from
compound distributions or order statistic distributions.

Recently, many researchers have explored the technique of
introducing parameters through the compounding of different
distributions to develop new lifetime distributions. A
foundational contribution in this area was made by Adamidis
and Loukas [1], which paved the way for a new class

of lifetime distributions. Examples include Kus [9], who
introduced the exponential-Poisson distribution, Tahmasbi
and Rezaei [11], who developed the exponential-logarithmic
distribution, and Hajebi et al. [7], who proposed the
exponential-negative binomial distribution. Additionally,
Mecha et al. [17] constructed generators for discrete mixtures
using the probability generating function approach and applied
these models to the exponential distribution.

Al-Zaharani and Sangor [3] examined the maximum order
statistic from the Lomax (Pareto II) distribution as the
conditional distribution and used the zero-truncated Poisson
distribution as the mixing distribution. This specific discrete
mixture is known as the Lomax-Poisson distribution.

The aim of this paper is to build upon the work of
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Al-Zaharani and Sangor by utilizing the generator method
developed by Mecha et al. [17] to create discrete mixtures
based on minimum and maximum order statistics, with
applications to the Lomax distribution.

The paper is structured as follows: Section 2 derives
generators for discrete mixtures based on the minimum order
statistic, with applications discussed in Section 3. In Section 4,
generators based on the maximum order statistic are derived,
followed by applications in Section 5. The conclusion is
presented in Section 6.

2. Generators for Discrete Mixtures
Based on Minimum Order Statistics

Let X1, X2, ..., XN be independent identically distributed
continuous random variables where N is also a random
variable independent of X

′

is
Suppose

Z = min(X1, X2, ..., XN ) (1)

Then the cumulative distribution function (cdf) of Z given N
is

F (z|n) = 1− [1−G(z)]n (2)

where G(z) is the cdf of the parent distribution.
Therefore, survival function of Z given N is given by

S(z|n) = 1− F (z|n)
= [1−G(z)]n (3)

and

S(z) =

∞∑
n=1

S(z|n)pn

=

∞∑
n=1

[1−G(z)]n pn

= E [1−G(z)]N . (4)

Next, let

φN (s) = E
[
sN
]

(5)

be the pgf of N , then from equations (4) and (5)

S(z) = φN [1−G(z)] (6)

which is the pgf of N at 1−G(z), i.e, survival function of the
parent distribution.

The survival function of a discrete mixture, based on

the minimum order statistic, represents the probability of
generating N according to the survival function of the
underlying parent distribution.

The pdf is given by

f(z) =
−dS
dz

, z > 0 (7)

and the hazard function given by

h(z) =
f(z)

S(z)
, z > 0. (8)

For the Lomax (Pareto II) distribution, the pdf and cdf are
given below.

g(z) = αβ (1 + βz)
−(α+1) (9)

G(z) = 1− (1 + βz)
−α (10)

Therefore

S(z) = φN

[
(1 + βz)

−α
]

(11)

2.1. Poisson Generators Based on Minimum Order
Statistic

The zero-truncated Poisson distribution with parameter θ.
the probability mass function (pmf) is

pn =
θne−θ

1− e−θ
, n = 1, 2, 3, ..., θ > 0, (12)

the probability generating function (pgf) is

φN (s) =
eθs − 1

eθ − 1
(13)

and from equation (6) the survival function is

S(z) =
eθ[1−G(z)] − 1

eθ − 1
(14)

consequently, the pdf and hazard function are given by

f(z) =
θg(z)eθ[1−G(z)]

eθ − 1
, (15)

h(z) =
θg(z)

1− e−θ[1−G(z)]
(16)

Therefore, substituting equations (9) and (10) in the above
equations (14), (15) and (16) we obtain Lomax-Poisson
distribution for minimum order statistic as

f(z) =
θαβ (1 + βz)

−(α+1)
eθ(1+βz)

−α

eθ − 1
α, θβ > 0, z > 0 (17)
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s(z) =
eθ(1+βz)

−α − 1

eθ − 1
(18)

h(z) =
θαβ (1 + βz)

−(α+1)

1− e−θ(1+βz)−α (19)

Figure 1. Plot of the probability density function for varying values of the parameters α, β, and θ.
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Figure 2. Plot of the hazard function for various values of the parameters α, β, and θ.

2.2. Binomial Generators Based on Minimum Order
Statistic

The zero-truncated binomial distribution with index m =

1, 2, 3, . . . and parameter
θ

1 + θ
, where θ > 0.

The pmf is

pn =

(
m
n

)
θn

(1 + θ)
m − 1

, n = 1, 2, ...,m, θ > 0, (20)

the pgf is

φN (s) =
(1 + θs)

m − 1

(1 + θ)
m − 1

, (21)

From equation (6), the survival function can be expressed

as:

S(z) =
[1 + θ − θG(z)]m − 1

(1 + θ)
m − 1

therefore, the pdf and hazard function are given by

f(z) =
mθg(z) [1 + θ − θG(z)]m−1

(1 + θ)
m − 1

, (22)

h(z) =
mθg(z) [1 + θ − θG(z)]m−1

[1 + θ − θG(z)]m − 1
. (23)

By substituting equations (9) and (10) in the above equations
(21), (22) and (23) we obtain Lomax-Binomial distribution for
minimum order statistic as

S(z) =

[
1 + θ (1 + βz)

−α
]m
− 1

(1 + θ)
m − 1

(24)

f(z) =
mθαβ (1 + βz)

−(α+1)

(1 + θ)
m − 1

[
1 + θ (1 + βz)

−α
]m−1

(25)

h(z) =
mθαβ (1 + βz)

−(α+1)[
1 + θ (1 + βz)

−α
]{

1−
[
1 + θ (1 + βz)

−α
]−m} (26)



American Journal of Theoretical and Applied Statistics 2025; 14(1): 51-60 55

2.3. Geometric Generators Based on Minimum Order
Statistic

The shifted geometric distribution with parameter 1 − θ,
where 0 < θ < 1, the pmf is

pn = θn−1 (1− θ) , n = 1, 2, ... 0 < θ < 1, (27)

the pgf is

φN (s) =
(1− θ) s
1− θs

, (28)

From equation (6), the survival function can be expressed
as:

S(z) =
(1− θ) [1−G(z)]
[1− θ + θG(z)]

(29)

Consequently, the pdf and hazard function are given by

f(z) =
(1− θ) g(z)

[1− θ + θG(z)]
2 , (30)

h(z) =
g(z)

[1− θ + θG(z)] [1−G(z)]
. (31)

Similarly, substituting equations (9) and (10) in the above
equations (29), (30) and (31) we obtain Lomax-Binomial
distribution for minimum order statistic as

S(z) =
(1− θ) (1 + βz)

−α

1− θ [1 + βz]
−α (32)

f(z) =
αβ(1− θ) (1 + βz)

−(α+1)

[1− θ (1 + βz)
−α

]2
(33)

h(z) =
αβ

(1 + βz)[1− θ (1 + βz)
−α

]
(34)

2.4. Zero-truncated Negative Binomial Generators

The zero-truncated negative binomial distribution with
parameters α > 0 and 1 − θ, where 0 < θ < 1, the pmf
is

pn =

(
α+ n− 1

n

)
θn

(1− θ)−α − 1
, for n = 1, 2, ...,

0 < θ < 1, α > 0, (35)

the pgf is

φN (s) =
(1− θs)−α − 1

(1− θ)−α − 1
(36)

From equation (6), the survival function can be expressed
as:

S(z) =
[1− θ + θG(z)]

−α − 1

(1− θ)−α − 1
(37)

Therefore, the pdf and hazard function are given by

f(z) =
αθg(z) [1− θ + θG(z)]

−α−1

(1− θ)−α − 1
, (38)

h(z) =
αθg(z)

[1− θ + θG(z)] {1− [1− θ + θG(z)]
α}
. (39)

Therefore, substituting equations (9) and (10) in the above
equations (37), (38) and (39) we obtain Lomax-Binomial
distribution for minimum order statistic as

S(z) =

[
1− θ (1 + βz)

−α
]−a
− 1

(1− θ)−a − 1
(40)

f(z) =
aθαβ (1 + βz)

−(α+1)

(1− θ)−a − 1

{
1− θ (1 + βz)

−α
}−(a+1)

(41)

h(z) =
aθαβ (1 + βz)

−(α+1)

[1− θ (1 + βz)
−α

]
{
1−

[
1− θ (1 + βz)

−α
]a} (42)

2.5. Logarithmic Series Generators

For a logarithmic series distribution with parameter θ, 0 <
θ < 1, the pmf is

pn =
θn

−n log(1− θ)
, (43)

the pgf is

φN (s) =
log (1− θs)
log (1− θ)

(44)

From equation (6), the survival function can be expressed
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as:

S(z) =
log (1− θ + θG(z))

log (1− θ)

Consequently, the pdf and hazard function are given by

f(z) =
θg(z) [1− θ + θG(z)]

−1

− log (1− θ)
, (45)

h(z) =
[1− θ + θG(z)]

−1

− log (1− θ + θG(z))
(46)

Therefore, substituting equations (9) and (10) in the above
equations (45), (46) and (47) we obtain Lomax-Binomial
distribution for minimum order statistic as

S(z) =
log[1− θ (1 + βz)

−α
]

log(1− θ)
(47)

f(z) =
θαβ (1 + βz)

−(α+1)
[
1− θ (1 + βz)

−α
]−1

− log(1− θ)
(48)

h(z) =
θαβ (1 + βz)

−(α+1)
[
1− θ (1 + βz)

−α
]−1

− log
[
1− θ (1 + βz)

−α
] (49)

3. Generators for Discrete Mixtures
Based on Maximum Order Statistic

Let

Y = max(X1, X2, ..., XN ) (50)

Then the cdf of Y given N = n is

F (y|n) = [G(y)]
n (51)

whereG(y) denotes the cumulative distribution function of the
parent distribution.

Proposition 3.1. The cumulative distribution function of a
discrete mixture derived from the maximum order statistic
is the probability generating function of N evaluated at
the cumulative distribution function point of the parent
distribution.

Proof. The cdf of Y

F (y) =

∞∑
n=1

F (y|n)pn

=

∞∑
n=1

[G(y)]
n
pn

= E [G(y)]
N (52)

Considering equation (5),

F (y) = φN [G(y)] . (53)

Thus, the survival function is

S(z) = 1− φN [G(y)] (54)

The following proposition presents the generators for
discrete mixtures derived from the maximum order statistic for
the six mixing distributions.

Proposition 3.2. For y > 0, the survival function S(y), the
probability density function f(y), and the hazard function h(y)
for the discrete mixture of the maximum order statistic are as
follows:

(i). The zero-truncated Poisson distribution with parameter
θ, where θ > 0:

S(y) =
1− e−θ[1−G(y)]

1− e−θ
(55)

f(y) =
θg(y)e−θ[1−G(y)]

1− e−θ
, (56)

h(y) =
θg(y)

eθ[1−G(y)] − 1
(57)

(ii). The zero-truncated binomial distribution with index m =

1, 2, 3, . . . and parameters
θ

1 + θ
,, θ > 0:

S(y) =
(1 + θ)

m − [1 + θG(y)]
m

(1 + θ)
m − 1

(58)

f(y) =
mθg(y) [1 + θG(y)]

m−1

(1 + θ)
m − 1

, (59)

h(y) =
mθg(y) [1 + θG(y)]

m−1

(1 + θ)
m − [1 + θG(y)]

m (60)

(iii). The shifted geometric distribution with parameter 1 − θ,
0 < θ < 1:

S(y) =
1−G(y)
1− θG(y)

(61)

f(y) =
(1− θ) g(y)
[1− θG(y)]2

, (62)

h(y) =
(1− θ) g(y)

[1−G(y)][1− θG(y)]
(63)

(iv). The zero-truncated negative binomial distribution with
parameters where α > 0 and 1− θ, 0 < θ < 1:
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S(y) =
(1− θ)−α − [1− θG(y)]−α

(1− θ)−α − 1
(64)

f(y) =
αθg(y) [1− θG(y)]−α−1

(1− θ)−α − 1
, (65)

h(y) =
αθg(y) [1− θG(y)]−α−1

(1− θ)−α − [1− θG(y)]−α
(66)

(v). The negative binomial distribution with parameters r =
1, 2, 3, 4, ... and 1− θ, 0 < θ < 1:

S(y) = 1−
[
(1− θ)G(y)
1− θG(y)

]r
(67)

f(y) =
r (1− θ)r g(y)[G(y)]r−1

[1− θG(y)]r+1 , (68)

h(y) =
r (1− θ)r g(y)[G(y)]r−1

[1− θG(y)] {[1− θG(y)]r − (1− θ)r[G(y)]r}
(69)

(vi). For logarithmic series distribution with parameter 1−θ,
0 < θ < 1:

S(y) =
log(1− θ)− log[1− θG(y)]

log(1− θ)
, (70)

f(y) =
θg(y)

[− log(1− θ)][1− θG(y)]
(71)

4. Discrete Mixtures Based on
Maximum Order Statistic from
Lomax Distribution

By utilizing the generators derived in Section 4 for the
Lomax distribution, we arrive at the results presented in the
following proposition.

Proposition 4.1. For y > 0, the survival function S(y),

the probability density function f(y), and the hazard function
h(y) of the discrete mixture, derived from the maximum order
statistic of the Lomax distribution with parameter λ > 0, are
as follows;

(i). The zero-truncated Poisson distribution with parameter
θ, where θ > 0.

S(y) =
1− e−θ(1+βy)−α

(1− e−θ)
(72)

f(y) =
θαβ (1 + βy)

−(α+1)
e−θ(1+βy)

−α

(1− e−θ)
, (73)

h(y) =
θαβ (1 + βy)

−(α+1)

eθ(1+βy)
−α − 1

(74)

as obtained by Al-Zahrani et al (2014).

Figure 3. Plot of probability density function for different values of the parameters α,β and θ.
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Figure 4. Plot of hazard function for different values of the parameters α,β and θ.

(ii). For zero-truncated binomial distribution with index m = 1, 2, 3, . . . and θ
1+θ , θ > 0:

S(y) =
(1 + θ)

m −
[
1 + θ

(
1− (1 + βy)

−α
)]m

(1 + θ)
m − 1

, (75)

f(y) =
mθαβ (1 + βy)

−(α+1)

(1 + θ)
m − 1

[
1 + θ(1− (1 + βy)

−α
)
]m−1

, (76)

h(y) =
mθαβ (1 + βy)

−(α+1)
[
1 + θ

(
1− (1 + βy)

−α
)]m−1

(1 + θ)
m −

[
1 + θ

(
1− (1 + βy)

−α
)]m (77)

(iii). Shifted geometric distribution with parameter 1− θ, where 0 < θ < 1:

S(y) =
(1 + βy)

−α

1− θ
[
1− (1 + βy)

−α
] , (78)

f(y) =
(1− θ)αβ (1 + βy)

−(α+1)[
1− θ

(
1− (1 + βy)

−α
)]2 , (79)

h(y) =
αβ(1− θ)

(1 + βy) [1− θ
(
1− (1 + βy)

−α
)
]

(80)

(iv). Zero-truncated negative binomial distribution with parameters α > 0 and 1− θ, where 0 < θ < 1:

S(y) =
(1− θ)−a −

[
1− θ

(
1− (1 + βy)

−α
)]−a

(1− θ)−a − 1
, (81)

f(y) =
aθαβ (1 + βy)

−(α+1)

(1− θ)−a − 1

[
1− θ

(
1− (1 + βy)

−α
)]−(a+1)

, (82)
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h(y) =
aθαβ (1 + βy)

−(α+1)
(1− θ)a[

1− θ
(
1− (1 + βy)

−α
)]{[

1− θ
(
1− (1 + βy)

−α
)]a
− (1− θ)a

} . (83)

(v). logarithmic series distribution with parameter 1− θ, where 0 < θ < 1:

S(y) =
log(1− θ)− log[1− θ

(
1− (1 + βy)

−α
)
]

log(1− θ)
, (84)

f(y) =
θαβ (1 + βy)

−(α+1)
[
1− θ

(
1− (1 + βy)

−α
)]−1

− log(1− θ)
, (85)

h(y) =
θαβ (1 + βy)

−(α+1)

log[1− θ
(
1− (1 + βy)

−α
)
]− log(1− θ)

(86)

5. Conclusion
We have developed generators for discrete mixtures derived

from order statistics of continuous distributions using the
probability generating function (pgf) technique. Although
previous research has explored discrete mixtures of order
statistics from distributions like Lomax, these studies did not
employ the generator and pgf approach.

In this paper, we focus on five discrete mixing distributions.
However, other distributions such as discrete phase-type
distributions, Poisson, binomial, and negative binomial
mixtures could also be applied.

The generator method for creating probability distributions
became widely recognized following the introduction of the
beta generator by Eugene et al. and Jones, with the
exponentiated generator being a specific example. In this
paper, we present new generators designed to construct
distributions, specifically discrete mixtures based on minimum
and maximum order statistics.
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