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Abstract 

The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. Since Hamiltonian 

systems have good properties such as symplecticity, numerical methods that preserve these properties have attracted the great 

attention. In fact, the explicit Runge-Kutta methods have used due to that schemes are very simple and its computational 

amounts are very small. However, the explicit schemes aren’t stable so the implicit Runge-Kutta methods have widely studied. 

Among those implicit schemes, symplectic numerical methods were interested. It is because it has preserved the original 

property of the systems. So, study of the symplectic Runge-Kutta methods have performed. The typical symplectic 

Runge-Kutta method is the Gauss-Legendre method, whose drawback is that it is a general implicit scheme and is too 

computationally expensive. Despite these drawbacks, the study of the diagonally implicit symplectic Runge-Kutta methods 

that preserves symplecticity has attracted much attention. The symplectic Runge-Kutta method has been studied up to sixth 

order in the past and efforts to obtain higher order conditions and algorithms are being intensified. In many applications such 

as molecular dynamics as well as in space science, such as satellite relative motion studies, this method is very effective and its 

application is wider. In this paper, it is presented the 7
th

 order condition and derive the corresponding optimized method. So the 

diagonally implicit symplectic eleven-stages Runge-Kutta method with algebraic order 7 and dispersion order 8 is presented. 

Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as 

competitive as the existing same type Runge-Kutta methods. 
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1. Introduction 

In the past decades, there have been numerous researches 

performed in the area of the numerical symplectic integration 

of Hamiltonian systems [29], Hamiltonian system of differ-

ential equations can be expressed as: 
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where H: U → 𝑅2𝑑  is a twice continuously differentiable 
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function and U ⊂ 𝑅2𝑑 is an open set. 

For example, Mathematical Pendulum, Newton’s motion 

equation, Equation for molecular dynamics and High fre-

quency equation can be considered as Hamiltonian systems [5, 

24]. 

Hamiltonian systems often arise in different fields of ap-

plied sciences such as celestial mechanics, astrophysics, 

chemistry, electronics, and molecular dynamics [7, 18, 22]. 

The range of Nano physical developments with Hamilto-

nian models contains wide ranges from molecular dynamics 

to celestial mechanics [14, 15, 23]. 

The feature of Hamiltonian system is that this system satisfies 

classical conservation laws such as law of conservation of energy 

and also satisfies law of conservation of symplectic property. 

Generally, the differential equations that are expressed as 

mathematical modeling of these problems are solved numer-

ically using the numerical methods. But the numerical solu-

tions of differential equations are contained a little error. 

The most important problem in developing numerical 

methods is to construct the schemes with minimized error. 

But some schemes don’t reflect the main symplectic property. 

So in the 1980s the opinion that the numerical methods for 

solving the mathematical models have to preserve the sys-

tem’s main property was presented [5, 17]. 

The advantages of such methods are well demonstrated in 

problems that are difficult to solve by classical methods, for 

example, problems with singularities, problems with long-term 

calculations, and the analysis of highly oscillatory systems. 

Since the symplectic is a property of Hamiltonian systems, 

numerical methods with this property have been studied. 

Such a previous work can be found in Hairer, Lubich, 

Wanner, Sanz Serna, and Calvo. [13, 26]. 

The earliest work on symplectic numerical methods can be 

found in Vogelaere’s the paper in 1956 and Ruth’s paper in 

1983 [3, 28]. 

Ruth constructed partitioned symplectic Runge-Kutta 

method with third order. 

Since about 1988, the symplectic order condition has been 

independently derived by Suris, Lasagni, and Sanz-Serna, 

respectively, and the symplectic Runge-Kutta method has 

been studied extensively [1, 4, 30]. 

Since the solution of the system of ordinary differential 

equations (1) exhibits oscillatory character in almost cases, 

the numerical solution of the oscillating Hamiltonian system 

must be constructed by considering both symplecticity and 

oscillatory character simultaneously. 

The phase-lag analysis, which reflects the oscillation 

property, was introduced by Brusa and Nigro [19]. 

The phase-lag analysis is evaluated in terms of the disper-

sion order. 

In the past few years, there has been an increasing interest 

in constructing symplectic Runge-Kutta methods for the os-

cillatory problems [1, 10, 30, 31]. 

In Hairer and Wanner, it is constructed the symplectic 

Runge-Kutta method using the W-transformation [3]. 

In Iserles, it is constructed the symplectic Runge-Kutta 

method with real eigenvalues with the help of perturbation 

configuration [1]. 

In Sun, it is given a simple method to obtain the symplec-

tic method with the help of the symplecticity condition of the 

partitioned Runge-Kutta method [8]. 

Recently, the attention has been paid to the diagonally im-

plicit symplectic Runge-Kutta method, which has been stud-

ied by Suris, Qin, Zhang, Kalogiratou et al, Cong, Jiang, 

Franco, and Gomez [10, 13, 20, 25, 26, 30, 31]. 

In Franco and Gomez, it is constructed symplectic diago-

nally implicit Runge-Kutta method of algebraic order 4 and 

phase-lag order 6 with five stages [13]. 

In Z. Kalogiratou et al. it is constructed symplectic diago-

nally implicit Runge-Kutta method of algebraic order 5 and 

phase-lag order 6 with seven stages [31]. 

It is interesting to note here that the order condition for the 

fifth algebraic order is constructed. 

In Cong and Jiang, it is constructed the symplectic diago-

nally implicit Runge-Kutta method of algebraic order 6 and 

phase-lag order 8 with nine stages [9, 11, 27]. 

It is interesting to note here that the order condition of the 

sixth algebraic order is constructed. 

The important problem in actually constructing the 

schemes is to find the exactly order condition that the 

scheme must satisfy. 

However, in general, it is difficult to visualize Taylor ex-

pansions of differential equations, and this work carried out 

in the fields such as W-transform techniques, rooted tree 

theory and so on [2, 15]. 

An attempt to derive the convergence order condition us-

ing the rooted tree theory was made in the case of the general 

Runge-Kutta method but it was not found how to construct a 

rooted tree satisfying symplectic property. 

To summarize the previous results, numerical methods for 

the Hamiltonian systems with oscillatory character have been 

studied in the direction of increasing their algebraic and dis-

persion orders. 

However, the computational speed cannot be guaranteed 

or even is almost impossible due to the increased computa-

tional effort at the same time as the order increases, and the 

study of the diagonally implicit symplectic Runge-Kutta 

method with special properties is being intensified. 

This is very useful in solving practical problems, for it is 

computationally very small compared with the conventional 

implicit scheme and provides the stability. 

Therefore, It is given firstly some basic knowledges about 

the dispersion properties of the Runge-Kutta method, the 

symplecticity conditions of the Runge-Kutta method, the 

properties of the diagonally implicit symplectic Runge-Kutta 

method, the root tree theory and so on. 

Next, It is derived the diagonally implicit symplectic 

Runge-Kutta schemes with the seventh order condition and 

study the stability and dispersion properties of the proposed 

method based on it. 
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In addition, numerical experiments investigating the Ham-

iltonians by the proposed Runge-Kutta method are carried 

out to confirm its superiority. 

2. Preliminary Knowledge 

2.1. The Computational Schemes of the 

Runge-Kutta Method 

Consider the following initial value problem for ordinary 

differential equation. 

𝑦´(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑦0 𝑓: 𝑅 × 𝑅
𝑚
 𝑅𝑚  (2) 

In general, the schemes of the s-stages Runge-Kutta 

method is defined as follows [27]. 

𝑌𝑖 = 𝑦𝑛 + 𝑕∑ 𝑎𝑖𝑗𝑓(𝑥𝑛 + 𝑐𝑗𝑕, 𝑌𝑖)
𝑠
𝑗<1 , (𝑖 = 1, 𝑠)  

𝑦𝑛:1 = 𝑦𝑛 + 𝑕∑ 𝑏𝑖𝑓(𝑥𝑛 + 𝑐𝑖𝑕, 𝑌𝑖)
𝑠
𝑖<1        (3) 

where 𝑎𝑖𝑗 , 𝑏𝑖  (𝑖, 𝑗 = 1, 𝑠) are real parameters. 

This scheme is called the Butcher tableau [2]. 

If 𝑗  𝑖(1  𝑖  𝑠), 𝑎𝑖𝑗 =  , then the all 𝑌𝑖 can be com-

puted in an explicit way from 𝑌1, 𝑌2,  , 𝑌𝑖;1. Therefore such 

scheme is called explicit Runge-Kutta scheme. 

In scheme (3), when 𝑗  𝑖 (1  𝑖  𝑠), 𝑎𝑖𝑗 =  , and has 

certain 𝑎𝑖𝑗    in diagonal line (1  𝑖  𝑠), the scheme is 

called diagonally implicit scheme. 

If the method is neither explicit, nor diagonally implicit, it 

is just called implicit [2]. 

2.2. Symplecticity Condition of Runge-Kutta 

Method 

Make the following symbolic convention. 

𝐵 = 𝑑𝑖𝑎𝑔,𝑏1, 𝑏2,  , 𝑏𝑠- 

𝑀 = 𝐵𝐴 + 𝐴´𝐵 − 𝑏𝑏´ 

Theorem 1. [29] 

If 𝑏𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑖𝑗 − 𝑏𝑗𝑎𝑗𝑖 =  , (𝑖, 𝑗 = 1, s)        (4) 

Then, the s-stages Runge-Kutta method is symplectic. 

2.3. Order Condition of Runge-Kutta Method 

Applying the Runge-Kutta method to equation (2), the 

corresponding Taylor expansion can be found [6]. 

y(𝑥0 + 𝑕) = 𝑦0 + 𝑕𝑓 +
ℎ2

2
(𝑓𝑦𝑓 + 𝑓𝑥) +

ℎ3

6
(𝑓𝑦𝑦𝑓

2 +

2𝑓𝑥𝑦𝑓 + 𝑓𝑥𝑥 + 𝑓𝑦
2𝑓 + 𝑓𝑦𝑓𝑥) +    

𝑓𝑥 =
𝜕𝑓

𝜕𝑥
, 𝑓𝑦 =

𝜕𝑓

𝜕𝑦
, 𝑓𝑥𝑥 =

𝜕2𝑓

𝜕𝑥2
, 𝑓𝑥𝑦 =

𝜕2𝑓

𝜕𝑥𝜕𝑦
,      (5) 

All derivatives are found at the point (𝑥0, 𝑦0). 

Simultaneously It is expanded    of Runge-Kutta method 

around the point ( 0, y0). 

For example, 

𝑓1 = 𝑓(𝑥0 + 𝑐1𝑕, 𝑦0) = 𝑓 + 𝑐1𝑕𝑓𝑥 +
1

2
𝑐1
2𝑕2𝑓𝑥𝑥 +   (6) 

Thus, 

𝑦1 = 𝑦0 + 𝑕𝑔11𝑓 + 𝑕
2(𝑔21𝑓𝑦𝑓 + 𝑔22𝑓𝑥) + 𝑕

3(𝑔31𝑓𝑦𝑦𝑓
2 +

𝑔32𝑓𝑥𝑦𝑓 + 𝑔33𝑓𝑥𝑥 + 𝑔34𝑓𝑦
2𝑓 + 𝑔35𝑓𝑦𝑓𝑥) +     (7) 

Here     are determined by the coefficients    ,   ,   . 

Subtract (7) from (5), and then get the local truncation er-

ror. 

y(𝑥1) − 𝑦1 = 𝑕(𝑔11 − 1)𝑓 + 𝑕
2 .𝑔21 −

1

2
/ 𝑓𝑦𝑓 + 𝑕

2 .𝑔22 −

1

2
/ 𝑓𝑥 +               (8) 

When the local truncation error of RK method is  (𝑕 :1), 

then the RK method has order p. Then in the expression 

above the coefficients are zero for powers of h up to p. Thus, 

for a RK method to attain order p that have to satisfy various 

equations called order conditions. 

2.4. Rooted Tree Theory 

The basic method to construct the numerical scheme for 

ordinary differential equation is Taylor expansion. If only a 

single (scalar) equation is considered, Taylor expansion can 

be used in studying the convergence, compatibility, and or-

der conditions for RK methods. However, if the system of 

differential equations are considered, Taylor expansion is 

intractable. 

The second order derivative can be expressed by the Jaco-

bian matrix. 

However, the third-order derivative can no longer be ex-

pressed by via matrix and vector symbol, not to mention the 

higher order derivative. This has motivated people to study 

the structure of the Taylor expansion of high order deriva-

tives and search for a better symbol to simplify the Taylor 

expansion of high order derivatives. Then the rooted tree 

theory emerged. 

Definition 1. [12] The directed graphs containing a root is 

called a rooted tree. 

If you choose different roots, the rooted tree will also be 

different. 

Let T denote the set of rooted trees. 

The rooted tree with up to four vertices is given in the 
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Figure 1. 

 
Figure 1. The rooted tree with up to fourth order. 

Here the root is conveniently made to be the lowest vertex. 

Rooted tree theory is a theory that introduces the concept 

of a rooted tree used in graph theory to denote higher-order 

derivatives to determine the order condition. 

2.5. Phase-Lag Analysis 

The application of a Runge-Kutta method to the test prob-

lem 

𝑦´ = 𝑖ω𝑦,ω ∈ 𝑅                (9) 

leads to the numerical scheme. 

𝑦𝑛:1 = 𝑅(𝑖ω𝑕𝑛)𝑦𝑛              (10) 

𝑅(𝑖𝜈) = 𝑅(𝑖ω𝑕𝑛) = 1 + 𝑖𝜈𝑏(𝐼 − 𝑖𝜈𝐴)
;1𝑒 = ∑ 𝛽𝑗(𝑖𝜈)

𝑗∞
𝑗<0  (11) 

𝛽𝑗 = 𝑏𝐴
𝑗;1𝑒,  𝛽0 = 1, 𝑒 = (1,1, 1)

𝑇 , (𝑗  1)   (12) 

Where 𝑕𝑛 = 𝑥𝑛:1 − 𝑥𝑛, 𝛽𝑗  depend only on the coeffi-

cients of the methods. 

Definition 2. [12] For a Runge-Kutta method the disper-

sion error (Phase-lag error) is given by 

𝛷(𝜈) = 𝜈 −  r  (𝑅(𝑖𝜈))          (13) 

If 𝛷(𝜈) =  (𝜈 :1), then the Runge-Kutta method is said 

to have dispersion order q. 

Moreover, if consider the stability function 𝑅(𝑖𝜈) and 

collect the real and imaginary parts 

𝑅(𝑖𝜈) = 𝐴(𝜈2) + 𝑖𝜈𝐵(𝜈2)           (14) 

then the dispersion errors can be written in the form 

𝛷(𝜈) = 𝜈 −  r t n .𝜈
𝐴(𝜈2)

𝐵(𝜈2)
/         (15) 

An alternative form for 𝑅(𝑧) (𝑧 = 𝑖𝜈) is 

𝑅(𝑧) =
det (𝐼:𝑧(𝑒𝑏𝑇;𝐴))

det (𝐼;𝑧𝐴)
          (16) 

For symplectic Runge-Kutta methods always have 

𝑅(𝑧) =
det (𝐼:𝑧𝐴)

det (𝐼;𝑧𝐴)
            (17) 

Lemma 1. [21] A RK method is dispersive of order q, if 

the coefficients 𝛽𝑗 in the 𝑅(𝜈) satisfy the following condi-

tions: 

𝛽0

𝑗!
−

𝛽1

(𝑗;1)!
+

𝛽2

(𝑗;2)!
− + (−1)𝑗𝛽𝑗 =  , (𝑗 =

1, 𝑞 − 1, 𝑞 is even. )     (18) 

3. Construction of the New Method 

Compared with the conventional RK methods and the SRK 

method has a very small number of conditions for determining 

the order for the accuracy, because the symplectic condition 

plays the same role as the simplification assumption. 

A comparison of the number of conditions that determine 

the convergence order of the conventional RK method and the 

SRK method is shown in the Table 1. 

Now, to determine the order condition of the SRK method, 

let us construct the rooted tree by introducing the rooted tree 

theory. 

Definition 3. The order 𝑟(𝑡), symmetry  (𝑡), and density 

(tree factorial)  (𝑡) are defined by 

𝑟(𝑡) =  (𝑡) =  (𝑡) = 1        (19) 

𝑟(,𝑡1
𝑛1𝑡1

𝑛1 -) = 1 + 𝑛1𝑟(𝑡1) + 𝑛2𝑟(𝑡2) +     (20) 

 (,𝑡1
𝑛1𝑡1

𝑛1 -) = 𝑛1! 𝑛2!  ( (𝑡1))
𝑛1( (𝑡2))

𝑛2   (21) 

 (,𝑡1
𝑛1𝑡1

𝑛1 -) = 𝑟(,𝑡1
𝑛1𝑡2

𝑛2 -)( (𝑡1))
𝑛1( (𝑡2))

𝑛2   (22) 

Table 1. Order conditions of RK and SRK. 

Order RK SRK 

1 1 1 

2 2 1 

3 4 3 

4 8 4 

5 17 6 

6 37 10 

7 85 21 

Higher order rooted trees can be constructed by grafting 

new vertices onto the rooted tree with one vertex  . 

Let  (𝑡) (tree multiplicity) be the number of essentially 

different ways of labeling the vertices of the tree 𝑡  with 

integers 1, 2, , 𝑟(𝑡)  such that labels are monotonously 
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increases. 

 (𝑡) can expressed by (23), namely, 

 (𝑡) =
𝑟(𝑡)!

𝜎(𝑡)∙𝛾(𝑡)
               (23) 

Define the following functions to map a set of trees to a set 

of functions. 

Definition 4. 

1) For 𝑖 = 1, 2, , 𝑠, 𝑠 + 1 , define the function of 

𝛷𝑖(𝑖 = 1, 𝑠 + 1), 𝛷 on the set T of all trees by: 

𝛷𝑖( ) = ∑ 𝑎𝑖𝑗
𝑠
𝑗<1            (24) 

𝛷𝑖(,𝑡1, 𝑡2, 𝑡𝑀) = ∑ 𝑎𝑖𝑗
𝑠
𝑗<1 𝛷𝑗(𝑡1)𝛷𝑗(𝑡2) 𝛷𝑗(𝑡𝑀) (25) 

2) Define 

𝛷(𝑡) = 𝛷𝑠:1(𝑡)             (26) 

Theorem 2 [16]. RK method has order p, if 

𝛷(𝑡) = ∑ 𝑏𝑖𝛷𝑖𝑖 =
1

𝛾(𝑡)
, ∀𝑟(𝑡)  𝑝, 𝑡 ∈ 𝑇    (27) 

And does not hold for some trees of order ∀𝑟(𝑡)  𝑝 + 1. 

From the Theorem 2, it can judge the convergence with the 

tree if it is constructed. 

There are four types of trees, which can be defined as fol-

lows [16]: 

(1) A labeled 𝑛 −tree  𝑇 is a labeled 𝑛 −graph {V, E}, 

such that for any pair of distinct vertices 𝜈  and  , there 

exists a unique path that joins 𝜈 and  . 

(2) Two labeled 𝑛 −trees * 1,  1+ and * 2,  2+ are said 

to be isomorphic, if a bijection of  1 onto  2 exists that 

transforms edges in  1 into edges in  2, vertices  1 into 

 2. The 𝑛 −trees   is an equivalence class that consists of 

labeled 𝑛 − trees isomorphic to it. Each of the labeled 

𝑛 −tree that represent   is called a labeling of  . 

(3) A rooted labeled 𝑛 −tree   𝑇 is a labeled 𝑛 −tree, in 

which one of the vertices 𝑟, called the root, has been high-

lighted. The vertices adjacent to the root are called the sons 

of the root. The sons of the remaining vertices are defined in 

the relationship between father and son. Let 𝑇 be a mapping 

from son to father. Since any point 𝜈 has a path to the root, 

e.g. 𝜈 = 𝜈0, 𝜈1,  𝜈𝑚 = 𝑟, 𝑟  may be obtained through the 

sequential action of 𝑇 on 𝜈. 

Therefore a direction can be defined from 𝜈 to 𝑟, and the 

entire root also become oriented. 

(4) Two labeled 𝑛 − trees * 1,  1, 𝑟1+ , * 2,  2, 𝑟2+  are 

said to be root isomorphic, if a bijection of  1 onto  2 ex-

ists that transforms edges in  1 onto  2 and maps 𝑟1 onto 

𝑟2. A rooted 𝑛 −trees  𝑇 is an equivalence class that com-

prises of the rooted labeled 𝑛 −tree and all rooted labeled 

𝑛 −trees root-isomorphic to it. 

Definition 5. Let   be an n-tree and choose one of its la-

beling   . This labeling gives rise to n different rooted la-

beled trees   𝑇1 ,    𝑇 , where      has its root at the in-

teger i(1  i  n). If for each edge (i,  ) in   ,   𝑇  and 

  𝑇  represent different rooted trees; then   is called 

non-superfluous. 

Example 1. Labeled 3-tree  𝑇31  is non-superfluous and 

labeled 4-tree  𝑇41 is superfluous. 

Consider the 3-tree  31. 

When choosing the labeled 3-tree, can see that for the edge 

1-2, choosing 1 as the root leads to  𝑇31, choosing 2 as the 

root leads to  𝑇32. For the edge 2-3, choosing 2 as the root 

leads to  𝑇32, and choosing 3 as the root leads to  𝑇31. 

Therefore  𝑇31 is non-superfluous. 

On the other hand the 4-tree with labeling is superfluous, 

since changing the root from 2 to the adjacent 3 does not result 

in different rooted trees. 

 

Figure 2. Rooted trees in Lemma. 

Look at first rooted tree  𝑇𝑖  and  𝑇𝑗 . The root of the 

rooted trees  𝑇𝐼 ,  𝑇  in Figure 2 is at vertex i and j, they are 

removed edge joining I and J in the top left-hand corner graph. 

Lemma 2. With the above notations 

1) 

1

𝛾(𝜌𝑇 )
+

1

𝛾(𝜌𝑇 )
=

1

𝛾(𝜌𝑇𝐼)
∙

1

𝛾(𝜌𝑇𝐽)
        (28) 

2) For the symplectic RK method, weighted coefficients of 

elementary differential satisfy 

𝛷( 𝑇𝑖) + 𝛷( 𝑇𝑗) = 𝛷( 𝑇𝐼)𝛷( 𝑇 )    (29) 

3) For order  (𝑟 − 1), symplectic RK method, 

𝛷( 𝑇𝑖) + 𝛷( 𝑇𝑗) =
1

𝛾(𝜌𝑇 )
+

1

𝛾(𝜌𝑇 )
    (30) 

Therefore  𝑇𝑖 order conditions holds if order conditions 

of  𝑇𝑗 hold. 

Proof. 

1) By the definition of  ,  

 ( 𝑇𝑖) = 𝑟 ( 𝑇 )
𝛾(𝜌𝑇𝐼)

𝑟(𝜌𝑇𝐼)
          (31) 

 ( 𝑇𝑗) = 𝑟 ( 𝑇𝐼)
𝛾(𝜌𝑇𝐽)

𝑟(𝜌𝑇𝐽)
         (32) 
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In the formula, 

𝑟 = 𝑟( 𝑇𝐼) + 𝑟( 𝑇 ) = 𝑟
𝛾(𝜌𝑇𝐼)𝛾(𝜌𝑇𝐽)

𝛾(𝜌𝑇 )
+ 𝑟

𝛾(𝜌𝑇𝐼)𝛾(𝜌𝑇𝐽)

𝛾(𝜌𝑇 )
=

𝑟 ( 𝑇𝐼) ( 𝑇 )(
1

𝛾(𝜌𝑇 )
+

1

𝛾(𝜌𝑇 )
)     (33) 

Thus,  ( 𝑇𝐼) ( 𝑇 ) =
1

𝛾(𝜌𝑇𝐼)
∙

1

𝛾(𝜌𝑇𝐽)
 

2) 

𝛷( 𝑇𝑖) + 𝛷( 𝑇𝑗) =

∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑙 𝑖,𝑗 + ∑ 𝑏𝑗𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑙 𝑖,𝑗 =

∑ 𝑏𝑖𝑎𝑖𝑗𝑖,𝑗 ∏ + ∑ 𝑏𝑗𝑎𝑗𝑖𝑖,𝑗 ∏        (34) 

Where ∏  represents a product of 𝑟 − 2 factors 𝑎𝑘𝑙 . 

Using the order condition of the SRK method (4). 

∑ 𝑏𝑖𝑎𝑖𝑗∏ 𝑖,𝑗 + ∑ 𝑏𝑗𝑎𝑗𝑖 ∏ 𝑖,𝑗 = ∑ 𝑏𝑖𝑏𝑗∏ 𝑖,𝑗 =

𝛷( 𝑇𝐼) ∙ 𝛷( 𝑇 )        (35) 

Thus, 𝛷( 𝑇𝑖) + 𝛷( 𝑇𝑗) = 𝛷( 𝑇𝐼) ∙ 𝛷( 𝑇 ) 

3) From 2), 

𝛷( 𝑇𝑖) + 𝛷( 𝑇𝑗) = 𝛷( 𝑇𝐼) ∙ 𝛷( 𝑇 ) =
1

𝛾(𝜌𝑇𝐼)
+

1

𝛾(𝜌𝑇𝐽)
=

1

𝛾(𝜌𝑇 )
+

1

𝛾(𝜌𝑇 )
          (36) 

Theorem 3. Assume that a symplectic RK method satisfies 

the order conditions for order  (𝑟 − 1)  with (𝑟  2) . 

Then, to ensure that the method have order  𝑟, it is suffi-

cient that, for each non-superfluous tree   with r vertices, 

there is at least one rooted tree    associated with   for 

which 

𝛷( 𝑇) =
1

𝛾(𝜌𝑇)
              (37) 

Proof. Choose the first a non-superfluous tree  . 

Assume that the condition (27) is satisfied for a suitable 

rooted tree  𝑇𝑖  of  . From the Lemma 2 choose 𝑗 as any of 

the vertices adjacent to 𝑖. By the condition (26), the order 

condition (27) is also satisfied for  𝑇𝑗. 

Since any two vertices of a tree can be joined through a 

chain of pairwise adjacent vertices, the iteration of this ar-

gument leads to the conclusion that the method satisfies the 

order conditions that arise from any rooted tree in  . In the 

case of a superfluous tree  , by definition, it is possible to 

choose adjacent vertices 𝑖, 𝑗, such that  𝑇𝑖  and  𝑇𝑗 are in 

fact the same rooted tree. Then condition (26) shows that (27) 

holds for the rooted tree  𝑇𝑖 . 

Therefore (27) holds for all rooted tree in  . 

For symplectic RK methods it is sufficient to obtain the 

order conditions only for non-superfluous trees rather than 

every rooted trees. 

Thus, constructing the rooted trees of symplectic 

Runge-Kutta method up to the seventh orders is shown in the 

following Figure 3. 

 

Figure 3. The trees of SRK. 

Deriving the convergence order condition for the above the 

trees of symplectic Runge-Kutta method by Theorem 3, can 

obtain the Table 2. 

Order conditions of (3) for the 11-stages diagonally implicit 

SRK method with 7-th order convergence are following as. 

Table 2. Rooted trees and order conditions. 

T 𝒓(𝒕)  𝝈(𝒕)  𝜸(𝒕)  𝜶(𝒕)  Order condition 

 1  1 1 1 1 ∑ 𝑏𝑖
𝑠
𝑖<1 = 1  

 2  3 2 3 1 ∑ 𝑏𝑖𝑐𝑖
2𝑠

𝑖<1 =
1

3
  

 3  4 6 4 1 ∑ 𝑏𝑖𝑐𝑖
3𝑠

𝑖<1 =
1

4
  

 4  5 24 5 1 ∑ 𝑏𝑖𝑐𝑖
4𝑠

𝑖<1 =
1

5
  

 5  5 2 10 6 ∑ 𝑏𝑖𝑐𝑖
2𝑎𝑖𝑗𝑐𝑗

𝑠
𝑖,𝑗<1 =

1

10
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T 𝒓(𝒕)  𝝈(𝒕)  𝜸(𝒕)  𝜶(𝒕)  Order condition 

 6  5 1 20 6 ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑐𝑘
𝑠
𝑖,𝑗,𝑘<1 =

1

20
  

 7  6 120 6 1 ∑ 𝑏𝑖𝑐𝑖
5𝑠

𝑖<1 =
1

6
  

 8  6 6 12 10 ∑ 𝑏𝑖𝑐𝑖
3𝑎𝑖𝑗𝑐𝑗

𝑠
𝑖,𝑗<1 =

1

12
  

 9  6 2 24 15 ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑐𝑘
𝑠
𝑖,𝑗,𝑘<1 =

1

24
  

 10  6 2 36 1 ∑ 𝑏𝑖𝑐𝑖
2𝑎𝑖𝑗𝑎𝑗𝑘𝑐𝑘

𝑠
𝑖,𝑗,𝑘<1 =

1

36
  

 11  7 2 252 10 ∑ 𝑏𝑖𝑎𝑖𝑗𝑎𝑗𝑘𝑐𝑘𝑎𝑖𝑙𝑎𝑙𝑚𝑐𝑚
𝑠
𝑖,𝑗,𝑘,𝑙,𝑚<1 =

1

252
  

 12  7 1 84 60 ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑎𝑘𝑙𝑐𝑙
𝑠
𝑖,𝑗,𝑘,𝑙<1 =

1

84
  

 13  7 6 42 20 ∑ 𝑏𝑖𝑐𝑖
3𝑎𝑖𝑗𝑎𝑗𝑘𝑐𝑘

𝑠
𝑖,𝑗,𝑘<1 =

1

42
  

 14  7 8 63 10 ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗
2𝑎𝑖𝑘𝑐𝑘

2𝑠
𝑖,𝑗,𝑘<1 =

1

63
  

 15  7 24 14 15 ∑ 𝑏𝑖𝑐𝑖
4𝑎𝑖𝑗𝑐𝑗

𝑠
𝑖,𝑗<1 =

1

14
  

 16  7 4 28 45 ∑ 𝑏𝑖𝑐𝑖
2𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑐𝑘

𝑠
𝑖,𝑗,𝑘<1 =

1

28
  

 17  7 6 56 15 ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑐𝑘𝑎𝑖𝑙𝑐𝑙
𝑠
𝑖,𝑗,𝑘,𝑙<1 =

1

56
  

 18  7 2 42 60 ∑ 𝑏𝑖𝑐𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑐𝑘
2𝑠

𝑖,𝑗,𝑘<1 =
1

42
  

 19  7 720 7 1 ∑ 𝑏𝑖𝑐𝑖
6𝑠

𝑖<1 =
1

7
  

 20  7 2 168 15 ∑ 𝑏𝑖𝑎𝑖𝑗𝑐𝑗𝑎𝑖𝑘𝑎𝑘𝑙𝑐𝑙
2𝑠

𝑖,𝑗,𝑘,𝑙<1 =
1

168
  

 21  7 12 21 20 ∑ 𝑏𝑖𝑐𝑖
3𝑎𝑖𝑗𝑐𝑗

2𝑠
𝑖,𝑗<1 =

1

21
  

 

𝑇 = ( 1,  2,  ,  21)            (38) 

To construct an eleven-stage diagonally implicit symplectic 

Runge-Kutta method with algebraic order 7 and dispersion 

order 8, it only need to choose the free parameters 

𝑏𝑖 , 𝑐𝑖(𝑖 = 1,11) to minimize the error norm, 

𝐴 = ‖𝑇‖2                    (39) 

Minimizing the error norm, it can get DISRK method’s 

parameters in Table 3. 

Table 3. Parameters for the DISRK11,7,8. 

Parameter Value Parameter Value 

𝑏1  0.0884823 𝑐1  0.0442412 

𝑏2  0.0898123 𝑐2  0.1333885 

𝑏3  0.0931355 𝑐3  0.2248624 

Parameter Value Parameter Value 

𝑏4  0.0996577 𝑐4  0.321259 

𝑏5  0.112612 𝑐5  0.4273938 

𝑏6  0.145116 𝑐6  0.5562578 

𝑏7  0.246823 𝑐7  0.7522273 

𝑏8  -0.333089 𝑐8  0.7090943 

𝑏9  0.24727 𝑐9  0.6661848 

𝑏10  0.122669 𝑐10  0.8511543 

𝑏11  0.0875886 𝑐11  0.9562831 

4. Stability and Dispersive Error Analysis 

4.1. Stability 

Considering a scalar test ordinary differential equation, 

𝑦´ =  𝑦,  ∈ 𝐶, 𝑅𝑒( )             (40) 
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Applying (3) to the test equation yields the stability dif-

ference equation of the form 

𝑦𝑛:1 = 𝑅(𝑧)𝑦𝑛, 𝑅(𝑧) = 1 + 𝑧𝑏
𝑇(𝐼 − 𝑧𝐴);1𝑒  (41) 

Where R(z) is the stability function of the method and I is 

an Identity matrix of size 𝑠 × 𝑠, so 𝑦𝑛 →   as n →   if and 

only if |𝑅(𝑧)|  1, and the method is absolutely stable for 

those values of z for which |𝑅(𝑧)|  1 holds. 

Definition 6 [27]. The stability region is defined as 

*𝑧 ∈ C: |𝑅(𝑧)|  1+            (42) 

Definition 7 [27]. A Runge-Kutta method is said to be 

A-stable if its stability region contains C;1 , that is, the 

non-positive half-plane *𝑧|𝑅𝑒(𝑧)  1+. 

For symplectic Runge-Kutta methods, it always have 

|𝑅(𝑧)| = 1. 

So the new method is A-stable. 

The stability region of the new method is illustrated in 

Figure 3; from the figure, it can see that the points in the 

non-positive half-plane and only few points in the right-plane 

satisfy |𝑅(𝑧)|  1; that is, to say the new method DISRK 

11,7,8 it discussed is A-stable method. 

 
Figure 4. Stability region of the DISRK 11,7,8. 

4.2. Dispersion Error 

Compare the new method with some already known 

methods; the methods chosen to be tested are as follows. 

M756; diagonally implicit symplectic Runge-Kutta methods 

with special properties of Kalogiratou et al. are a seven-stage 

method with algebraic order 5 and dispersion order 6. 

M968; diagonally implicit symplectic Runge-Kutta meth-

ods with special properties of Y. H. Cong and C. X. Jiang. 

are a nine-stage method with algebraic order 7 and disper-

sion order 8. 

M11,7,8; is proposed in the paper. 

Figure 5 shows the dispersion error of the 3 compared 

methods. 

From the figures, the dispersive error curve of M968 and 

M11,7,8 appears to overlap, for they have the same dispersive 

order. On the other hand, the dispersion orders of the M968 

and M11,7,8 are the highest ones among the compared 3 

methods; the lowest one is the method M756 of Kalogiratou et 

al. 

 
Figure 5. Difference in dispersion. 

In the Figure, Methods used: M11,7,8 is in black. M756 is 

in red. M968 is in purple. 

5. Numerical Experiments 

In this numerical study, it is interested in the errors of the 

Hamiltonian quantity. 

1) Harmonic Oscillatory System. 

Consider 

{
𝑝´ = −𝑞
𝑞´ = 𝑝

               (43) 

The Hamiltonian function is 

𝐻(𝑝, 𝑞) =
1

2
(𝑝2 + 𝑞2)           (44) 

The exact solution is 

. (𝑡)
 (𝑡)
/ = .cos

(𝑡),;s n (𝑡)

s n(𝑡),cos (𝑡)
/ . (0)

 (0)
/         (45) 

where 

{
𝑝( ) = − .1

𝑞( ) =  .3
            (46) 

The problem has been solved numerically in the interval 

𝑡 ∈ , ,1    - with several steps. In table 4 it present the 
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maximum absolute error of the solution. 

The error of Hamiltonian for all methods is less than 

1 ;15. 

Table 4. Maximum absolute error of the solution of the Harmonic 

Oscillator. 

h M968 M11,7,8 

0.2 4. 2 ∙ 1 ;6  7.43 ∙ 1 ;9  

0.1 5.83 ∙ 1 ;8  7.65 ∙ 1 ;11  

2) Standard Pendulum. 

The Hamiltonian of this problem is given by 

𝐻(𝑝, 𝑞) =
 2

2
−  os (𝑞)          (47) 

The equation of motion are 

{
𝑝´ = −sin (𝑞)

𝑞´ = 𝑝 
             (48) 

Consider the problem with initial conditions 

{
𝑝( ) =  

𝑞( ) =  .5
               (49) 

The problem has been solved numerically in the interval 

𝑡 ∈ , ,1    - with several steps. In table 5 it present the 

maximum absolute error of the solution. 

Table 5. Maximum absolute error of the solution of the Standard 

Pendulum. 

h M968 M11,7,8 

0.2 7.32 ∙ 1 ;6  1.111 ∙ 1 ;7  

0.1 4.71 ∙ 1 ;7  1.211 ∙ 1 ;8  

0.01 2.37 ∙ 1 ;9  3.23 ∙ 1 ;11  

6. Conclusions 

Here it is constructed a 11-stages diagonally implicit 

symplectic Runge-Kutta method with algebraic order 7 and 

dispersion order 8. As it can see from the stability region and 

difference in dispersion, the new method is A-stable method 

and more easily implemented than general fully implicit 

methods. The numerical experiments carried out with some 

oscillatory Hamiltonian systems show that the new method is 

as competitive as the existing Runge-Kutta methods of the 

same type. 

Abbreviations 

RK Runge-Kutta Method 

SRK Symplectic Runge-Kutta Method 

DISRK 
Diagonally Implicit Symplectic Runge-Kutta 

Method 
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