
American Journal of Theoretical and Applied Statistics
2025; 14(2): 61-76
http://www.sciencepublishinggroup.com/j/ajtas
doi: 10.11648/j.ajtas.20251402.12
ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

Study on Efficacy of Kendall’s τ Based Test Statistic in
Generalized Partially Linear Regression Model

Sthitadhi Das

Department of Mathematics, Brainware University, Kolkata, India

Email address:
sthdas999@gmail.com (Sthitadhi Das)

To cite this article:
Sthitadhi Das. (2025). Study on Efficacy of Kendall’s τ Based Test Statistic in Generalized Partially Linear Regression Model. American
Journal of Theoretical and Applied Statistics, 14(2), 61-76. https://doi.org/10.11648/j.ajtas.20251402.12

Received: 12 February 2025; Accepted: 3 March 2025; Published: 24 March 2025

Abstract: Under the setup of a generalized partially linear model Y = β1X1 + . . .+ βpXp +m(W1, . . . ,Wq) + ε with p
parametric regressors X1, . . . , Xp and q nonparametric regressors W1, . . . ,Wq , we are motivated to test on the independence
between all the (p+ q) regressors and the random error ε. Since one obtains unbiased prediction of the study variable of interest
when the regressors under consideration are independent of the random error, such testing of independence is a vital objective
indeed. Here, m(W1, . . . ,Wq) is a Lipschitz continuous function defined on Rq → R. To carry out the prescribed testing
scheme, some test statistics are formed based on the nonparametric measure of association Kendall’s (1938) τ . Moreover, as
an implication of the null hypothesis suggesting independence between joint (p + q) regressors and ε, we further modify the
hypothesis as ε is not observable at all. Eventually, independence among the r-th order difference of estimated response and the
r-th order difference of observed response is implied from the original null hypothesis. Later, the concept of V-statistic is applied
to propose the test statistics based on the paired observations on the r-th differences of the estimated and observed Y . Their
consistent power performances are achieved under a sequence of contiguous alternatives stating complete dependence between
error and regressors while testing the independence of regressors with ε. Le Cam (1960)’s theory on contiguity is required to
develop a sequence of contiguous alternative hypotheses in this regard. The asymptotic powers of the test statistics are evaluated
with the help of their asymptotic distributions under null hypothesis of independence and contiguous alternatives. Subsequently,
a data analysis is performed to substantiate the eligibility of the proposed test statistics in such testing setup.

Keywords: Generalized Partially Linear Regression Model, Nonparametric Regression Model, Kendall’s τ ,
Measures of Association, Contiguous Alternatives, Asymptotic Power, V-statistic

1. Introduction
Generalized partially linear regression models have

important applications in Economics, Biological Sciences,
Environmental science, Business administration etc. A
generalized partially linear regression has several utilities in
the literature of Statistics. When some of the concomitants
jointly display some approximate linear dependence on
the study variable of interest or response, it is generally
recommended to carry on with such regression model. Here,
the study variable is generally explained through the linear
function (β1X1 + . . .+ βpXp) of the parametric regressors
X1, . . . , Xp with unknown constants β1, . . . , βp and an
intractable nonparametric function m(W1, . . . ,Wq) of the
q nonparametric regressors W1, . . . ,Wq; p, q ≥ 2. In such

regression setup, an important objective is determination
of estimated response Ŷ of response Y on the basis of
available information on the regressors X1, . . . , Xp as well
as W1, . . . ,Wq , for further prediction on Y . Many authors in
recent past extensively investigated on the utilities of various
semiparametric regression models including the partially
linear model, the one with remarkable significance. Using
suitable parametric and nonparametric estimation methods,
one can further obtain reasonable estimators of the response,
parameters and the nonparametric regression function. This
method was followed by several authors including Robinson
(1988) [16], Cuzick (1992) [5], Andrews (1995) [1], Hamilton
(1997) [10], Liu et al. (1997) [12], Qi Li (2000) [14], Wang et
al. (2011) [19] etc. to derive efficient estimators of the model
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components as well as their asymptotic properties. Das et al.
(2022) [6] studied the dependence between sole nonparametric
covariate and the error in a simple partially linear model, with
the aid of nonparametric regression technique for estimation
of kernel density due to Nadaraya-Watson to estimate the
unknown nonparametric regression function. In addition,
Robinson (1988) [16]’s method was helpful to find out
consistent estimator of order n−1/2 of the sole parameter in the
model. On the other hand, Zhou et al. (2021) [20] studied the
asymptotic properties of V-statistic which are quite relevant in
this article.

The article is organized as follows. In Section 2, the
unknown parameters β1, . . . , βp are estimated by Robinson’s
technique and the nonparametric function m(W1, . . . ,Wq) is
estimated by Nadaraya-Watson estimation of kernel density
method. Combining these two estimation procedures, the
estimation of response Y is furnished completely. Next,
the relevant hypotheses of interest to test whether the joint
covariates (X1, . . . , Xp,W1, . . . ,Wq) is independent to ε are
formulated in Section 3, by applying the theory of contiguity
established by Le Cam (1960) [4]. Section 4 presents the
statistics to be used for the purpose of testing independence
in this context, which is indeed a sample analogue of Kendall
(1938) [11]’s τ . The test statistic is developed by the concept
of V-statistic based on some paired samples on (Ŷ ∗(r), Y ∗(r))
where Ŷ ∗(r) denotes the r-th order difference of estimated
Y and Ŷ ∗(r) is the r-th order difference of Y itself. Also,
the asymptotic distributions of the test statistic under both the
null hypothesis and the contiguous alternatives are derived in
this section under various relevant assumptions. Following the
limiting distributions of the test statistics, Section 5 delineates
its power analysis. For further improvement of its asymptotic
power, the order of difference r has been increased gradually.
The power curves of the test statistics under the setup of
contiguous alternatives are generated against increasing order
of difference r for depiction of improved power performance
of the test statistic by defining some conditional errors with
specified distributions.

2. Model Estimation
The p parameters β1, . . ., βp are estimated by the

technique provided by Robinson (1988) [16]. To estimate
the nonparametric regression function m(·, . . . , ·) we consider
the usual kernel density estimation method developed by

Nadaraya-Watson. Let us re-express the model as follows.

Yi = X
∼
T

i
β
∼

+m(W
∼ i

) + εi (1)

where X
∼ i

= (Xi1, . . . , Xip)
T , W

∼ i
= (Wi1, . . . ,Wiq)

T ,

i = 1, . . . , n. Taking conditional expectation to both sides
of (1) with respect to W

∼ i
, the model gets transformed to the

following setup.

E(Yi|W∼ i
) = E(X

∼ i
|W
∼ i

)Tβ
∼

+m(W
∼ i

) + E(εi|W∼ i
)

i.e. mY (w
∼

) = mX
∼

(w
∼

)Tβ
∼

+m(w
∼

), say. (2)

Subtracting (2) from (1), we get

Yi −mY (w
∼

) = (X
∼ i
−mX

∼
(w
∼

))Tβ
∼

+ εi

=⇒ εY i = εTX
∼
iβ
∼

+ εi, where

Yi = mY (W
∼ i

) + εY i (3)

X
∼ i

= mX
∼

(W
∼ i

) + εX
∼
i, i = 1, . . . , n (4)

=⇒ β
∼

∗ =

(
n∑
i=1

εX
∼
iε
T
X
∼
i

)−1( n∑
i=1

εX
∼
iεY i

)
. (5)

Due to the presence of εX
∼
i and εY i, the estimator β

∼

∗

becomes an infeasible quantity. So, it has less feasibility
indeed and its improvement can be made by estimating the two
error quantities as follows.

From models (3) and (4), the estimators of mY (·) and
mX
∼

(·) are yielded by applying Nadaraya-Watson estimation
of kernel density method, as provided next. Note that,

mY (w
∼

) = E(Y |W
∼

= w
∼

) (6)

=

∫ ∞
−∞

y · fY |W
∼

(y|w
∼

) dy (7)

=

∫ ∞
−∞

y ·
PY,W

∼
(y, w
∼

)

gW
∼

(w
∼

)
dy (8)

where w
∼

= (w1, . . . , wq)
′, PY,W

∼
(·, ·) is the joint p.d.f. of

(Y,W
∼

) and gW
∼

(·) is the p.d.f. of W
∼

. The kernel density of
W
∼

is estimated as

ĝW
∼

(w
∼

) =
1

n

n∑
i=1

1

h1 . . . hq
k

(
w1 −Wi1

h1
, . . . ,

wq −Wiq

hq

)
(9)

at W
∼

= w
∼

. Here, k(·, . . . , ·) is the q-dimensional kernel density function of W
∼

. We can further simplify the expression of ĝW
∼

(·)
as

ĝW
∼

(w
∼

) =
1

n

n∑
i=1

{ q∏
j=1

1

hj
kj

(
wj −Wij

hj

)}
(10)

where kj(·)’s are the kernel density functions ofWj’s, j = 1, . . . , q; h1, . . . , hq are the bandwidths (> 0) for estimation of kernel
density functions of W1, . . . ,Wq . In similar manner, the joint p.d.f. of (Y,W

∼
) is estimated as
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P̂Y,W
∼

(y, w
∼

) =
1

n

n∑
i=1

1

hy
ky

(
y − Yi
hy

){ q∏
j=1

1

hj
kj

(
wj −Wij

hj

)}
where hy is the bandwidth for estimating the p.d.f. of Y . Then, at W

∼
= w
∼

, m̂Y (w
∼

) is estimated as

m̂Y (w
∼

) =

∫ ∞
−∞

y ·
ĥY,W

∼
(y, w
∼

)

ĝW
∼

(w
∼

)
dy =

1

n

n∑
i=1

{ q∏
j=1

1

hj
kj

(
wj −Wij

hj

)}
1

n

n∑
i=1

q∏
j=1

1

hj
kj

(
wj −Wij

hj

) .

Next, observe that

mX
∼

(w
∼

) = E(X
∼
|W
∼

= w
∼

) =

∫
Rp

x
∼
· gX
∼
|W
∼

(x
∼
|w
∼

) dx
∼

=

∫
Rp

x
∼
·
HX
∼
,W
∼

(x
∼
, w
∼

)

gW
∼

(w
∼

)
dx
∼

where HX
∼
,W
∼

(·, ·) is the joint pdf of (X
∼
,W
∼

) estimated as

ĤX
∼
,w
∼

(x
∼
, w
∼

) =
1

n

n∑
i=1

p∏
m=1

1

am
km;Xi

(
xm −Xim

am

){ q∏
z=1

1

bz
kz;Wi

(
wz −Wiz

bz

)}
where a1, . . . , ap are the bandwidths for estimating the kernel densities of X1, . . . , Xp and b1, . . . , bq are the bandwidths for
estimating the kernel densities of W1, . . . ,Wq . Next, mX

∼
(w
∼

) is estimated as

m̂X
∼

(w
∼

) =

1

n

n∑
i=1

{ p∏
m=1

Xim

}{ q∏
z=1

1

bz
kz;Wi

(
wz −Wiz

bz

)}
1

n

n∑
i=1

{ q∏
z=1

1

bz
kz;Wi

(
wz −Wiz

bz

)} .

After estimating m̂Y (·) and m̂X
∼

(·), the errors

are estimated further as ε̂Y i = Yi − m̂Y (W
∼ i

) and

ε̂X
∼
i = X

∼ i
− m̂X

∼
(W
∼ i

), followed by feasible estimation of

β
∼

as β̂
∼

=

(
n∑
i=1

ε̂X
∼
iε̂
T
X
∼
i

)−1( n∑
i=1

ε̂X
∼
iε̂Y i

)
. Next, our

objective is to estimate the nonparametric regression function
m(·, . . . , ·). Note that, the partially linear model can be
further transformed to a nonparametric regression model as
Yi −X∼

T

i
β
∼

= m(W
∼ i

) + εi =⇒ Y
′

i = m(W
∼ i

) + εi, i = 1, . . . , n

where Y
′

i = Yi − X
∼
T

i
β
∼

is the transformed response for

all i = 1, . . . , n. Based on i.i.d. observations (Y
′

i ,W∼ i
)’ s,

i = 1, . . . , n, m(·) is finally estimated as

m̂(w
∼

) =

1

n

n∑
i=1

{ q∏
j=1

kj;Wi

(
wj −Wij

hj

)}
Y
′

i

1

n

n∑
i=1

{ q∏
j=1

kj;Wi

(
wj −Wij

hj

)} ,

where Ŷ
′

i = (Yi −X∼
T

i
β̂
∼

).

Here, the Nadaraya-Watson kernel density estimation
method has been preferred over any other traditional
nonparametric smoothing method like spline smoothing or
polynomial smoothing etc., solely because a semiparametric
regression model is expected to have lower dimensionality
compared to a traditional multiple nonparametric regression
model. The Nadaraya-Watson kernel density estimation
technique provides more accurate estimated value of the
nonparametric regression function in a semiparametric
model whereas spline smoothing, polynomial smoothing are
optimum choices in the context of a nonparametric regression
model. For the choices of bandwidths, the idea of Silverman
(2018) [17] is needed in this discourse.

3. Hypotheses

The independence between jointly distributed regressors
X1, . . . , Xp,W1, . . . ,Wq and error ε could be a matter
of investigation in our proposed partially linear regression
setup. The natural hypotheses of interest in this regard are
H0 : Z

∼
⊥⊥ ε and H1 : Z

∼
6⊥⊥ ε where Z

∼
= (X

∼
,W
∼

) is the
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(p + q)-dimensional vector of regressors. But we have to
work on the hypotheses further due to unobservability of ε by
defining a suitable function of ε on R, say s(ε), which is indeed
tractable.

Instead of single error ε, we would like to consider a
function of several i.i.d. errors, say s(ε1, . . . , εt), t ∈ N. The
proposition of s(ε1, . . . , εt) was made by various authors in
recent past. Einmahl et al. (2008) [9] defined a second order
difference of three i.i.d. errors as (ε1 − 2ε2 + ε3) to conduct
a test of hypothesis of independence between X and ε under a
simple nonparametric regression model Y = m(X) + ε. The
function (ε1−2ε2+ε3) is well approximated by (Y1−2Y2+Y3)
due to smoothness assumption of the nonparametric regression
function of m(·) where Y1, Y2, Y3 are three observations on
response Y corresponding to ε1, ε2, ε3. Such assumption is
required solely because of the unobservability of ε1, ε2, ε3.
Later, an extended idea was executed by Das et al. (2023)
[7], by taking third order of difference of three i.i.d. errors
(ε1−3ε2 +3ε3− ε4) under the same nonparametric regression
context based on some nonparametric measures of association
based on Kendall’s τ , Bergsma et al. (2014)’s τ∗ and Szekely
et al. (2007) [18]’s dCov, which indeed contributes more than
the corresponding second order difference of ε in achieving
more powerful test of independence between X and ε.

In addition, taking a simple partially linear regression model
Y = Zβ + m(X) + ε, Das et al. (2022) [6] tested
the independence between only the parametric regression
coefficient X and the error ε and established the power of the
tests based on τ , τ∗ and dCov where they defined the second
order difference of ε, later approximated by the corresponding
second order difference of response values. Hence, there might
be an additional question regarding the performance of the test
statistics if one proceeds to check the independence between
(Z,X) and ε under the same model. In this work, a more
generalized version of a partially linear regression model has
been taken, and the objective lies in testing independence
between all the regressors and error. Moreover, the testing
scheme would involve a more general order difference of ε
(or, equivalently, Y as m(·, . . . , ·) is assumed to be Lipschitz
continuous here) rather than specified ones like second or third
order differences, as mentioned above.

Hence, a real-valued function of the (p + q) regressors is
needed to perform the test, and H0 further implies that the
function is independent of s(ε1, . . . , εt) where ε1, . . . , εt are
t i.i.d. errors. To obtain a well-specified null hypothesis, we

first define a general r-th order differences of ε and Y as

ε∗(r) =

r+1∑
j=1

(−1)j−1
(

r

j − 1

)
εj

and

Y ∗(r) =

r+1∑
j=1

(−1)j−1
(

r

j − 1

)
Yj

where ε1, . . . , εr+1 and Y1, . . . , Yr+1 are (r + 1) i.i.d. errors
and responses, respectively. First, we would like to discuss
why considering the r-th order difference of error is better than
any general linear function of the errors.

Proposition 3.1. ε∗(r) has maximal k-th order absolute

moment among all possible linear functions
r+1∑
j=1

ujεj with real

coefficients uj’s
The above proposition holds for r = 2 as delineated by Dhar

et al. (2018) [8] r = 3 as deduced by Das et al. (2023) [7].
The general proof is available in Appendix-I.

Theorem 3.1. Y ∗(r) ≈ ε∗(r). Moreover, among all linear
functions, ε∗(r) has the maximum k-th order absolute moment.

The above theorem is quite meaningful in this context. It
is evident that ε∗(1) can be well approximated by Y ∗(1),
but one can obtain a test of homoscedasticity of ε based on
ε∗(1). Hence, Das et al.,(2023) [7] considered ε∗(2) and
approximated it by Y ∗(2) to construct a test scheme for the
independence between nonparametric covariate X and error
ε. Furthermore, in a simple partially linear regression setup
Y = Zβ+m(X)+ε, Das et al. (2022) [6] considered ε∗(3) to
develop a test of independence between the sole nonparametric
covariate X and the random error ε. The proof of Theorem
3.1 is elaborately discussed in Appendix-II to understand the
consideration of general order difference of ε in this regard.

Finally, we get transformed null hypothesis as
H0 : (X

∼
,W
∼

) ⊥⊥ ε∗(r) which further implies approximately

that (X
∼
,W
∼

) ⊥⊥ Y ∗(r). Again, as another implication of H0,

any continuous function of (X
∼
,W
∼

) is independent to Y ∗(r).

The following proposition is helpful to proceed with Ŷ in this
testing scheme. Proof is available in Appendix-II.

Proposition 3.2. Ŷ ∗(r) can be approximated as a function
of (X

∼
,W
∼

) where Ŷ ∗(r) is the r-th order difference of Ŷ .
Therefore, the null hypothesis further implies that

H0 : Ŷ ∗(r) ⊥⊥ Y ∗(r) and subsequently the hypotheses of
interest are derived as

H0 : Ŷ ∗(r) ⊥⊥ Y ∗(r) against H1 : Ŷ ∗(r) 6⊥⊥ Y ∗(r). (11)

(11) further implies that H0 : M(Ŷ ∗(r), Y ∗(r)) = 0
against H1 : M(Ŷ ∗(r), Y ∗(r)) 6= 0, where M is the
concerning nonparametric measure of association between
Ŷ ∗(r) and Y ∗(r). A more formal approach for testing the
hypotheses is to develop a consistent test procedure. An useful

wayout to perform the test consistently is forming a sequence
of contiguous alternative hypotheses due to Le Cam (1960) [4].
Such a sequence converges to H0 with increasing sample size.
The following sequence of alternative hypotheses (see Das et
al. (2023) [7]), a contiguous one, is considered as
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Hn : Fn;Ŷ ∗(r),Y ∗(r)(ŷ
∗(r), y∗(r)) =

(
1− µ√

n

)
F0;Ŷ ∗(r),Y ∗(r)(ŷ

∗(r), y∗(r)) +
µ√
n
FŶ ∗(r),Y ∗(r)(ŷ

∗(r), y∗(r)) (12)

where Fn;Ŷ ∗(r),Y ∗(r)(·, ·) is the joint CDF of (Ŷ ∗(r), Y ∗(r)) under Hn, F0;Ŷ ∗(r),Y ∗(r)(·, ·) and FŶ ∗(r),Y ∗(r)(·, ·) are the joint

CDFs of (Ŷ ∗(r), Y ∗(r)) under H0 and H1 respectively, µ(> 0) is the tuning parameter.
Theorem 3.2. Under three following assumptions:

1.
∂2

∂ŷ∗∂y∗
F0(ŷ∗(r), y∗(r)) <∞, say f0(ŷ∗(r), y∗(r)) ∀ (ŷ∗(r), y∗(r)),

2.
∂2

∂ŷ∗∂y∗
F (ŷ∗(r), y∗(r)) <∞, say f(ŷ∗(r), y∗(r)) ∀ (ŷ∗(r), y∗(r)),

3. EF0

[
f(ŷ∗(r), y∗(r))

f0(ŷ∗(r), y∗(r))
− 1

]2
<∞,

Hn is a contiguous sequence of alternative hypotheses.
The proof is furnished by Das et al. (2022) [6, p. 559].
Here f0(·, ·) and f(·, ·) are the joint probability density

function of (Ŷ ∗(r), Y ∗(r)) under H0 and H1 respectively.
Next, we proceed to test H0 against Hn, by constructing
suitable test statistics based on the theory of non-degenerate
V-statistic.

4. Test Statistics

To test the null hypothesis that Ŷ ∗(r) is independent
to Y ∗(r), a convenient approach is to develop robust test
statistics. With the changing values of r, the asymptotic
properties of the test statistics are expected to vary. For
instance, one may study on the asymptotic power analysis
of the test statistics for different choices of r. A frequently
utilised measure of association, namely Kendall’s τ , is

considered in this backdrop to evaluate power performance
of the test statistics made upon τ . A s discussed earlier, we
proceed to test

H0 : τ(Ŷ ∗(r), Y ∗(r)) = 0 vs. H1 : τ(Ŷ ∗(r), Y ∗(r)) 6= 0.

To test the above hypotheses, we construct appropriate V-
statistic based on paired observations from the bivariate CDF
of (Ŷ ∗(r), Y ∗(r)). Let (ŷ∗1 , y

∗
1), . . . , (ŷ∗n, y

∗
n) be the n i.i.d.

samples from the joint CDF. Then, the kernel of Kendall’s τ is
defined as

h((ŷ∗α1
(r), y∗α1

(r)), (ŷ∗α2
(r), y∗α2

(r))) (13)
= sign{(ŷ∗α1

(r)− ŷ∗α2
(r))(y∗α1

(r)− y∗α2
(r))}. (14)

for 1 ≤ α1 6= α2 ≤ n. The corresponding V -statistic to test
H0 against Hn is regarded as the test statistic of interest in our
discussion. The form of the test statistic is provided as

T (r)
n =

1

n2

n∑
α1,α2=1

sign{(ŷ∗α1
(r)− ŷ∗α2

(r))(y∗α1
(r)− y∗α2

(r))}.

Since h((ŷ∗α1
(r), y∗α1

(r)), (ŷ∗α2
(r), y∗α2

(r))) has order of
degeneracy 0 (Das et al. (2022) [6]), T (r)

n is a nondegenerate
V-statistic indeed. Then, the asymptotic distribution
of
√
n(T (r)

n − EH0
(T (r)
n )) is a Gaussian one with zero

expectation and a constant variance. The limiting distributions
of T (r)

n , both under H0 and Hn, are required to determine its

asymptotic power for different values of r. Zhou et al. (2021)
[20] discussed on the asymptotic normality of a nondegenerate
V-statistic in detail.

Theorem 4.1. Under H0,√
n(T (r)

n − EH0
(T (r)
n ))

L−→N(0, 4η1,2(r)), provided that
E[h2((Ŷ ∗1 (r), Y ∗1 (r)), (Ŷ ∗2 (r), Y ∗2 (r)))] <∞ with

η1,2(r) = V ar[E(h((Ŷ ∗1 (r), Y ∗1 (r)), (Ŷ ∗2 (r), Y ∗2 (r)))
∣∣∣(Ŷ ∗1 (r), Y ∗1 (r)))] =

1

9
. (15)

Theorem 4.2. Under Hn,

√
n(T (r)

n − EH0
(T (r)
n ))

L−→N(ν(r), 4η1,2(r)),

where

ν(r) = lim
n→∞

CovH0

(√
n(T (r)

n − EH0(T (r)
n )), log

dFn
dF0

)
.

The theorem is similar to Theorem 9 (iv) of Das et al. (2022)[6]. Le Cam’s third lemma is useful to complete the proof. Also,
ν(r) = µ(2Pc1 − 1) where Pc1 is the probability of concordance of n i.i.d. samples from (Ŷ ∗(r), Y ∗(r)). Furthermore, ν(r)
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can also be deduced as

µEH0

[
h((Ŷ ∗1 (r), Y ∗1 (r)), (Ŷ ∗2 (r), Y ∗2 (r)))× f(Ŷ ∗1 (r), Y ∗1 (r))

f0(Ŷ ∗1 (r), Y ∗1 (r))

]
.

Next, we compute asymptotic power of
√
n(T

(r)
n −

EH0
(T

(r)
n )) in the proposed test setup.

5. Asymptotic Powers

The statistical power of a test statistic determines how it
behaves when the null of hypothesis lacks its rationality. A
reasonably powerful test statistic is always desired to perform a
given test of hypothesis. However, consistency plays a key role
to delineate the utility of the test statistic. In this circumstance,
the setup of contiguous alternatives is considered only to
develop a consistent test statistic T (r)

n .
The asymptotic power of T

(r)
n is determined as

PHn
(
√
n(T (r)

n − EH0
(T (r)
n )) > tκ) = 1− Φ

(
tκ − ν(r)√

4η1,2(r)

)
,

where tκ satisfies PH0
(
√
n(T (r)

n − EH0
(T (r)
n )) > tκ) = κ

with 0 < κ < 1 and Φ(·) is the CDF of a standard normal
distribution. For µ = 0, ν(r) = 0 for which asymptotic
power and size of T (r)

n are equal. Otherwise, as µ ↑, the
limiting power of T (r)

n increases, provided the probability of
concordance exceeds 0.5.

Next, the consistency of
√
n(T (r)

n − EH0
(T (r)
n )) as well as

its bigger power for increasing sample size need to be checked
to perform the relevant power study eventually.

Proposition 5.1. For n∗ > n, PHn
(
√
n(T

(r)
n −

EH0
(T

(r)
n )) > tκ) < PHn

(
√
n∗(T

(r)
n∗ − E(T

(r)
n∗ )) > tκ)

and PHn(
√
n(T

(r)
n − EH0(T

(r)
n )) > tκ) ↑ 1 as µ ↑ and

n→∞.
Now we shall consider various examples to study the power

performance of T (r)
n against the tuning parameter µ by taking

the sample size n = 1000 and the orders of difference r =
2, 3, 4, 5, 10.

5.1. Examples

1. We consider a generalized partially linear model
Y = β1X1 + β2X2 + m(W1,W2) + ε with
usual assumptions on error ε, viz., (i) E(ε|X1 =
x1, X2 = x2,W1 = w1,W2 = w2) = 0 and
(ii) E(ε2|X1 = x1, X2 = x2,W1 = w1,W2 =
w2) = σ2(x1, x2, w1, w2) for all (x1, x2, w1, w2).
The joint distribution of Z

∼
= (X1, X2,W1,W2)T

is N4




0
0
0
0

 ,


0.18 −0.06 0.22 −0.13
−0.06 0.14 −0.28 0.19
0.22 −0.28 0.2 0.17
−0.13 0.19 0.17 0.25


,

which is independent of ε ∼ N(0, 0.015) under
H0. In addition, Y has a t-distribution with 2

degrees of freedom. The nonparametric regression
function is considered as m(W1,W2) = 0.45W1W2 −
0.25W 2

1W2 + W 3
2 . The conditional error distributions

for c
∼1

= (−1.5,−1.7, 1.2, 1.3)
′ ∈ R4 under H1 are

Example 5.1. ε
∣∣∣Z
∼
∼ N(0, 0.015 |1 + c

∼
T

1
Z
∼
|).

Example 5.2. ε
∣∣∣Z
∼

D
=

χ2
Z
∼
− dZ

∼√
2 dZ
∼

where

dZ
∼

= |1 + c
∼
T

1
Z
∼
|−1 and χ2

Z
∼
∼ χ2

ddZ
∼
e.

Figure 1. Asymptotic powers of T (r)
n in Example 5.1 where p = q = 2.

Figure 2. Asymptotic powers of T (r)
n in Example 5.2 where p = q = 2.

2. A generalized partially linear model Y = β1X1 +
β2X2 + β3X3 + m(W1,W2) + ε is considered
along with assumptions on ε such as (i) E(ε|X1 =
x1, X2 = x2, X3 = x3,W1 = w1,W2 =
w2) = 0 and (ii) E(ε2|X1 = x1, X2 =
x2, X3 = x3,W1 = w1,W2 = w2) =
σ2(x1, x2, x3, w1, w2) for all (x1, x2, x3, w1, w2). The
joint distribution of Z

∼
= (X1, X2, X3,W1,W2)T is

N5




0

0

0

0

0

 ,


0.18 −0.06 0.09 0.32 −0.18

−0.06 0.14 −0.17 0.25 0.15

0.09 −0.17 0.25 −0.3 −0.23

0.32 0.25 −0.3 0.2 0.17

−0.18 0.15 −0.23 0.17 0.25



,
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which is independently distributed to ε ∼ N(0, 0.015)
under H0. In addition, Y ∼ t2. The nonparametric
regression function is considered as m(W1,W2) =
0.45W1W2 − 0.25W 2

1W2 + W 3
2 . Under H1 for c

∼2
=

(−1.5,−1.7, 1.2, 1.3,−3.5)
′ ∈ R5, the conditional

error distributions are considered as
Example 5.3. Under H1, ε

∣∣∣Z
∼
∼ N(0, 0.015 |1 +

c
∼
T

2
Z
∼
|)

Example 5.4. Under H1, ε
∣∣∣Z
∼

D
=

χ2
Z
∼
− d

′

Z
∼√

2 d
′
Z
∼

where

d
′

Z
∼

= |1 + c
∼
T

2
Z
∼
|−1 and χ2

Z
∼
∼ χ2

dd
′

Z
∼
e
.

Figure 3. Asymptotic powers of T (r)
n in Example 5.3 where p = 3, q = 2.

Figure 4. Asymptotic powers of T (r)
n in Example 5.4 where p = 3, q = 2.

3. The generalized partially linear model Y = β1X1 +
β2X2 + m(W1,W2,W3) + ε is considered with
assumptions on ε as (i) E(ε|X1 = x1, X2 = x2,W1 =
w1,W2 = w2,W3 = w3) = 0 and (ii) E(ε2|X1 =
x1, X2 = x2,W1 = w1,W2 = w2,W3 = w3) =
σ2(x1, x2, w1, w2, w3) for all (x1, x2, w1, w2, w3). The
joint distribution of Z

∼
= (X1, X2,W1,W2,W3)T is

N5




0

0

0

0

0

 ,


0.18 −0.06 0.32 −0.18 −0.24

−0.06 0.14 0.25 0.15 −0.18

0.32 0.25 0.2 0.17 −0.22

−0.18 0.15 0.17 0.25 0.11

−0.24 −0.18 −0.22 0.11 0.27




which is independently distributed to e ∼ N(0, 0.015)
under H0 and Y ∼ t2. The nonparametric
regression function is considered as φ(W1,W2,W3) =

0.45W1W2 − 0.25W 2
1W3 + W 3

3 . Under H1 for
c
∼3

= (2.5, 4,−6.2,−5.5, 3.1)
′ ∈ R5, the conditional

error distributions are considered as
Example 5.5. Under H1, ε

∣∣∣Z
∼
∼ N(0, 0.015 |1 +

c
∼
T

3
Z
∼
|)

Example 5.6. Under H1, e
∣∣∣Z
∼

D
=

χ2
Z
∼
− d

′

Z
∼√

2 d
′
Z
∼

where

d
′

Z
∼

= |1 + c
∼
T

3
Z
∼
|−1 and χ2

Z
∼
∼ χ2

dd
′

Z
∼
e
.

Figure 5. Asymptotic powers of T (r)
n in Example 5.5 where p = 2, q = 3.

Figure 6. Asymptotic powers of T (r)
n in Example 5.6 where p = 2, q = 3.

4. The generalized partially linear model Y = β1X1 +
β2X2 + β3X3 + β4X4 + β5X5 +m(W1,W2,W3) +
ε is considered with assumptions on ε as (i) E(ε|X1 =
x1, X2 = x2, X3 = x3, X4 = x4, X5 =
x5,W1 = w1,W2 = w2,W3 = w3) =
0 and (ii) E(ε2|X1 = x1, X2 = x2, X3 =
x3, X4 = x4, X5 = x5,W1 = w1,W2 =
w2,W3 = w3) = σ2(x1, x2, x3, x4, x5, w1, w2, w3)
for all (x1, x2, x3, x4, x5, w1, w2, w3). The joint
distribution of (X1, X2, X3, X4, X5,W1,W2,W3)T is

N8

((
0
∼5
0
∼3

)
,

(
Σ5 Σ53

Σ35 Σ3

))
where

Σ5 =


0.18 −0.06 0.09 −0.13 0.16

−0.06 0.14 −0.17 0.26 −0.14

0.09 −0.17 0.25 0.33 −0.18

−0.13 0.26 0.33 0.32 0.05

0.16 −0.14 −0.18 0.05 0.24

 ,
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Σ3 =

 0.11 −0.21 −0.19

−0.21 0.27 0.14

−0.19 0.14 0.4



Σ53 =


−0.17 0.31 −0.22

0.18 0.25 −0.33

−0.24 −0.15 0.15

−0.14 −0.07 0.12

0.26 −0.18 −0.03

 ,

Σ35 = ΣT
53 =

−0.17 0.18 −0.24 −0.14 0.26

0.31 0.25 −0.15 −0.07 −0.18

−0.22 −0.33 0.15 0.12 −0.03

 .

Moreover, Z
∼

= (X1, X2, X3, X4, X5,W1,W2,W3)T

is distributed independently to ε ∼ N(0, 0.015) under
H0 and Y ∼ t2. The nonparametric regression
function is considered as m(W1,W2,W3) = 0.36W 3

1 −
0.25W 2

2W3 − 0.11W 2
3W1 + 0.08W1W2W3. The

conditional error distributions under H1 by taking c
∼4

=

(5.92,−3.78,−10.66, 8.89,−5.45, 9.65, 8.35,−7.89)
′ ∈

R8 are considered as
Example 5.7. ε

∣∣∣Z
∼
∼ N(0, 0.015 |1 + c

∼
T

4
Z
∼
|)

Example 5.8. ε
∣∣∣Z
∼

D
=

χ2
Z
∼
− d

′

Z
∼√

2 d
′
Z
∼

where

d
′

Z
∼

= |1 + c
∼
T

4
Z
∼
|−1 and χ2

Z
∼
∼ χ2

dd
′

Z
∼
e
.

Figure 7. Asymptotic powers of T (r)
n in Example 5.7 where p = 5, q = 3.

Figure 8. Asymptotic powers of T (r)
n in Example 5.8 where p = 5, q = 3.

One can observe, from the above examples as well as the
corresponding power graphs T (r)

n ’s, that increasing numbers
of parametric and nonparametric regressors actually stimulate
the asymptotic power performances of the test statistics. It is
quite noteworthy that the power curves of T (10)

n ’s (indicated
by green graphs) perform with significantly higher powers in
all the examples. Additionally, in case of Gaussian conditional
errors involved in the assumed models, the performances of
T

(10)
n ’s are better compared to the situations where conditional

errors are standardized chi-squared random variables. In few
cases, the power curves shown by test statistics T (4)

n and T (5)
n

of observed and predicted responses are too close to the power
curves of T (10)

n . As usual, T (2)
n emerges as lowest performer

compared to the other ones, although having power curves
being almost same with the power curves of T (3)

n in some
cases. Such increment of power performances of T (r)

n ’s with
r = 2, 3, 4, 5, 10 further motivates us to consider a test statistic
T

(r)
n with higher r to conduct the testing of hypotheses with

greater consistency.
It is also noteworthy that T (r)

n becomes more powerful if
more parametric regressors are incorporated in the model,
as shown in Example 5.7 and 5.8 where 5 parametric
regressors and 3 nonparametric regressors are present in the
model in Section 5. It is clearly observed that the power
curves of the test statistics are comparatively more rapid
than the power curves of them in other instances having
two or three parametric regressors considered previously. In
general, the increasing number of parametric regressors in
a semiparametric regression model gradually transforms the
setup to a nonparametric one, as it reduces the model flexibility
due to numerous deterministic relationships between response
and regressors.

One can express both Ŷ ∗(r) and Y ∗(r) in terms of (r − 1)
number of first order differences of Ŷ and Y -observations
respectively. As the order of difference r increases, both of
them become linear functions of large number of first order
differences of Ŷ and Y -observations and those differences
are indeed independent to each other. However, there is a
genuine dependence between Ŷ and Y and the dependence is
enhanced for r ↑. As a result, the power of the concerning test
is yielded higher in case of higher order difference situation,
which is inevitable for T (10)

n in this context. All the values of
asymptotic powers of T (r)

n ’s are provided in Appendix I.

6. Data Analysis

We must study the adequacy of T
(r)
n ’s for real

datasets also; hence consider the Apple quality dataset
(https://www.kaggle.com/datasets/nelgiriyewithana/apple-
quality), used to assess the quality of apples. There are 9
variables with 4001 observations each, namely ‘A-id’ (unique
identifier for each apple), ‘size’ (size of apple), ‘weight’
(weight of apple), ‘sweetness’ (degree of sweetness of apple),
‘crunchiness’ (texture indicating the crunchiness of the apple),
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‘juiciness’ (level of juiciness of apple), ‘ripeness’ (stage
of ripeness of apple), ‘quality’ (overall quality of apple)
and ‘acidity’ (acidity level of apple). All the variables are
measured in proper units, except the nominal one ‘A-id’
and ordinal one ‘quality’. The objective is to study the
variable ‘acidity’ on the basis of 6 quantitative variables
‘size’, ‘weight’, ‘sweetness’, ‘crunchiness’, ‘juiciness’ and
‘ripeness’.

Generally, any semiparametric regression model (including
a partially linear one) involves parametric and nonparametric
components where the parametric part captures key structural
relationships and the nonparametric part provides flexibility as
required. Since we assume some mathematical structure(s)
on the underlying data, semiparametric model needs fewer
observations compared to fully nonparametric regression
models based on fewer assumptions about the functional form
of the relationship between variables to achieve the same level
of accuracy. In addition, non-parametric regression models are
estimated using flexible techniques such as kernel smoothing,
spline, or local regression, which can be adapted to complex
structures in the data. This flexibility is achieved when we
consider a large sample size to obtain reliable estimates and
avoid overfitting. Hence, we prefer to reduce the full dataset
from 4001 to 150.

Scatterplots of ‘acidity’ versus each of 6 variables are
generated for the reduced dataset to observe which variables
are explaining ‘acidity’ parametrically and nonparametrically.
It is worth observing that both the variables ‘juiciness’ and
‘ripeness’ form deterministic relationships with ‘acidity’; the
first one exhibits nearly positive association via approximately
linear dependence with positive slope whereas the second
one shows downward relationship with soaring level of
‘acidity’ by displaying more or less linear association with
negative slope. The association of ‘acidity’ with any of
other four variables are not explicit at all, hence there exist
nonparametric relationships between the four regressors and
the response variable ‘acidity’. Here, the regression model
is a partially linear one, expressed as Y = β1X1 + β2X2 +
m(W1,W2,W3,W4) + ε where X1 and X2 denote ‘ripeness’
and ‘juiciness’ respectively, the 4 nonparametric variables
W1,W2,W3,W4 represent ‘size’, ‘crunchiness’, ‘weight’ and
‘sweetness’ respectively and Y denotes ‘acidity’. β1 and β2
are estimated as β̂1 ≈ 0.0377 and β̂2 ≈ −0.0842. The r-
th order difference of observed Y are calculated, followed by
evaluations of test statistics for r = 2, 3, 4, 5, 10. Furthermore,
bootstrap samples are generated on the r-th order differences
of (Y , Ŷ ) and the test statistics are computed at all stages of
resampling. The p-values of T (r)

n ’s are estimated that provide
the extent of rejection of H0 at chosen level of significance α
(0 < α < 1). Since the asymptotic power of T (r)

n increases as
r ↑, it is expected that the p-values would decrease henceforth.

Next, we present the scatterplots of acidity versus all the
covariates under consideration, as well as the p-values of
T

(r)
n ’s for different resampling sizes (B) for r = 2, 3, 4, 5, 10.

Figure 9. Scatterplot of acidity vs juiciness.

Figure 10. Scatterplot of acidity vs juiciness as well as ripeness.

Figure 11. Scatterplot of acidity vs size.

Figure 12. Scatterplot of acidity vs weight.
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Figure 13. Scatterplot of acidity vs sweetness. Figure 14. Scatterplot of acidity vs crunchiness.

Table 1. Table showing p-values of T (r)
n for r = 2, 3, 4, 5, 10.

B
p-values of test statistics T (r)

n ’s

r = 2 r = 3 r = 4 r = 5 r = 10

100 0.0925 0.0845 0.0745 0.0715 0.0556

400 0.0635 0.0536 0.0544 0.0462 0.0448

1000 0.0578 0.0525 0.0541 0.0493 0.0388

As in Section 5 where we observed a better power
performance of T (r)

n with increasing r, it indicates that H0

loses significance in that process. Hence, rejection of H0

becomes easier for r ↑ and the concerned p-value of T (r)
n

indeed decreases. In the above table, the p-values decrease
with the increasing values of r from 2 to 10.

7. Conclusion
Under the setup of development of consistent as well as

powerful robust tests for checking independence between
regressors and error, the sole measure of association
underlying to construction of test statistics is Kendall’s τ . A
test statistic based on τ is always nondegenerate and formed
upon two randomly selected bivariate observations obtained
on two jointly distributed random variables. However, many
other measures of association had been proposed in recent
past which consider more than two bivariate observations (e.g.
Spearman’s ρs, Bergsma et al. (2014) [3]’s τ∗ etc.). Also,
Bergsma (2006) [2]’s distance based measures of association
κ and ρ∗, unlike Kendall’s τ can be suitable choices in this
proposed setup of testing of hypothesis setup. In addition,
the test statistics based on τ∗ or κ are degenerate in nature,
but it is possible to formulate robust test procedures on the
basis of these measures by proceeding in same manner as
deduced in this context. Since Kendall’s τ is one of the basic
nonparametric measures of association, its utility in the layout
of semiparametric regression, more specifically generalized
partially linear regression, has been investigated throughout
this article.

Various examples on partially linear models with specified
conditional error structures reveal on enhancement of the
asymptotic powers of T (r)

n due to improved values of r. All
the power curves are consistent also, as they close to 1 for µ ↑.
So, the association between jointly distributed covariates and
random error is quite sensitive; falsity of the null hypothesis
is well captured by T (r)

n as r increases. Hence, the robustness
of a nonparametric statistic is important to detect the presence
dependence in a partially linear model.

In real data analysis, the p-values decrease with increase in
number of resampling alongside increasing order of difference
r. The programs, tables, diagrams, dataset etc., are available in
https://github.com/sthdas999/Asymptotic power performance
of test statistic based on Kendall s -
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Appendix

Appendix I: Asymptotic Powers of T (r)
n ’s in Examples for Different Values of µ

Table 2. Asymptotic powers of T (r)
n ’s in Example 5.1 and Example 5.2 for different values of µ where c

∼1
= (−1.5,−1.7, 1.2, 1.3)

′
.

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1289 0.1400 0.1421 0.1682 0.2321

10 0.2682 0.3029 0.3097 0.3906 0.5719

15 0.4582 0.5192 0.5308 0.6575 0.8631

20 0.6585 0.7299 0.7426 0.8621 0.9776

25 0.8217 0.8804 0.8898 0.9619 0.9983

30 0.9244 0.9592 0.9641 0.9930 0.9999

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1148 0.1338 0.1609 0.2152 0.3282

10 0.2244 0.2837 0.3681 0.5270 0.7749

15 0.3768 0.4858 0.6243 0.8223 0.9747

20 0.5517 0.6918 0.8342 0.9625 0.9992

25 0.7169 0.8502 0.9479 0.9958 1

30 0.8455 0.9422 0.9887 0.9998 1

Table 3. Asymptotic powers of T (r)
n ’s in Example 5.3 and Example 5.4 for different values of µ where c

∼2
= (−1.5,−1.7, 1.2, 1.3,−3.5)

′
.

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1403 0.1599 0.1814 0.2019 0.2852

10 0.3039 0.3651 0.4306 0.4901 0.6952

15 0.521 0.6199 0.7123 0.7838 0.9438

20 0.7319 0.8303 0.9023 0.9447 0.9962

25 0.8818 0.9458 0.9788 0.9919 0.9999

30 0.9599 0.9879 0.9972 0.9993 1

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1198 0.1479 0.1682 0.1774 0.2553

10 0.2397 0.3279 0.3906 0.4185 0.6291

15 0.4057 0.5611 0.6575 0.6963 0.906

20 0.5911 0.7743 0.8621 0.8913 0.9894

25 0.7577 0.9119 0.9619 0.9746 0.9995

30 0.8786 0.9745 0.9930 0.9962 1

Table 4. Asymptotic powers of T (r)
n ’s in Example 5.5 and Example 5.6 for different values of µ where c

∼3
= (2.5, 4,−6.2,−5.5, 3.1)

′
.

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1368 0.1706 0.2189 0.3102 0.3287

10 0.2929 0.3979 0.5371 0.7436 0.7758

15 0.5021 0.6681 0.8319 0.9644 0.9750

20 0.7105 0.8702 0.9664 0.9984 0.9992

25 0.8654 0.9657 0.9965 1 1

30 0.9511 0.9941 0.9998 1 1

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1074 0.1577 0.1838 0.1996 0.2058

10 0.2016 0.3582 0.4376 0.4835 0.5010

15 0.3331 0.6094 0.7214 0.7764 0.7957

20 0.4892 0.8208 0.9084 0.9408 0.9505

25 0.6471 0.9405 0.9810 0.9911 0.9933

30 0.7828 0.9861 0.9976 0.9992 0.9995

Table 5. Asymptotic powers of T (r)
n ’s in Example 5.7 and Example 5.8 for different values of µ where c

∼4
= (5.92,−3.78,−10.66, 8.89,−5.45, 9.65, 8.35,−7.89)

′
.

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1681 0.2435 0.2685 0.4218 0.611

10 0.3904 0.6005 0.6591 0.8944 0.9864

15 0.6573 0.8858 0.9247 0.9965 1

20 0.8618 0.9844 0.9931 1 1

25 0.9618 0.9990 0.9998 1 1

30 0.9932 1 1 1 1

µ r = 2 r = 3 r = 4 r = 5 r = 10

0 0.05 0.05 0.05 0.05 0.05

5 0.1091 0.1517 0.1739 0.2916 0.3258

10 0.2064 0.3396 0.4078 0.7081 0.7708

15 0.3423 0.5800 0.6818 0.9499 0.9735

20 0.5026 0.7932 0.8807 0.9969 0.9991

25 0.6625 0.9241 0.9702 0.9999 1

30 0.7974 0.9798 0.9952 1 1
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Appendix II: Combined Proofs of Proposition 3.1 and Theorem 3.1

Note that, for i = 1, . . . , n and δ > 0,

P (|(Yi+1 − Yi)− (εi+1 − εi)| > δ) = P

(
|β
∼

T (X
∼ i+1

−X
∼ i

) + {m(W
∼ i+1

)−m(W
∼ i

)}| > δ

)
≤ P

(
|
p∑
s=1

βs(Xi+1 s −Xi s)|+ |m(W
∼ i+1

)−m(W
∼ i

)| > δ

)
. (16)

Since m(·, . . . , ·) is Lipschitz continuous on Rq , therefore |m(W
∼ i+1

)−m(W
∼ i

)| ≤ C · ||W
∼ i+1

−W
∼ i
||q , C > 0.

∴

(16) ≤ P

(
|
p∑
s=1

βs(Xi+1 s −Xi s)|+ C · ||W
∼ i+1

−W
∼ i
||q > δ

)
=

∫
R
. . .

∫
R
P

(
||W
∼ i+1

−W
∼ i
||q > δ

′
)
×

p∏
s=1

dHDis(dis),

where Dis = Xi+1 s −Xi s for s = 1, . . . , p and δ
′

= C−1

(
δ − |

p∑
s=1

βsdis|

)
. Moreover,

P

( q∑
m=1

|Wi+1m −Wim|q
) 1

q

> δ
′

 = P

|Wi+1 1 −Wi 1| >

(
δ
′q
−

(
q∑

m=2

|Wi+1m −Wim|q
)) 1

q

 (17)

for m = 2, . . . , q; i = 1, . . . , n− 1. Next, the model is re-expressed by ordering the W1-observations as

Y ∗K = β1X
∗
K1 + . . .+ βpX

∗
Kp +m(W ∗K1, . . . ,W

∗
Kq) + ε∗K ; K = 1, . . . , n

where {W ∗11, . . . ,W ∗n1} are the n observations onW1 such thatW ∗11 ≤ . . . ≤ W ∗n1. Corresponding to the ordered observations of
W1, the observations on W2, . . . ,Wq as well as X1, . . . , Xp are the induced ordered observations. The responses {Y ∗1 , . . . , Y ∗n }
are called induced ordered responses corresponding to {W ∗11, . . . ,W ∗n1}.

Then, (17) is further deduced as
∫
R
. . .

∫
R
P
[
|W ∗i+1 1 −W ∗i 1| > δ

′′
]
×

q∏
m=2

dFT∗im(t∗im), where T ∗im = W ∗i+1m −W ∗im and

δ
′′

=

(
δ
′q
−

(
q∑

m=2

|t∗im|q
)) 1

q

. Observe that, (W ∗i+1 1 −W ∗i 1) is the i-th spacing (Pyke (1965))[? ] on W1, i = 1, . . . , n − 1.

Suppose FW1
(·) is the CDF of W1. For any δ∗ > 0, it is possible to deduce P

[
|W ∗i+1 1 −W ∗i 1| > δ∗

]
as

P

[
n∆n−1;n

log n
>

nR

log n

]
, where ∆n−1;n is the maximal spacing based on (n − 1) uniform spacings (U∗i+1 1 − U∗i1)s and

R = inf1≤ i≤n−1 δ
∗/|F−1

′

W1
(ξi;i+1)|. Due to to Lévy (1939) [13], one can verify that

P

[
n∆n−1;n

log n
>

nR

log n

]
−→ 1− exp

(
− exp

(
− nR

log n

))
. (18)

Therefore,
∫
R
. . .

∫
R
P
[
|W ∗i+1 1 −W ∗i 1| > δ

′′
]
×

q∏
m=2

dFT∗im(t∗im) ≤ 1− exp

(
− exp

(
− nR

log n

))
−→ 0, which further

implies the R.H.S. of (18) tends to 1− e0 = 0. Then, |W ∗i+1 1 −W ∗i 1| = op(1) =⇒ sup
i∈{1,...,n−1}

|W ∗i+1 1 −W ∗i 1| = op(1).

Hence, P
(
|(Y ∗i+1 − Y ∗i )− (ε∗i+1 − ε∗i )| > δ

)
−→ 0, i = 1, . . . , n− 1, where (Y ∗i+1 − Y ∗i ) is the first order difference of Y ∗

and (ε∗i+1−ε∗i ) the first order difference of ε∗. Next, we need to verify if ε∗(r) ≈ Y ∗(r), where Y ∗(r) is the r-th order difference
of Y and ε∗(r) is the r-th order difference of ε. Define L(ε1, . . . , εr+1) = α1ε1 + . . .+ αr+1εr+1 with α1, . . . , αr+1 ∈ Z and
r+1∑
i=1

αi = 0, ε1, . . . , εr+1 are (r + 1) i.i.d. errors.
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The k-th order absolute raw moment of L(ε1, . . . , εr+1) is

E
∣∣∣L(ε1, . . . , εr+1)

∣∣∣k = E
∣∣∣ r+1∑
i=1

αiεi

∣∣∣k ≤ E


√√√√r+1∑

i=1

α2
i ·

√√√√r+1∑
i=1

ε2i

k (using Cauchy-Schwartz inequality)

=

(
r+1∑
i=1

α2
i

)k/2
E


√√√√r+1∑

i=1

ε2i

k = η(α1, . . . , αr+1) · E


√√√√r+1∑

i=1

ε2i

k (19)

where η(α1, . . . , αr+1) =

(
r+1∑
i=1

α2
i

)k/2
. Observe that, η(α1, . . . , αr+1) ≤ max

α1,...,αr+1 6=0
η(α1, . . . , αr+1) with

r+1∑
i=1

αi = 0.

Taking r = 2, one can deduce η(α1, α2, α3) = 2

(
α3
3 − α3

1

α3 − α1

)
= S(α1, α3), say. Then, logS = log 2 + log (α3

3 − α3
1) −

log (α3 − α1). Maximizing logS with respect to α1, α3 i.e. solving the following equations

∂ logS

∂α1
= 0 =⇒ −2α2

1 + α1α3 + α2
3 = 0 (20)

and
∂ logS

∂α3
= 0 =⇒ 2α2

3 − α2
1 − α1α3 = 0 (21)

one gets α1 = ±α3. But αi’s 6= 0, hence α1 = α3 =⇒ α2 = −2α1. So, η(α1, α2, α3) has maximum value at
(α1,−2α1, α1). Also, from (19), the maximum value of k-th order absolute moment of (α1ε1 − 2α1ε2 + α1ε3) satisfies

E|α1ε1 − 2α1ε2 + α1ε3|k ≤ |α1|k{12 + (−2)2 + 12}k/2 E


√√√√ 3∑

i=1

ε2i

k

, for any nonzero integer α1. If α1 = ±1, the linear

contrast ±(ε1 − 2ε2 + ε3) has minimum variance as well as maximum k-th absolute raw moment among all possible linear
contrasts (δ1ε1 + δ2ε2 + δ3ε3). Here L(ε1, ε2, ε3) = ε1 − 2ε2 + ε3 is termed as the second order difference of ε based on
ε1, ε2, ε3, which is indeed a first order difference of two first order differences of ε, i.e.
(ε1 − ε2)− (ε2 − ε3) = ε∗1(1)− ε∗2(1) ≈ Y ∗1 (1)− Y ∗2 (1), =⇒ ε∗(2) ≈ Y ∗(2).

Similarly, one can verify that for r = 3, η(α1, α2, α3, α4) = α2
1 + α2

2 + α2
3 + α2

4 subjected to α1 + α2 + α3 + α4 = 0 has
maximum value at (−α4, 3α4, α4), α4 6= 0 and E| − 3α4ε1 − α4ε2 + 3α4ε3 + α4ε4|k ≥ E|λ1ε1 + λ2ε2 + λ3ε3 + λ4ε4|k;
λ1, λ2, λ3, λ4 ∈ R, i.e. |α4|kE|ε4 − 3ε1 + 3ε3 − ε2|k is maximum among the k-th order absolute moment of all possible linear
functions (λ1ε1 + λ2ε2 + λ3ε3 + λ4ε4). For α4 = ±1, the linear contrast ±(ε4 − 3ε1 + 3ε4 − ε2) [or equivalently,
±(ε1 − 3ε2 + 3ε3 − ε4) as the errors are i.i.d.] has the minimum variance as well as maximum k-th order moment among all the
k-th order absolute moments of linear functions (λ1ε1 + λ2ε2 + λ3ε3 + λ4ε4). The function (ε1 − 3ε2 + 3ε3 − ε4) is denoted as
the third order difference of ε based on four i.i.d. observations ε1, ε2, ε3 and ε4, which is the first order difference of two second
order differences of ε as {(ε1 − 2ε2 + ε3)− (ε2 − 2ε3 + ε4)}, or the second order difference of three first order differences of ε’s
as {(ε1 − ε2)− 2(ε2 − ε3) + (ε3 − ε4)}. Similarly, ε∗(3) ≈ Y ∗(3).

Therefore, the second and third order differences of i.i.d. errors constitute best possible linear functions having highest second
and third order absolute moments among all possible linear functions of errors respectively. It can be concluded finally that for
a general order difference r of ε, ε∗(r) ≈ Y ∗(r). Also, ε∗(r) has the maximal k-th order absolute moment among all possible
linear functions of ε1, . . . , εr+1.

Proof of Proposition 3.2

It is to be noted that for p = 1 = q, β̂ =

(
n∑
i=1

ε̂Xiε̂
T
Xi

)−1( n∑
i=1

ε̂Xiε̂Y i

)
where ε̂Y i = Yi − m̂Y (Wi) and ε̂Xi =

Xi − m̂X(Wi) based on random sample of size n (Yi, Xi,Wi), i = 1, . . . , n, from (Y,X,W ). Then,

Ŷ = X β̂ + m̂ (W ) = S(Y,X,W ) = S(Xβ +m(W ) + ε,X,W ) = S(Z + ε,X,W ), say, where Z = Xβ +m(W ).
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Using Taylor’s theorem, the expansion of S upto first order approximation is given by

S(Xβ +m(W ) + ε,X,W ) ' S(Xβ +m(W ), X,W ) +

ε0
0

T  ∂S
∂Z
∂S
∂X
∂S
∂W

∣∣∣ Z = ε
X = 0
W = 0

= S(Xβ +m(W ), X,W ) + ε ·
(
∂S

∂Z

∣∣∣
Z=ε

)
.

Assume that sup
X,W ∈R

∣∣∣ ∂
∂Z

S(Z,X,W )
∣∣∣
Z=ε

∣∣∣ <∞, say A. It is to be noted that

S(r)(Xβ +m(W ) + ε,X,W ) ' S(r)(Xβ +m(W ), X,W ) +

[
ε ·
(
∂S

∂Z

∣∣∣
Z=ε

)]
(r)

where S(r) denotes the r-th order difference of S and
[
ε ·
(
∂S

∂Z

∣∣∣
Z=ε

)]
(r) is the r-th order difference of ε ·

(
∂S

∂Z

∣∣∣
Z=ε

)
.

Furthermore, sup
X,W,ε∈R

∣∣∣ ε · ( ∂S
∂Z

∣∣∣
Z=ε

) ∣∣∣ = Aε that implies
∣∣∣[ε · ( ∂S

∂Z

∣∣∣
Z=ε

)]
(r)
∣∣∣ = Aε∗(r).

Then,

S(r)(Xβ +m(W ) + ε,X,W )− S(r)(Xβ +m(W ), X,W ) '
[
ε ·
(
∂S

∂Z

∣∣∣
Z=ε

)]
(r)

=⇒ P
(
|S(r)(Xβ +m(W ) + ε,X,W )− S(r)(Xβ +m(W ), X,W )| > δ

)
' P

(∣∣∣[ε · ( ∂S
∂Z

∣∣∣
Z=ε

)]
(r)
∣∣∣ > δ

)
.

Now, it is worth to realize that

P

(∣∣∣[ε · ( ∂S
∂Z

∣∣∣
Z=ε

)]
(r)
∣∣∣ > δ

)
≤ P

(∣∣∣Aε∗(r)∣∣∣ > δ
)

= P
(∣∣∣ε∗(r)∣∣∣ > δ/|A|

)
= P (ε∗(r) > δ/|A|) + P (ε∗(r) < −δ/|A|).

Using Markov’s inequality, we get P (ε∗(r) > δ/|A|) ≤ E[ε∗(r)]

δ/|A|
=
|A|
δ

r+1∑
j=1

(−1)j−1
(

r

j − 1

)
E(εj),

where E(εj) = EX,WE(εj |X,W ) = 0. Then, P (ε∗(r) > δ/|A|) = 0. In similar manner, P (ε∗(r) < −δ/|A|) = 0.

∴ P
(
|S(r)(Xβ +m(W ) + ε,X,W )− S(r)(Xβ +m(W ), X,W )| > δ

)
' 0 =⇒ S(r)(Xβ +m(W ) + ε,X,W ) ≈

S(r)(Xβ +m(W ), X,W ). The proposition can be proved in similar way for p, q > 1.
Proof of Theorem 4.1 The variance of kernel of T (r)

n is computed under H0 as

η1,2(r) = V ar
[
E(h((Ŷ ∗1 (r), Y ∗1 (r)), (Ŷ ∗2 (r), Y ∗2 (r)))

∣∣∣(Ŷ ∗1 (r), Y ∗1 (r)))
]

= V ar
[
ψ(Ŷ ∗1 (r), Y ∗1 (r))

]
, say, where

ψ(Ŷ ∗1 (r), Y ∗1 (r)) = E
[
h((Ŷ ∗1 (r), Y ∗1 (r)), (Ŷ ∗2 (r), Y ∗2 (r)))

∣∣∣(Ŷ ∗1 (r), Y ∗1 (r))
]

= P
[
Ŷ ∗1 (r) > Y ∗1 (r) > Ŷ ∗2 (r), Y ∗2 (r)|Ŷ ∗1 (r), Y ∗1 (r)

]
+ P

[
Ŷ ∗1 (r) < Y ∗1 (r) < Ŷ ∗2 (r), Y ∗2 (r)|Ŷ ∗1 (r), Y ∗1 (r)

]
−P

[
Ŷ ∗1 (r) > Y ∗1 (r) < Ŷ ∗2 (r), Y ∗2 (r)|Ŷ ∗1 (r), Y ∗1 (r)

]
− P

[
Ŷ ∗1 (r) < Y ∗1 (r) > Ŷ ∗2 (r), Y ∗2 (r)|Ŷ ∗1 (r), Y ∗1 (r)

]
which is finally deduced as

(
2F0;Ŷ ∗(r)(Ŷ

∗
1 (r))− 1

) (
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)
. F0;Ŷ ∗(r)(·) and F0;Y ∗(r)(·) are the marginal

CDFs of Ŷ ∗(r) and Y ∗(r) respectively under H0. Then,

V ar
[
ψ(Ŷ ∗1 (r), Y ∗1 (r))

]
= V ar

[(
2F0;Ŷ ∗(r)(Ŷ

∗
1 (r))− 1

) (
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)]
= E

(
2F0;Ŷ ∗(r)(Ŷ

∗
1 (r))− 1

)2
E
(
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)2
−E2

(
2F0;Ŷ ∗(r)(Ŷ

∗
1 (r))− 1

)
E2
(
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)
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Since F0;Ŷ ∗(r)(·), F0;Y ∗(r)(·)
indep.∼ U(0, 1), therefore

E
(

2F0;Ŷ ∗(r)(Ŷ
∗
1 (r))− 1

)2
= 4 · 1

12
=

1

3
= E

(
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)2
.

Also, E
(

2F0;Ŷ ∗(r)(Ŷ
∗
1 (r))− 1

)
= E

(
2F0;Y ∗(r)(Y

∗
1 (r))− 1

)
= 0. Therefore, η1,2(r) =

1

3
· 1

3
=

1

9
.

Proof of Proposition 5.1
For sample size n∗ such that n∗ > n,

PHn

[√
n(T (r)

n − EH0
(T (r)
n )) > tκ

]
= PHn

[√
n∗

n
·
√
n(T (r)

n − EH0
(T (r)
n )) >

√
n∗

n
· tκ

]

= PHn

[
√
n∗(T (r)

n − EH0(T (r)
n )) >

√
n∗

n
· tκ

]
< PHn

[√
n∗(T (r)

n − EH0
(T (r)
n )) > tκ

]
asy.
≡ PHn

[√
n∗(T (r)

n − EH0
(T (r)
n )) > tκ

]
,

i.e. for increasing sample size n, the power of T (r)
n ↑ and tends to 1. Moreover, as µ ↑,

PHn

[√
n(T (r)

n − EH0
(T (r)
n )) > tκ

]
= Φ

(
µEH1

(T
(r)
n )− tκ√

4η1,2(r)

)
−→ 1.

Table 6. Table showing various order differences of some values.

Values 0.119, -0.8029, 0.016, 0.11, 0.922, 0.494, 1.101, -1.210, -0.133, -0.257

First order differences -0.921, 0.818, 0.097, 0.809, -0.429, 0.607, -2.311, 1.077, -0.123

Second order differences -0.103, 0.916, 0.907, 0.380, 0.179, -1.704, -1.234, 0.954

Third order differences -0.005, 1.725, 0.478, 0.988, -2.133, -0.627, -1.358

Fourth order differences 0.804, 1.296, 1.085, -1.324, -1.056, -0.750

Fifth order differences 0.375, 1.903, -1.226, -0.247, -1.179
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