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Abstract 

Proactive maintenance is a policy aimed at identifying the root cause of failure and correcting it before it causes other problems 

and leads to machinery failure and breakdown. Implementing this policy can enhance reliability, availability, maintainability, and 

safety (RAMS) at low cost. A digital twin (DT) is a digital copy of a physical object and its applications will play a leading role in 

the future of smart manufacturing. DT concept is increasingly appearing in industrial applications including proactive 

maintenance, enabling accurate identification of equipment condition, proactive prediction of faults, and enhanced reliability. 

This review paper focuses on the performance and applications of different aspects of DTs in proactive maintenance polices. The 

review of literature focused on the applications of DT in maintenance management for improving equipment RAMS. The 

literature review shows that the application of DT techniques in proactive maintenance remains very important for managing the 

maintenance of critical equipment and production systems. Several DT frameworks for proactive maintenance have been 

discussed. Furthermore, this study provides a comprehensive roadmap for future research initiatives aiming to fully utilize the 

capabilities of technology design teams. Finally, the results of this study will be of value to professionals who want and aspire to 

implement technological design to achieve maintenance excellence. 
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1. Introduction 

Proactive maintenance is a proactive policy that aims to 

identify, analyze, and correct the root cause of a failure before 

it causes further problems and leads to machinery failure. 

Implementing this policy can enhance reliability, availability, 

maintainability, and safety (RAMS), [11]. As depicted in 

Figure 1, a digital twin (DT) is a digital version of a physical 

object or system. It can successfully model a virtual object 

from its physical counterpart. The main function of a DT is to 

provide a two-way data flow between the virtual and physical 

entity so that it can continuously upgrade and improve the 

physical counterpart, [5, 6]. NASA first used the term digital 

twin in 2010, which was described as “an integrated, mul-

ti-physics, multi-scale, probabilistic simulation of a vehicle or 

system that uses the best available physics models, sensor 

updates, fleet history, etc., to simulate the life of its flying 

twin.” [32, 38]. Michael Graves was the first to propose the 

term DT, [12, 37]. Recently, DT has been utilized in various 

manufacturing fields, and it is promoting positive develop-

ments in these fields, [16, 19]. Kritzinger, [23] recognized 

three levels of DT integration, namely digital model, digital 
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shadow, and digital twin, as shown in Figure 2. Attaran, [3] 

mentioned the main DT applications in manufacturing, as 

presented in Figure 3. Many diagnostic tools are available to 

identify and analyze the root causes of failures. Failure Mode 

Effects and Criticality Analysis (FMECA) is the most com-

mon diagnostic method, which consists of two analyses; the 

Failure Mode and Effects Analysis (FMEA) and the Critical-

ity Analysis (CA), [18, 40, 11, 37, 43]. DT enables mainte-

nance management to accurately identify equipment status, 

proactively predict faults, and enhance reliability, [1, 2, 4, 26, 

47]. DT contains a set of adaptive models that can emulate the 

behavior of a physical system in a virtual system, obtaining 

real-time data to update itself along its life cycle, [39, 3]. 

Figure 4 shows an equivalent representation of the general 

architecture of DT, [55]. 

 
Figure 1. Digital twin illustration 

 
Figure 2. Digital twin Levels of integration. 

 
Figure 3. Digital twin applications in manufacturing. 
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Figure 4. Equivalent representation of the general architecture of DT. 

This study focuses on the performance and applications of 

DTs in proactive maintenance policies and the importance of 

DT in maintenance management for improving equipment 

RAMS (reliability, availability, maintainability, and safety). 

This study is an extension of a previously published paper, 

[10]. 

After this introduction, this paper is organized as follows: 

In Section 2, the literature review is carried out. In Section 3, 

the research gap is identified. Section 4 includes the DT 

framework for proactive maintenance. Finally, Section 5 

focuses on conclusions and future directions. 

2. Literature Review 

Digital twins (DT) can provide a real-time response to the 

manufacturing system and increase flexibility and reliability, 

[13]. According to Hu, [16] Figure 5 illustrates some of the 

key milestones in the development of DT. In 2016, Siemens 

used DT devices in Industry 4.0, resulting in a tremendous 

growth in related publications. 

 
Figure 5. The milestones of DT development. 
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Proactive maintenance can reduce failure risks, improve 

system uptime, extend the equipment life, and lower process 

down time losses. DT can model individual equipment or 

processes to identify variations that indicate the need for 

preventive maintenance. The goal is to estimate, predict, 

detect, or diagnose the condition of the component for more 

effective maintenance. This can prevent costly failures before 

a serious problem occurs. They can also determine if better 

materials or processes can be used or help improve cycle 

times, load levels, and tool calibrations, [20, 46]. The appli-

cation of DTs enables the monitoring of the condition and 

prediction of abnormal conditions in machine tools. This 

greatly enhances the safe and efficient operation of mechan-

ical process systems. Parameter optimization plays a crucial 

role in the optimization of the operation process. Traditional 

parameter optimization methods rely on manual experience 

and often involve high levels of uncertainty. DT operation 

process facilitates the suppression of errors and the optimiza-

tion of operating parameters, thus laying the foundation for 

achieving high-quality and high-level operation, [16]. 

DT represents the innovation that has spurred evolution and 

adaptation in the aerospace industry. For instance, employing 

DT for an aircraft or rocket ship is believed to enhance global 

tracking accuracy by 147%. In a recent survey, 75% of Air 

Force executives favored DT solutions for their industry. DT 

enables engineers to ensure the safety of the aircraft by 

looking into the potential aircraft‟s problem before any danger. 

For example, Boeing, the world‟s largest aerospace company, 

uses DT solutions to improve the safety of the parts and sys-

tems used to manufacture commercial and military airplanes. 

DTs of specific aircraft models enable technicians to use 

augmented reality (AR) overlaying the DT data on the real 

plane, facilitating faster and more accurate inspections and 

improving maintenance efficiency. As a result, Boeing has 

achieved a 40 percent improvement in the quality of the parts 

and systems, [29, 49]. According to GE Research, [9] GE‟s 

DT technology is revolutionizing how the aviation industry 

handles maintenance. Predicting engine wear, such as the 

blade wear on the GE90, saves airlines millions of dollars in 

costs and prevents aircraft from landing unexpectedly, espe-

cially in areas with sand, a major contributor to the problem. 

According to Pinello [33], the European Space Agency 

(ESA) also adopted the DT approach for its ExoMars mission. 

They built Amalia, a physical and DT of the Rosalind Franklin 

rover. This duo serves a vital purpose: anticipating and solv-

ing potential problems before they occur on the Martian sur-

face. Overall, using both physical and DTs significantly in-

creases mission success by minimizing risks and improving 

rover performance. 

DTs have been increasingly used in condition monitoring 

and fault diagnosis (CMFD) in recent years. Table 1 shows the 

survey of DTs in maintenance over the past years. The details 

of these studies are explained in the next section. 

Table 1. Survey of DTs in Proactive Maintenance, (2017 to August 

2024). 

Period References 

Before 2017 - 

2017 [42] 

2018 [44] 

2019 [2, 41, 34, 52]  

2020 [7, 14, 25]  

2021 [27, 31, 35, 48, 50, 51, 58]  

2022 [10, 15, 22, 30, 45, 55, 56]  

2023 [25, 28, 36, 46, 48, 54, 57]  

August 2024 [8, 17, 21, 24, 53]  

Tao, [42] adopted the concept of a DTs workshop, provid-

ing theoretical support for industry applications by discussing 

its characteristics, composition, operating mechanism, and 

key technologies. Tao, [44] suggested a five-dimension DT 

model for complex systems to improve the accuracy of 

prognosis. 

Qiao, [34] developed a data-driven model for DT, together 

with a hybrid model prediction method based on deep learn-

ing that creates a prediction technique for enhanced machin-

ing tool condition prediction. Xu, [52] studied a two-stage 

DT-assisted method based on deep migration learning. This 

method identifies potential problems that may not have been 

considered during the design phase and uses deep neural 

network-based diagnostic models for fault diagnosis. Ai-

valiotis, [2] presented a methodology to calculate the Re-

maining Useful Life (RUL) of machinery equipment by uti-

lizing physics-based simulation models and the DT concept, 

to enable predictive maintenance for manufacturing resources 

using Prognostics and health management (PHM) techniques. 

Luo, [25] suggested a hybrid DT model that consists of 

model-based DTs and data-driven DTs to take into consider-

ation the environmental variations in the life cycle of the tool. 

To realize reliable predictive maintenance of CNC machine 

tools, a hybrid approach driven by DT is studied. Xia, [50] 

developed a DT model for machinery fault diagnosis where 

the DT is built by establishing the simulation model which can 

be updated through the real-time data collected from the 

physical asset. The proposed DT is validated through a case 

study of triplex pump fault diagnosis. Xiong, [51] investigated 

the predictive maintenance model of an aero-engine driven by 

DTs. Through the consistent evaluation of virtual data assets 

and real data assets, the effectiveness of the model is verified. 

Experimental results show that when the dataset used to train 

the model is 80%, the model prediction has high accuracy. 
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Wang, [48] developed a DT model including a geometric 

model, physical model, behavior model, and rule model to 

perform fault prediction of the autoclave to generate simu-

lated data to address the problem of insufficient data for fault 

prediction. The effectiveness of the proposed model is veri-

fied through result analysis. Olatunji, [31] discussed an 

overview of the application of DT technology in the fault 

diagnosis and condition monitoring of wind turbine mechan-

ical components. Qin, [35] proposed a DT model of life-cycle 

rolling bearing driven by the data-model combination. By 

comparing the obtained DT result with the signal measured in 

the time domain and frequency domain, the effectiveness of 

the developed model is verified. 

Refer to Xiong, [51] DTs solutions are widely used in the 

aerospace industry for aircraft maintenance and tracking, 

weight monitoring, accurate determination of weather condi-

tions, flight time measurement, catastrophic failure analysis, 

safety and security management, and failure detection. 

Moghadam and Nejad, [30] presented a DT-based condition 

monitoring and fault diagnosis (CMFD) approach for offshore 

drivetrain systems, where the DT in the study includes a tor-

sional dynamic model, online measurements, and fatigue 

damage estimation. The remaining useful life of the drivetrain 

can be estimated by means of the DT. Kim, [22] utilized 

various environmental information to design a predictive 

model for offshore WT power generation based on DT. The 

proposed system enables an accurate representation of the 

offshore WT power generation and makes contributions to the 

safety of the power system. Hosamo, [15] suggested a DT 

predictive maintenance framework for air handling units 

(AHU) to overcome the limitations of facility maintenance 

management (FMM) systems now in use in buildings. The 

proposed framework was tested in a real-world case study. 

Zhong, [57] reviewed the increasing research interest in 

DTs-based predictive maintenance in the manufacturing in-

dustry. The predictive maintenance approaches based on DTs 

are introduced. Wang, [48] proposed a real-time planetary 

gear fault diagnosis method by combining the atom search 

optimization-support vector machine and DTs which can 

significantly improve the operation of wind turbines. 

Reimann, [36] developed a DT model of a wind turbine. The 

model was evaluated in simulations using real measurement 

data of the wind speed from a research wind turbine. Luo, [25] 

suggested a DT system for wind turbine blades, which can 

construct a DT in virtual space that is completely equivalent to 

the wind turbine blades, reflecting in real time the operational 

data and status of the wind turbine blades, and realizing online 

monitoring and predictive maintenance of the wind turbine 

blades. Van-Dinter, [46] conducted domain analysis to model 

key features and synthesize relevant literature. A case study 

on fault diagnosis using DFDD in a vehicle body-side pro-

duction line is presented. The results demonstrate the superi-

ority and applicability of the proposed method. Yang, [54] 

developed a complex fault diagnosis method using DT by 

combining virtual and real data. Field data from an offshore 

platform in the South China Sea were used to demonstrate the 

effect of the suggested method. The results indicate that the 

proposed method is very effective for complex faults of pro-

duction control systems. 

Inturi, [17] reported a review study focusing on the defini-

tions, methods, applications, and performance of different 

aspects of DTs in the context of transportation and industrial 

machinery. This review summarizes how individual aspects of 

DTs are extremely useful for lifelong design, manufacturing, 

or decision-making. Liu, [24] developed an innovative 

DT-based anomaly detection framework for real-time tool 

condition monitoring (TCM). The „„data flow connections‟‟ 

involve real-time measured vibration data and machine tool 

numerical controller (NC) signals providing real-time infor-

mation on machine tool dynamics and various machining 

processes. Experimental studies have demonstrated the ef-

fectiveness of the proposed method, especially for compli-

cated machining processes. Gao, [8] discussed the concept of 

post-disaster recovery for power DTs systems to study ra-

tional approaches to enhance the post-disaster monitoring 

capability of such systems after significant disasters. The 

results indicate that the proposed branch-and-limit algorithm 

greatly enhances the monitoring capabilities of the re-

source-constrained power system, thus enhancing its stability 

and emergency response mechanisms. Xue, [53] developed a 

DT-driven fault diagnosis method for CNC machine tools. By 

using the spindle of a CNC machine as an example, the dete-

rioration of spindle stiffness during operation is effectively 

diagnosed, which confirms the effectiveness and applicability 

of the proposed method. Karkaria, [21] discussed a DT 

framework for predictive maintenance of long-term physical 

systems. Using tire health monitoring as an application, they 

demonstrate how the DT framework can be used to enhance 

the safety and efficiency of automobiles. The proposed 

framework effectively embodies a physical system, leverag-

ing big data and machine learning for predictive maintenance, 

model updates, and decision-making. 

3. Research Gap Analysis 

The literature review shows that the application of DT 

techniques in proactive maintenance remains very important 

for managing the maintenance of critical equipment to im-

prove equipment RAMS (reliability, availability, maintaina-

bility, and safety) and achieve maintenance excellence. 

However, there is still a need for a common platform based on 

creating a physical model via a common methodology. This is 

a requirement for implementing the DT concept of proactive 

maintenance. Moreover, implementing DT technology, for 

maintenance activities in a production plant, requires creating 

a DT for each machine. Finally, a more detailed review of the 

literature should also be conducted to identify further gaps, 

which will be addressed within the framework of constructing 

and fine-tuning the proposed model. 
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4. Digital Twin Frameworks for 

Proactive Maintenance 

As mentioned earlier, manufacturing maintenance costs and 

downtime losses are very high in different sectors, which justi-

fies the investment in creating DTs to optimize maintenance 

activities. Figure 6 shows a DT model in maintenance, [10]. 

According to Dihan [5], data analysis is the technology 

driver of a successful DT system. Since data is the funda-

mental difference between a successful and unsuccessful 

system, proper guidance of data structure should be given due 

attention. Figure 7 shows the DT data analysis process for 

building a successful DT. 

 
Figure 6. DT model in maintenance. 

 
Figure 7. DTs Data analysis process, [5]. 

Hosamo, [15] suggested a DT predictive maintenance 

framework for air handling units (AHU). The proposed 

framework utilizes DT technology for fault detection and 

diagnostics and predicts the condition of the building com-

ponents so that the facility management staff can make better 

decisions at the right time. Figure 8 shows the principle of a 

DT in proactive maintenance. The proposed framework in-

cludes three main steps, Data acquisition, predictive mainte-

nance process, and BIM model for information visualization 

and monitoring. Spatial information can be obtained from the 

BIM model. The BIM model was integrated with predictive 

maintenance results to support decision-making by develop-

ing a plug-in extension for Autodesk Revit using C sharp so 

that the FM team can easily understand the data. The three 

main levels of this framework will be explained in detail in the 

following sections. For facility management, COBie (Con-

struction Operations Building Information Exchange) and 

Industrial Foundation Classes (IFC) are information exchange 

specifications for the lifetime capture and transfer of infor-

mation. Figure 9 shows COBie components. 
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Figure 8. DT predictive maintenance framework, [15]. 

 
Figure 9. Standard COBie components, [15]. 

Mihai et al., [27] developed a framework that aims to 

achieve optimized predictive maintenance by leveraging 

predominantly time-indexed streaming sensor data, along 

with configuration data coming from the digital twin of the 

Cyber-Physical Factory. The developed framework is illus-

trated in Figure 10, which consists of: the data acquisition 

block, the pre-processing block, the database, the time-series 

anomaly detection block, the RUL predictor block, and the 

monitoring dashboard. 
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Figure 10. A Digital Twin Framework for Predictive Maintenance. [27] 

Karkaria, [21] introduced a DT framework for proactive 

maintenance of long-term physical systems. Figure 11 shows 

the tire health DT framework demonstrating the flow of in-

formation, and important components of DT like offline 

training, model update, and decision making. As shown in this 

figure, the digital twin begins with the offline training of the 

Tire Health Temporal Fusion Transformer (TFT) model in 

Step 1, leveraging historical datasets which has operating 

parameters (𝑇!) - conditions under which the tire operates, 

usage parameters (𝑈!) - how the tire is used, and state pa-

rameters (𝑀!) - the current condition of the tire. Additionally, 

within our digital twin framework, we get our dataset with 

inputs derived from a physics-based Tire Design Finite Ele-

ment Method (FEM) integrating physical insights with 

measured data. Incorporating a physics-based Tire Design 

Finite Element Method (FEM) is crucial to accurately under-

stand the tire's physics-based state, ensuring a comprehensive 

analysis of its condition through the integration of physical 

principles with observed data. Then the Tire Health TFT 

model, a critical component of the Tire Health Digital Twin, 

facilitates real-time predictions of the damage state. A con-

tinuous quantity, named as Remaining Casing Potential (RCP), 

is considered as the damage state parameter). RCP serves as a 

key indicator of tire endurance damage, allowing for proac-

tive maintenance decisions. The predictions by the Tire 

Health TFT model are subsequently compared with re-

al-world instances of tire damages. This comparison allows us 

to quantify the discrepancy, effectively measuring the differ-

ence between the model's predictions and the actual tire 

damage data in Step 2. We utilize observed discrepancies to 

refine our Tire Health TFT model. It is important to highlight 

that, following an update, our model evolves into a hybrid 

version. Despite this transformation, we continue to refer to it 

as the Tire Health TFT model for consistency and clarity in 

our discussion in this paper. Then the updated Tire Health 

TFT model, with the Tire State Decision Algorithm in Step 3, 

informs timely tire replacement decisions. Thus, our tire 

health digital twin has the surrogate model, which is updated 

in real-time, and aids in making predictive maintenance de-

cisions. 

 
Figure 11. Tire health digital twin framework, [21]. 
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5. Conclusion and Further Work 

Proactive maintenance is a policy that aims to identify the 

root cause of a failure and correct it before it causes further 

problems and leads to machinery failure. Implementing this 

policy can enhance reliability, availability, maintainability, 

and safety (RAMS). This paper focuses on reviewing the 

applications of digital twins (DT) in proactive maintenance. 

DT can be used as a data-driven digital concept or technology 

to effectively address critical equipment maintenance issues. 

DT enables maintenance management to accurately determine 

equipment status, proactively predict faults, and enhance 

reliability. The application of DT technologies remains a 

critical proactive technology for critical equipment to improve 

equipment RAMS and achieve maintenance excellence. 

Several DT frameworks for proactive maintenance have been 

discussed. Furthermore, this study provides a comprehensive 

roadmap for future research initiatives aiming to fully utilize 

the capabilities of technology design teams. 

In future activities, the author plans to integrate DT meth-

odology and Lean Six Sigma approach into a more general 

maintenance management framework for critical equipment 

whose main role will be to assess and improve the health 

status of machines, improve reliability, and plan maintenance 

activities. 

Abbreviations 

DT Digital Twins  

RAMS Reliability, Availability, Maintainability, and 

Safety 
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