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Abstract 

Protein evolutionary classification from amino acid sequence is one of the hot research topics in computational biology and 

bioinformatics. The amino acid composition and arrangement in a protein sequence embed the hints to its evolutionary origins. 

The feature extraction from an amino acid sequence to a numerical vector is still a challenging problem. Traditional feature 

methods extract protein sequence information either from individual amino acids or kmers aspects, which have general 

performance with limitations in classification accuracy. To further improve the accuracy in protein evolutionary classifications, 

six new features defined on separated amino acid pairs are proposed for protein evolutionary classification analysis, where 

composition and arrangement as well as physical properties are considered for the different combinations of separated amino 

acid pairs. Different from general consideration of amino acid pairs, the new features account for the features of separated 

amino acid pairs with spatial intervals in the sequence, which may deeper reflect the spatial relationships and characters 

between the amino acid in pairs. In test of the performances of the new features, five standard protein evolutionary 

classification examples are employed, where the new features proposed are compared with classical protein sequence features 

such as averaged property factors (APF), natural vector (NV) and pseudo amino acid composition (PseAAC) as well as kmer 

versions of these features. The area under precision-recall curve (AUPRC) analysis shows that the new features are efficient in 

evolutionary classifications, which outperform traditional protein sequence features that are based on individual amino acids 

and kmers. Parameter analysis on the novel separated amino acid pair features and kmer features show that the features of 

some medium or longer length of amino acid pair intervals and kmers may achieve higher classification accuracy in 

evolutionary classifications. From this analysis, the newly proposed separated amino acid pairs with spacial intervals are 

proved to be efficient units in extracting protein sequences features, which may interpret richer evolutionary information of 

protein sequences than individual amino acids and kmers. 
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1. Introduction 

Protein sequence similarity analysis is a hot topic in bio-

informatics research [1-6]. The protein sequence similarity 

methods are usually categorized into alignment-based and 

alignment-free approaches. Alignment-based approaches 

may attain high computational complexity and poor accuracy 

in dealing with sequences of low identity, whereas align-

ment-free approaches manage to overcome these drawbacks, 

which tend to have wider application in protein evolution 

and functional studies [7, 8]. Alignment-free methods usually 

map a protein sequence into a vector in real space [7], and 

treat the distance between these vectors as sequence similar-

ity. These alignment-free approaches greatly improve the 

speed of sequence comparison and are more effective in 

handling large data [7, 8], thus gain increasing attention in 

analyzing biological sequences. 

The mapping from a protein sequence to a numerical vec-

tor, i.e. feature extraction [7], is a key step and a highly chal-

lenging task for alignment-free approaches. Many methods 

have been developed for protein sequence feature extraction. 

Typical methods such as the averaged property factors (APF) 

[9], natural vector (NV) [10], PseAAC [11], moment vector 

[12, 13], Pse-in-One [14]. These methods extract the amino 

acid composition, arrangements and physical properties 

characters of protein sequences, and are proved effective in 

traditional evolutionary analysis. The natural vector method 

converts each genetic sequence into a unique point in finite 

dimensional real space [10]. The pseudo amino acid compo-

sition (PseAAC) [11] characterizes the amino acid order in 

protein sequence using a series of correlation factors, which 

attains wide applications in protein evolutionary analysis 

[11]. Despite the composition and arrangement features, 

physical and chemical properties of amino acids also have 

wide application and high importance in protein evolution 

studies [7, 15-17]. Randić summarized in [18], ordering 

amino acids according to their physical and chemical proper-

ties may show better insights in protein similarity analysis 

than simple amino acid alphabetical orders. The averaged 

property factors (APF) [9] employs the sequence average of 

ten important physical properties to successfully classify the 

different CAT groups of CATH database. The FEGS features, 

extracted from a series of graphical curve of physicochemi-

cal properties, are proved efficient in protein evolutionary 

classifications [7]. 

Traditional feature methods extract protein sequence fea-

tures based on individual amino acids. However, studies on 

local sequence units such as kmers found that the kmer fea-

tures are able to construct phylogenetic trees in a much faster 

way [19]. Therefore, many sequence features are developed 

based on kmers [19-28]. Zhang et. al. have proposed a novel 

kmer natural vector to capture the kmer features in genetic 

sequences [19]. The K-string dictionary feature proposed by 

Yu et. al. in [20] significantly reduces the representation of 

proteins by using a lower dimensional frequency vector. 

Christine et. al. have developed a software tool named 

Snekmer for recording proteins into kmer vectors and per-

forming protein family classifications on nitrogen cycling 

families datasets [21]. Ghandi et. al. have proposed a new 

improved R package to train the gapped-kmer SVM classifi-

ers for protein sequences [22]. Liu et. al. have developed a 

computational methods based on auto-cross covariance 

transformation with kmer composition and ensemble learn-

ing to identify the DNA-binding proteins [23]. Wen has pro-

posed a kmer sparse matrix, which attains one-to-one corre-

spondence with the biological sequence [24]. 

Although kmer methods have advantages, but they more 

or less neglect the inter relationships between amino acids 

within kmers [29, 30]. Moreover, the feature extraction from 

a sequence to a numerical vector or matrix is still a chal-

lenging problem in computational biology. To consider the 

inter relationships between amino acids, six novel protein 

sequence features are proposed accounting the distribution 

and physical property characters of separated amino acid 

pairs with spacial intervals in protein sequences. To test the 

usefulness of the new methods, the new features are applied 

on five standard protein evolutionary classification datasets, 

and compare the newly proposed features with traditional 

features based on individual amino acids and kmers. Analy-

sis on precision-recall curves and AUPRC values proves the 

efficiency of the newly proposed separated amino acid pair 

features, which attain the overall highest classification accu-

racy in standard evolutionary classification problems and 

outperform traditional features based on individual amino 

acids and kmers. Parameter analyses on kmer and separated 

amino acid pair features demonstrate the parameter influ-

ences to the classification accuracy, which also indicates 

optimal parameters for these features. 

2. Materials and Methods 

Lets first introduce some novel kmer and separated amino 

acid pair features that cover not only composition and ar-

rangements, but also physical property characters of the 

kmers and separated amino acid pairs. 

2.1. Kmer features 

Let 1 2 La a a  denotes a protein sequence, k is a posi-

tive integer parameter for the length of the kmers. Splits the 

whole protein sequence into non-overlapping connected 

kmer segments, since the length of protein sequence may 

not necessarily be integer multiple of k , thus the last seg-

ment may be shorter than a kmer. The following kmer fea-

tures are defined on the kmer segments of the protein se-

quence. 
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2.1.1. The Kmer Composition Number Feature (KN 

Feature) 

The KN feature is a 20 K  dimensional vector account-

ing the composition number and order of appearance for the 

different amino acids in kmers, which can be denoted by 

1, 1, 1, 2, 2, 2, , , ,( , ,..., , , ,..., , , ,..., )KN A R V A R V K A K R K VV n n n n n n n n n , 

where ,i jn  stands for the count of the j-type amino acids 

appeared at the i-th position of the kmers in the protein se-

quence, j=A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, 

Y, V denote the twenty kinds of amino acids. 

2.1.2. The Kmer Mean Distance Feature (Kμ 

Feature) 

The K  feature accounts the average distance of the 

twenty kinds of amino acids at different positions of the 

kmers, which is a 20 K  dimensional vector denoted by 

1, 1, 1, 2, 2, 2, , , ,( , ,..., , , ,..., , , ,..., ),K A R V A R V K A K R K VV            

where 
,

, ,1
( [ , ][ ])

i jn

i j i js
d i j s n


  stands for the average 

distance of the j-type amino acids appeared at the i-th posi-

tion of the kmer, ,i jn stands for the number of j-type amino 

acid appeared at the i-th position of the kmer as defined be-

fore, [ , ][ ]d i j s  denotes the geometric distance from the s-th 

j-type amino acids at the i-th positions of the kmer to the 

initial amino acid (origin) of the sequence, ,1,2,..., i js n . 

2.1.3. The Kmer Central Distance Moment Feature 

(KD Feature) 

The KD feature is also a 20 K  dimensional vector ac-

counts the second order normalized central distance mo-

ments for the positional distribution of the twenty types of 

amino acids in kmers, it can be expressed by 

1, 1, 1, 2, 2, 2, , , ,
2 2 2 2 2 2 2 2 2( , ,..., , , ,..., , , ,..., )A R V A R V K A K R K V

KDV D D D D D D D D D , 

where the element 

, 2
,,

2
,1

( [ , ][ ] )i jn

i ji j

i js

d i j s
D

n L









 , the ,i jn ,

,i j and [ , ][ ]d i j s  are defined as before, i=1, 2,..., K denote 

the i-th position in the kmers, ,1,2,..., i js n . 

2.1.4. The Kmer Distance Feature (KF feature) 

The KF feature is a 20 K  dimensional vector accounts 

the proposition and order of appearance for the different 

kinds of amino acids in kmers, it is notated by 

1, 1, 1, 2, 2, 2, , ,( , ,..., , , ,..., , , ,...,KF A R V A R V K A K RV f f f f f f f f

, )K Vf , 

where the element 
,

, 20

,1

i j

i j

i jj

n
f

n





 denotes the frequency of 

the j-type amino acids appeared at the i-th position of the 

kmers in the given protein sequence. 

2.1.5. The Kmer Physical Property Feature (KP 

Feature) 

The KP feature describes the mean physical property val-

ues at different positions of the kmers, it can be represented 

by a 12 K  dimensional vector 

1,1 1,2 1,12 2,1 2,2 2,12 ,1 ,2 ,12( , ,..., , , ,..., , , ,..., )KP K K KV p p p p p p p p p , 

where 

20
( )

,

1

, 20

,

1

m
j i j

j

i m

i j

j

p n

p

n












 is the mean property value for the 

m-th property factor at the i-th position of the kmers in the 

sequence, 
( )m
jp  is the m-th physical property value for the 

j-type amino acids, m=1, 2,..., 12 is the index for the 12 im-

portant physical properties as listed in Table S1. 

2.2. Separated Amino Acid Pair Features 

2.2.1. The Separated Amino Acid Pair Composition 

Number Feature (SN Feature) 

SN feature extracts the composition numbers of  -spaced 

amino acid pairs. Let 1 2 La a a  represents a protein se-

quence,   is the length parameter for the intervals between 

the separated amino acid pairs), the SN feature accounts the 

composition of the separated amino acid pairs ia  and 1ia  

( 1,2,..., 1i L    ) with intermediate  positional interval. 

When 0  , ia and 1ia    become adjacent, here the sep-

arated amino acid pairs are considered with 1,2,...,20  . 

The SN feature is a 400 dimensional vector represented by: 

( , ,..., )SN A A A R V VV n n n  
   , 

where h kn  represents the number of the separated amino 

acid pair k h  with   positional intervals, here h, k stand 

for the twenty types of amino acids. 

2.2.2. The Separated Amino Acid Pair Mean 

Distance Feature (Sμ Feature) 

Follow the same notations, the S  feature extracts the 

geometric mean distance for the separated amino acid pairs 
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ia  and 1ia    with  -positional interval, 1,2,...,20  . 

The S feature can be expressed by the 400 dimensional 

vector: 

( , ,..., )S A A A R V VV   
      , 

where 
k h

k h

k h

T

n





 





  stands for the mean distance from the 

separated amino acid pair k h ( represents the   posi-

tional interval, k, h denote the twenty types of amino acids) 

to the initial amino acid (origin) in the sequence, where 

1
[ ][ ]

k hn

k h i
T s k h i


 

 
   is the sum of distances between 

each separated amino acid pair k h and the origin, 

[ ][ ]s k h i   denotes the distance between the i-th k h  

pair and the origin. 

2.2.3. The Separated Amino Acid Pair Central 

Distance Moment Feature (SD Feature) 

The SD feature extracts the second order normalized cen-

tral moments for the separated amino acid pairs ia and 

1ia   with   positional interval in the protein sequence, 

1,2,...,20  . The SD feature can be expressed by a 400 

dimensional vector: 

2 2 2( , ,..., )A A A R V V
SDV D D D   , 

where 2
h kD  is the second order normalized central moment 

defined by 

2

2 11

( [ ][ ] )

( )

h knh k h k

ji
h k

s k h i
D

n n

  



 




 



 , the k hn ,

k h
   and [ ][ ]s k h i   are defined as above, and k, h denote 

the 20 types of amino acids. 

2.2.4. The Separated Amino Acid Pair Frequency 

Feature (SF Feature) 

The SF feature is a 400 dimensional vector, denotes the 

proportion of the separated amino acids pairs ia  and 

1ia    with   positional interval, 1,2,...,20  , it can be 

expressed by: 

( , ,..., )SF A A A R V VV f f f  
   , 

where 

,

k h
k h

k h

k h

n
f

n













  is the frequency for the separated 

amino acid pair k and h. 

 

2.2.5. The Separated Amino Acid Pair Physical 

Property Feature I (SPI Feature) 

Consider both composition and sequence arrangements, as 

well as physical property features of the separated amino 

acid pairs with   positional interval in the protein se-

quence, the novel 400   dimensional feature vector SPI 

(integer 0  ) is defined as: 

1 400 401 400( ,..., , ,..., )SPIV x x x x  , 

where 

400

1 1

400

400

1 1

, 1 400

, 401 400

u

i ji j

u
u

i ji j

f
u

f

x

u

f





 




 

 



 


 




 
   




 

 

, 

and uf  represents the normalized frequency for the 400 

combinations of the separated amino acid pairs, and 
( )( )( )( )

12 1 21

1

1
( )

12 2 2

mmmm
i j i ji i

j m

p pp p 
    




   is the 

j-tier average property factor of the sequence, ( )m
ip  stands 

for the m-th property value of amino acid ia  in the se-

quence. SPI uses the 12 important physical properties (Sup-

plementary Table S1) of amino acids as used in the APF and 

PseAAC features,   is a positive integer no larger than the 

sequence length,   represents a weight factor in charge of 

the amino acid arrangement effect, here 0.05  is used as 

the same as in PseAAC and rPseAAC features (refers to the 

refined PseAAC with 12 physical properties involved in the 

correlation factors, the 12 physical properties are the inclu-

sion of the physical properties used in APF and PseAAC 

features, which are listed in Supplementary Table S1). When 

0  , SPI is merely the frequency of the 400 kinds of ami-

no acids pairs with   positional interval. When 0  , the 

initial 400 components ux  (1 400u  ) reflects the com-

position effects, while the last   components indicate the 

sequence arrangement effects. Here, we use the medium 

value 10   as PseAAC and rPseAAC do in our analysis. 

2.2.6. The Separated Amino Acid Pair Physical 

Property Feature II (SPII Feature) 

The SPII feature also accounts the composition, sequence 

arrangements and physical property features of the separated 

amino acid pairs with   positional interval in the protein 

sequences. The SPII is a 400   dimensional feature vec-

tor (integer 0  ) can be expressed by: 
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1 400 401 400( ,..., , ,..., )SPIIV x x x x  , 

where 

400

1 1

400

400

1 1

, 1 400

, 401 400

u

i ji j

u
u

i ji j

f
u

f

x

u

f





 




 

 



 


 




 
   




 

 

, 

uf  denotes the normalized frequency for the 400 combi-

nations of separated amino acid pairs, and 

12 ( ) ( )( ) ( ) 2
1 11

1
( )

12

m mm m
j i i ji i jm

p p p p      
     stands 

for the j-tier sequence correlation factor. SPII uses the same 

12 physical property factors and parameters ( 10  , 

0.05  ) as SPI and rPseAAC features do. 

3. Results 

In this study, five classic evolutionary classification da-

tasets, namely the 50 beta globins, the 27 antifreeze proteins, 

the 40 coronavirus spike proteins, the 25 transferrin se-

quences (TFs) from 25 vertebrates, the 52 influenza virus 

protein sequences, are used to validate the effectiveness of 

the new methods. Evolutionary classification analysis are 

performed on the five datasets using the novel kmer and sep-

arated amino acid pair features defined above, and also 

compare the efficiency of these features with traditional 

amino acid feature methods based on individual amino acids 

such as averaged property factors (APF) [9], natural vector 

(NV) [10], PseAAC [11], and rPseAAC (refers to the refined 

PseAAC with 12 physical properties involved in the correla-

tion factors). These features are compared in terms of their 

precision-recall curves and AUPRC values [31]. 

The first example is comprised of 50 beta globin sequences 

belonging to four groups [7], namely, the Aves, Reptilia, Pi-

sces, and Mammals. Accession numbers and taxonomic in-

formation of these beta globin proteins can be found in Sup-

plementary Table S2. The AUPRC values for all different fea-

tures are presented in Table 1. In this table, the separated ami-

no acid pair features show overall the highest AUPRC values 

among all features, while the kmer features attain the lowest 

AUPRC values than other features. Among all the features, the 

rPseAAC (AUPRC=91.92%), SN (Mean AUPRC=91.98%), 

S  (Mean AUPRC=96.04%), SF (Mean AUPRC=92.17%), 

SPI (Mean AUPRC=91.73%), SPII (Mean AUPRC=92.52%) 

features perform better than other features. The neigh-

bor-joining tree for these high accuracy features are presented 

in Figures 1-6. In these figures, the neighbor-joining tree of the 

separated amino acid pair features clearly separate the mam-

mals and non-mammals, the rPseAAC presents certain mis-

takes. The separated amino acid pair features such as SN, S , 

SF and SPII also correctly clustered the Aves, Reptilia, Pisces 

into different branches. The S  not only correctly classify 

the four main groups (Aves, Reptilia, Pisces, and Mammals), 

but also correctly classify the Chondrichthyes and Actinop-

terygii in the branch of fishes, as well as the orders and fami-

lies such as Canidae, Primate, Rodentia, Proboscidea, and Pe-

rissodactyla, Artiodactyla, Ruminantia, in the branch of 

mammals. The rPseAAC, SN, SPII features correctly clustered 

the species in Anseriformes and Galliformes order. The other 

features present more or less mistakes in classifying the orders 

and families in the big branch of mammals. 

Table 1. AUPRC values for different features. 

AUPRC values (%) 

Features E1 E2 E3 E4 E5 Mean 

NV 83.49 69.75 86.56 82.73 91.06 82.72 

APF 90.10 70.46 83.67 84.95 89.98 83.83 

PseAAC 88.93 67.20 66.62 86.17 95.24 80.83 

rPseAAC 91.92 70.70 70.86 85.41 95.68 82.91 

Mean 88.61 69.53 76.93 84.81 92.99 82.57 

KN 
Mean 71.47 69.20 73.14 77.22 95.24 77.25 

Max 73.64 80.37 84.86 82.76 99.01 84.13 

K  
Mean 73.45 70.76 69.86 75.84 95.19 77.02 

Max 76.13 76.05 79.52 86.31 99.66 83.53 

KD Mean 66.62 66.51 69.36 75.38 95.28 74.63 

http://www.sciencepg.com/journal/cbb


Computational Biology and Bioinformatics http://www.sciencepg.com/journal/cbb 

 

23 

AUPRC values (%) 

Features E1 E2 E3 E4 E5 Mean 

Max 73.10 77.55 74.46 84.89 98.93 81.79 

KF 
Mean 71.47 58.80 64.41 77.59 95.12 73.48 

Max 73.76 69.82 70.21 83.11 98.95 79.17 

KP 
Mean 72.15 57.10 64.61 75.00 95.26 72.82 

Max 73.65 64.91 74.43 80.90 99.71 78.72 

Mean 71.03 64.47 68.28 76.21 95.22 75.04 

SN 
Mean 91.98 78.17 80.61 94.21 98.08 88.61 

Max 95.24 82.95 82.95 96.48 98.77 91.28 

S  
Mean 96.04 82.61 79.15 95.40 89.34 88.51 

Max 97.24 90.23 87.15 97.59 97.14 93.87 

SD 
Mean 80.04 67.54 76.12 89.18 95.12 81.60 

Max 91.12 81.83 81.56 94.59 97.46 89.31 

SF 
Mean 92.17 83.04 79.02 94.91 97.46 89.32 

Max 95.28 87.92 87.19 96.97 98.44 93.16 

SPI 
Mean 91.73 80.18 76.22 87.30 97.29 86.54 

Max 94.67 86.90 85.68 92.07 98.16 91.50 

SPII 
Mean 92.52 82.73 78.41 93.12 97.51 88.86 

Max 95.49 88.76 87.59 95.43 98.68 93.19 

Mean 90.75 79.05 78.25 92.35 95.80 87.24 

Total mean 83.45 68.21 75.26 84.65 94.92 80.98 

 

This table shows the AUPRC values for the different features 

of the five examples. For the kmer and separated amino acid 

pair features, both mean and maximum AUPRC values are 

computed over different parameters. The last column shows the 

average AUPRC values over different types of features. 

 
Figure 1. Evolutionary analysis for the beta globin sequences by 

rPseAAC features. 

 
Figure 2. Evolutionary analysis for the beta globin sequences by 

SN features. 
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Figure 3. Evolutionary analysis for the beta globin sequences by Sμ 

features. 

 
Figure 4. Evolutionary analysis for the beta globin sequences by 

SF features. 

 
Figure 5. Evolutionary analysis for the beta globin sequences by 

SPI features. 

 
Figure 6. Evolutionary analysis for the beta globin sequences by 

SPII features. 

The second example contains 27 antifreeze protein se-

quences (AFPs) [7]. The accession numbers and taxonomic 

information of the 27 proteins are listed in Supplementary 

Table S3. Comparing the AUPRC values as shown in Table 1, 

the SN (mean AUPRC=78.17%), 
S

(mean AUPRC= 

82.61%), SF (mean AUPRC=83.04%), SPI (mean 

AUPRC=80.18%), SPII (mean AUPRC=82.73%) features 

perform better than other features. The neighbor-joining tree 

of the high classification accuracy features are presented in 

Supplementary Figures S1-S5. In these figures, majority of 

the taxonomies are well classified with a few exceptions. The 

AFPs belonging to Choristoneura fumiferana (CF) and Dor-

cus curvidens binodulosus (DCB) are correctly classified by 

the 
S

, SF and SPI, SPII features. The Dendroides cana-

densis (DC) are well classified by the SF, SPI and SPII fea-

tures. The Microdera dzhungarica punctipennis (MDP) are 

correctly classified by 
S

. Majority of these features show 

closer relations for Choristoneura fumiferana (CF), Dorcus 

curvidens binodulosus (DCB) and Dendroides canadensis 

(DC) than Tenebrio molitor (TM), which relations agree with 

the early evolutionary discoveries [7]. Traditional amino acid 

features and kmer features present poorer classification ac-

curacy than the separated amino acid pair features. 

The third example consists of 40 corona virus spike pro-

tein sequences [7]. These corona virus spike protein se-

quences belong to three groups (alpha, beta and gamma co-

rona virus groups). The accession numbers and taxonomic 

information of this dataset are presented in Supplementary 

Table S4. The beta corona virus proteins can further be clas-

sified into subgroups, namely, the spike proteins of beta co-

rona virus 1, murine corona virus, SARS-CoV and 

SARS-CoV-2 (see Supplementary Table S4). As shown in 
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Table 1, the NV (AUPRC=86.56%), APF (AUPRC=83.67%), 

SN (mean AUPRC=80.61%), S  (mean AUPRC=79.15%), 

SF (mean AUPRC=79.02%), SPI (mean AUPRC=76.22%), 

and SPII (mean AUPRC=78.41%) features show better per-

formance than the other features. The PseAAC and majority 

of the kmer features attain comparatively lower classification 

accuracy for the 40 corona virus proteins. The neigh-

bor-joining tree for those features with high classification 

accuracy features are plotted in Supplementary Figures 

S6-S12. In these figures, the APF, S , SF, SPI, SPII fea-

tures not only correctly cluster the corona virus into three 

different groups, i.e. the alpha, beta and gamma groups, but 

also accurately classify the subgroups. The NV and SN fea-

tures correctly classify majority of the corona virus with an 

error that the NY-PV08438 in the beta group is error classi-

fied to the gamma group. Moreover, the neighbor-joining 

tree of the APF, S , SF, SPI features clearly show that the 

2019-nCoVs (i.e. SARS-CoV-2) have closer relations with 

SARS-CoVs than with the beta corona virus 1 and murine 

corona viruses, which agree with early discoveries. 

The fourth example is made up of 25 transferrin sequences 

(TFs) from vertebrates [7]. The accession numbers of this 

dataset are presented in Supplementary Table S5. The 25 

transferrin sequences contain three main groups: amphibian, 

fish and mammal. The group of mammals can be further 

divided into subgroups of the transferrin (TF) and the lac-

toferrin (LF) proteins. Examining the AUPRC values as 

shown in Table 1, the SN (mean AUPRC=94.21%), S  

(mean AUPRC=95.40%), SD (mean AUPRC=89.18%), SF 

(mean AUPRC=94.91%), SPI (mean AUPRC=87.30%), and 

SPII (mean AUPRC=93.12%) features outperform the other 

features. The Kmer features attain comparatively lower clas-

sification accuracy for the 25 transferrin sequences than oth-

er features. The neighbor-joining tree for those features with 

high classification accuracy are plotted in Supplementary 

Figures S13-S18. All these high accuracy features clearly 

separate the fish and mammal transferrin sequences into sep-

arate branches, and the LFs and TFs of mammals are also 

correctly separated into different clusters. The SN, S , SF, 

SPI and SPII also correctly classify the Salmo, Salvelinus, 

Oncorhynchus taxon into different clusters. 

The fifth example is consisted of 52 influenza virus pro-

teins belonging to six different influenza A virus subtypes 

differentiated by their hemagglutinin (H) and neuraminidase 

(N) types [10, 17]. The accession numbers and taxonomic 

information of this dataset are presented in Supplementary 

Table S6. As shown in Table 1, the SN (mean 

AUPRC=98.08%), SF (AUPRC=97.46%), SPI (mean 

AUPRC=97.29%), SPII (mean AUPRC=97.51%) features 

show better performance than other features, the kmer fea-

tures also work well in this example. The neighbor-joining 

tree for these high classification accuracy features are pre-

sented in Supplementary Figures S19-S22. In these figures, 

all six influenza A virus subtypes are correctly classified, 

with an exception for the SPI features where the H11N9 with 

mallard host show closer relations with the H7N9 proteins 

than the other H11N9 proteins. The six virus subtypes are 

clustered into two main branches, namely one branch of 

H7N9 and H11N9, and the other branch of H1N1, H5N1, 

H3N2 and H7N3. The virus subtypes of the same neuram-

inidase type tend to show closer relations, e.g. H1N1 and 

H5N1, H7N9 and H11N9, which are further clustered by 

means of their geographical locations and hosts. 

To present an over view comparison between the different 

features, the precision-recall curves for all features and pa-

rameters are shown in Figures 7 and 8 and Supplementary 

Figures S23-S26. Figure 7 presents the precision-recall 

curves for the traditional features defined on individual ami-

no acids, while Figure 8 and Supplementary Figures S23-S26 

show the impact of parameter variations for the kmer and 

separated amino acid pair features. From the precision-recall 

curves and AUPRC values for all five examples, all features 

are effective. When compare the different features among 

their feature extraction units, i.e. individual amino acid, 

kmers and separated amino acid pairs, although the different 

categories of features extract protein sequence features fol-

low the same fashion, i.e. they all extract the composition, 

arrangements and same physical properties of amino acids, 

however, they attain different efficiency and accuracy in the 

classifications. The newly proposed separated amino acid 

pair features show the overall best performances with the 

highest average classification accuracy (mean 

AUPRC=82.57%) than the traditional features (mean 

AUPRC=82.57%) and kmer features (mean 

AUPRC=75.04%). The kmer features perform the worst 

among all types of features. This implies that the composi-

tion and arrangement of separated amino acid pairs with spa-

cial intervals may better interpret the evolutionary relation-

ship between protein sequences than the composition and 

arrangement features of individual amino acids and kmers. 

Local sequence segments such as kmers or individual amino 

acids may not fully reflect the evolutionary relations between 

protein sequences. The reason for these outcomes is may be 

because the spatial intervals of separated amino acid pairs 

may describe wider scope of the amino acid distributions, 

and hence extract more efficient characters. The composition 

and arrangement of the separated amino acid pair features 

with wider scope of amino acid distributions may better re-

flect the evolutionary relations between protein sequences. 
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Figure 7. Precision-recall curves for traditional features. 

This figure shows the precision-recall curves for the traditional features based on individual amino acids for all five exam-

ples. 

 
Figure 8. Parameter analysis for separated amino acid pair features and kmer features (Example 1). 

This figure presents the precision-recall curves for the 

separated amino acid pair features and kmer features in ex-

ample 1 with varying parameters. Each precision-recall curve 

is labeled with the corresponding parameter choice and the 

AUPRC value. 

When comparing the performances within each main cat-

egory of features, the SF feature (mean AUPRC=89.32%) 

shows the overall highest classification accuracy among all 

separated amino acid pair features. Ranking the average 

AUPRC values in descent order, the most efficient SF feature 

is followed by the SPII (mean AUPRC=88.86%) and SN 

(mean AUPRC=88.61%) features, the SD (mean AUPRC= 

81.60%) feature attains the lowest classification accuracy 

among all separated amino acid pair features. The traditional 

individual amino acid features also perform well in the evo-

lutionary classifications. The kmer features show worse per-

formance than the separated amino acid pair features and the 

traditional individual amino acid features. However, when 
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comparing the kmer features, the KN (mean 

AUPRC=77.25%) and Kμ (mean AUPRC=77.02%) features 

show better performance among all kmer features. 

The impact of parameter changes on the kmer and sepa-

rated amino acid pair features can be observed from Figure 8, 

Supplementary Figures S23-S26 and Tables 2-3. Tables 2 

and 3 separately present the AUPRC values for the kmer and 

separated amino acid pair features with different parameters. 

From these figures and tables, the kmer features show the 

best performance when k=7, which also perform well when 

k=11 and 19. For the separated amino acid pair features, they 

attain the best performance when 11  , which also per-

form well when 15   and 19. This implies that the kmers 

and separated amino acid pair intervals with medium or 

longer length may better interpret the evolutionary relations 

of protein sequences. 

Table 2. AUPRC values for Kmer features. 

k 

AUPRC values (%) 

KN Kμ KD KF KP Mean 

3 75.81 76.95 76.82 74.41 73.80 75.56 

5 75.03 75.26 75.52 72.85 73.30 74.39 

7 79.69 78.08 79.44 76.64 74.98 77.77 

9 74.62 76.59 76.17 72.31 71.25 74.19 

11 77.07 79.44 74.10 74.08 74.28 75.79 

13 75.74 74.87 73.68 71.30 70.39 73.20 

15 79.86 77.47 72.06 74.29 72.40 75.22 

17 77.45 76.12 72.03 70.82 71.78 73.64 

19 78.21 78.07 73.56 75.07 74.31 75.84 

21 79.06 77.34 72.91 73.01 71.77 74.82 

Mean 77.25 77.02 74.63 73.48 72.83 75.04 

Max 79.86 79.44 79.44 76.64 74.98 77.77 

This table shows the average AUPRC values for the kmer features with varying k values for different examples. The last two 

rows separately show the average and maximum AUPRC values for the different kmer features over all k parameters, while the 

last column presents the average AUPRC values for each parameter k over all types of kmer features. 

Table 3. AUPRC values for separated amino acid pair features. 

λ 

AUPRC values (%) 

SN Sμ SD SF SPI SPII Mean 

1 88.16 87.84 81.13 89.35 84.90 88.28 86.61 

2 89.37 87.96 79.80 91.09 85.21 90.02 87.24 

3 88.87 90.33 83.19 88.93 86.00 88.13 87.58 

4 87.93 87.80 78.95 87.75 86.30 88.21 86.16 

5 89.36 87.50 79.49 90.74 88.30 90.73 87.69 

6 88.84 87.72 80.04 88.59 87.56 88.26 86.84 

7 88.13 89.18 79.90 90.02 87.26 89.63 87.35 

8 87.89 88.22 81.82 87.47 86.23 87.81 86.57 
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λ 

AUPRC values (%) 

SN Sμ SD SF SPI SPII Mean 

9 87.78 86.48 85.71 88.37 86.84 88.13 87.22 

10 88.42 91.44 80.83 88.00 85.70 87.96 87.06 

11 88.84 88.98 85.49 90.66 87.65 91.08 88.78 

12 88.75 89.76 82.40 89.51 84.74 88.04 87.20 

13 88.08 88.67 84.19 89.98 85.91 89.36 87.70 

14 89.20 88.45 81.83 88.32 84.62 87.57 86.67 

15 89.92 90.18 81.27 90.90 87.94 89.43 88.27 

16 88.30 87.49 83.06 87.49 86.03 87.95 86.72 

17 88.21 86.46 80.82 89.90 86.13 87.73 86.54 

18 88.04 89.24 79.37 89.75 88.63 88.79 87.30 

19 89.68 89.02 80.93 89.59 89.12 90.20 88.09 

20 88.41 87.37 81.80 90.00 85.79 89.86 87.20 

Mean 88.61 88.50 81.60 89.32 86.54 88.86 87.24 

Max 89.92 91.44 85.71 91.09 89.12 91.08 88.78 

 

This table shows the average AUPRC values for the sepa-

rated amino acid pair features with varying parameters over 

different examples. The last two rows separately show the 

average and maximum AUPRC values for the separated 

amino acid pair features over all   parameters, while the 

last column presents the average AUPRC values for each 

parameter   over all types of the separated amino acid pair 

features. 

4. Discussion 

In this study, six novel protein sequences features are 

proposed, which account the composition, arrangements, and 

physical property characters for separated amino acid pairs in 

protein sequence. To test the effectiveness and accuracy of 

the new features, five standard evolutionary classification 

datasets [7, 10, 17, 32] are used in the simulation studies. 

The taxonomic classification results found by the new fea-

tures agree with the early discoveries to a large extend [7, 10, 

17]. Among all three categories of features, the new features 

tend to present overall the best performance when compare 

with the kmer features and classic traditional features such as 

the averaged property factors (APF) [9], the natural vector 

(NV) [10], the pseudo amino acid compositions (PseAAC) 

[11], and also the refined version of the PseAAC (rPseAAC). 

The Precision-Recall Curves are drawn for each simulation 

example, where the AUPRC values [31] are computed to 

compare the accuracy of the different features.  

Among the three category of features, i.e. the traditional 

features, kmer features, and the separated amino acid pair 

features, the newly proposed separated amino acid pair fea-

tures show the best performance in all categories of features. 

The separated amino acid pair features attain the highest 

classification accuracy (mean AUPRC=87.24%), while the 

traditional features defined on individual amino acids also 

perform well but with comparatively lower classification 

accuracy (mean AUPRC=82.57%), whereas the kmer fea-

tures show the overall lowest classification accuracy (mean 

AUPRC=75.04%).  

For the traditional features, the APF, NV, and PseAAC 

features, cover nearly all aspects of an amino acid sequences 

(amino acid composition, sequence arrangements, as physi-

cal property characters). The APF features particularly focus 

on the physical properties of amino acids [9], while the NV 

features account for both amino acid composition and se-

quence arrangements [10], the PseAAC feature is essentially 

a compositional feature with weighted considerations of the 

λ − tier correlations between physical property sequences 

[11]. All these features are defined for individual amino acids 

of the twenty kinds [9-11]. The NV, APF and the refined 

PseAAC feature perform better than the original PseAAC 

feature. This may be because of the fact that the former three 

features consider more complex situations of the protein se-

quences.  

The kmer features (similar to the kmer natural vector fea-

ture) [19] show consistent style with the separated amino 

acid pair features in their definitions. The kmer features cov-

er the general composition, arrangements and physical prop-
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erties characters of kmers [19-28], where the KN and Kμ 

features perform better than the other kmer features, which 

may indicate the composition number and mean distance of 

the kmers bear richer evolutionary information of protein 

sequences than other kmer characters.  

The separated amino acid pair features, account for the 

composition, arrangements and physical property characters 

of the separated amino acid pairs, highly outperform the tra-

ditional and kmer features, this may imply that the composi-

tion and arrangement of separated amino acid pairs with spa-

cial intervals may capture the amino acid distribution char-

acters in a wider scope, which can catch more effective evo-

lutionary information of a given protein sequence. By focus-

ing on the general composition, arrangement and physical 

properties of the different sequential units (individual amino 

acid, kmers and separated amino acid pairs), the separated 

amino acid pairs with spatial intervals are found to be perfect 

sequential units that characterize richer evolutionary infor-

mation of protein sequence than basic units such as individu-

al amino acids and kmers. When comparing among the six 

newly proposed separated amino acid pair features, the 

composition features such as SF and SN, as well as the SPII 

feature, involve both composition and physical properties of 

the separated amino acid pairs, show better performance than 

the arrangement features.  

When performing parameter analysis on the kmer and 

separated amino acid pair features, the features with some 

medium or larger parameters present optimum classification 

accuracy in the evolutionary classifications. As to the kmers, 

although the potential number of combinations of the kmers 

may grow when K increases, however the counts for the true 

appearance of such kmers may decrease in a real protein 

sequence [32]. In our analysis, the features of shorter kmers 

show general performance in the evolutionary classifications, 

whereas the features of some medium or longer kmers, e.g. 

the 7-mers (k=7), 11 and 19-mers, attain overall higher clas-

sification accuracy than the features of other lengths of 

kmers. For the separated amino acid pair features, spatial 

intervals with length 11  , 15 and 19 show the overall 

best performance than the separated amino acid pair features 

with other lengths of intervals. 

This studies show that the distribution and physical prop-

erty features of the separated amino acid pairs outperform 

the traditional individual amino acid features and kmer fea-

tures. These newly proposed separated amino acid pair fea-

tures are efficient in protein evolutionary classification stud-

ies, which may have wider usages in application studies. Ad-

ditionally, more studies can be engaged to explore more 

characters on the separated amino acid pairs to develop more 

efficient features for protein evolutionary classification anal-

ysis. 

5. Conclusion 

The newly proposed separated amino acid pair features are 

efficient in protein evolutionary classification studies, which 

outperform traditional protein sequence features based on 

individual amino acids and kmers. The distribution and 

physical property characters of the separated amino acid 

pairs may attain better interpretation for the evolutionary 

relationship between protein sequences. 
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APF Averaged Property Factors 

NV Natural Vector 

PseAAC Pseudo Amino Acid Composition 

rPseAAC Refined Pseudo Amino Acid Composition 

AUPRC Area Under Precision-Recall Curves 

PR Curves Precision-Recall Curves 

KN The Kmer Composition Number Feature 

Kμ The Kmer Mean Distance Feature 

KD The Kmer Central Distance Moment Feature  

KF The Kmer Frequency Feature 

KP The Kmer Physical Property Feature 

SN The Separated Amino Acid Pair Composition 

Number Feature  

Sμ The Separated Amino Acid Pair Mean 

Distance Feature 

SD The separated Amino Acid Pair Central 

Distance Moments Feature 

SF The Separated Amino Acid Pair Frequency 

Feature 

SPI The separated amino Acid Pair Physical 

Property Feature I 

SPII The separated amino Acid Pair Physical 

Property Feature II 
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