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Abstract 

Maize (Zea mays L.) is one of the most principal cereal crops ranking first in production in Ethiopia, predominantly produced 

and consumed directly by the smallholder farmers in the Great Rift Valley (GRV) of Ethiopia. Common bean (Phaseolus 

vulgaris) is also the most important legume crops as the source of protein and export commodity in the GRV. However, the 

average maize and common bean yields in Ethiopia are still low due to abiotic, biotic and socioeconomic constraints. In this 

regard, Crop simulation models (CSMs) are used in predicting growth and yield of crops and associated yield gaps under various 

management options and changing climatic parameters that are profitable with minimal unwanted impacts on the environment. 

Before using the CSMs, it is necessary to specify model parameters and understand the uncertainties associated with simulating 

variables that are needed for decision-making. Therefore, the research objective of this study was to calibrate and evaluate the 

performance of the CERES-Maize and CROPGRO-Dry bean CSMs of the Decision Support System for Agrotechnology 

Transfer (DSSAT) in the GRV of Ethiopia. The generalized likelihood uncertainty estimation (GLUE) method was used to 

estimate the genetic parameters of the CSM-CERES-Maize and CROPGRO-Dry bean models. Root mean squared error (RMSE) 

and Index of agreement (I) were used to evaluate the performance of the models. The DSSAT model reasonably reproduced 

observations for days to anthesis, days to physiological maturity, and grain yields, with values for the index of agreement of 0.97, 

0.88 and 0.61 for CERES-Maize and 0.84, 0.75 and 0.51 for CROPGRO-Dry bean. Similarly, root mean square errors were 

moderate for days to anthesis (1.2 and 1.2 days), maturity (4.1 and 1.6 days), and yield (0.8 and 1.1 t/ha) for CERES-Maize and 

CROPGRO-Dry bean, respectively. The model has been successfully calibrated and evaluated for maize and common bean crop 

varieties and can now it can be taken for further applications in evaluating various crop and soil management options including 

climate smart agriculture technologies and climate change impact studies. 
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1. Introduction 

Maize (Zea mays L.) is the world’s third most important 

crop after rice and wheat [1]. About half of this is grown in 

developing countries, where maize flour is a staple food for 

people and maize stalks provide dry-season feed for farm 

animals. It provides food, feed, and nutritional security in the 

world’s poorest regions in Africa. In Sub-Saharan Africa, 

maize is a staple food for an estimated 50% of the population 

and provides 50% of the basic calories [2]. The developing 

world's demand for maize is expected to rise due to rising food 

consumption and growing feed needs brought on by popula-

tion growth [3]. Maize is Ethiopia’s largest cereal commodity, 

ranking first in total production and yield and second in cov-

erage next to tef (Eragrostis tef). Due to its widespread sig-

nificance in the country, maize is one of the strategic field 

crops targeted to ensure food security in Ethiopia [3]. Maize is 

grown in sole and/or intercropped with legume crops like 

common bean. Common bean (Phaseolus vulgaris L.) is the 

most widely produced and consumed legume crop worldwide 

[4]. It is an important source of income, and nutrition, con-

tributes to the sustainability of human health conditions, and 

is used as supplemental animal feed [4]. Common bean is 

used in intensifying crop production in space and species 

mixture and as soil fertility management, emergency, and 

security crops in times of failure of cereals and other legumes 

due to moisture stress [5]. This ecologically and economically 

significant legume is extensively cultivated and important 

component of intercropping systems in the Great Rift Valley 

(GRV) of Ethiopia [6]. 

Overall maize production has increased over the last dec-

ades in Ethiopia, but most of the production increase was due 

to an increase in agricultural land. The average maize and 

common bean yields in Ethiopia are still low. Climate change 

will cause major corn-producing regions to become drier, 

warmer, and more susceptible to a variety of new pests and 

diseases [3, 7]. Climate change exacerbates already-existing 

issues and undercuts initiatives to improve food security and 

eradicate poverty [8, 9]. The GRV of Ethiopia is a typical 

example of such ongoing processes. 

Understanding the effects of Climate-smart crop produc-

tion (CSCP) technology options on yields and emissions with 

various climate periods is mandatory [10-12]. However, un-

derstanding this complexity requires the combination of a 

number of genetic x environment x management (G x E x M) 

factors, which are difficult to integrate through experimenta-

tion [7, 13]. Process-based crop simulation models are in-

creasingly being used in agricultural research and crop and 

soil management recommendations [14, 13]. Process-based 

cropping system models, such as the Crop Simulation Model 

of the Decision Support System for Agrotechnology Transfer 

(CSM-DSSAT) [14, 15], are useful tools for evaluating the G 

x E x M effects [14, 16, 17]. DSSAT requires genetic coeffi-

cients, which allow the model to simulate the performance of 

diverse genotypes under different soil, weather, and man-

agement conditions [18]. 

The CSM-CERES-Maize and CROPGRO-Dry bean [14], 

use the concept of cultivar coefficients to characterize cul-

tivars. Therefore, before employing such models in deci-

sion-making, model parameters must be specified, and the 

uncertainties related to simulating variables required for 

decision-making must be understood [16, 19]. Successful 

use of a crop model depends on the accuracy of calibration 

and evaluation of different parameters. Crop models must be 

calibrated such that model parameters truly represent crop 

characteristics and crop responses to soil and atmospheric 

conditions based on datasets of soil characteristics, climate, 

and crop management [20, 16]. After one is confident that 

the models simulate the real world adequately, computer 

experiments can be performed hundreds or even thousands 

of times for given environments to determine how to best 

manage or control the system. DSSAT was developed to 

operationalize this approach and make it available for var-

ious applications. The objective of this study was, therefore, 

to estimate the cultivar coefficients for new maize and 

common bean cultivars and evaluate the 

CSM-CERES-Maize and CROPGRO-Dry bean models for 

the GRV region of Ethiopia. 

2. Materials and Methods 

2.1. Experimental Sites 

Field experiments were conducted in the GRV region of 

Ethiopia at three experimental sites (Melkassa Agricultural 

Research Centre, Arsi Negele Agricultural sub-center, and 

Hawassa Agricultural Research Centre hereafter called 

Melkassa, Arsi Negele and Hawassa, respectively in the main 

rainy season of 2019). The field experiment was also con-

ducted at Melkassa in the main rainy season of 2020. The 

purpose of the experiments was to calibrate the 

CERES-Maize of the CSM-DSSAT. 

http://www.sciencepg.com/journal/ijaas


International Journal of Applied Agricultural Sciences http://www.sciencepg.com/journal/ijaas 

 

151 

2.2. Treatments and Experimental Design 

Data from these experiments compared plow tillage with full 

residue removal with no-tillage with 30% crop retention, and 

three levels (0, 50, 100 kg N ha
-1
) of N fertilizer at the three 

experimental sites. A complete factorial split-plot design with 

tillage assigned to the main plots and N rates to the sub-plots. 

2.3. Experimental Materials 

The high-yielding maize variety called MH140 was the 

crop variety selected for the field experiment. In addition, for 

the common bean crop, Awash miten was selected. Urea was a 

source of N. 

2.4. Treatments and Experimental Design 

The experimental design for this study was a split-plot de-

sign with four replications with tillage (conventional tillage 

and minimum tillage) assigned to the main plots and three 

levels (0, 50, 100 kg N ha
-1

) of N fertilizer was also applied to 

the sub-plot as treatments. Conventional tillage involved three 

tilling without leaving any crop residue, while minimum 

tillage involves using a row planter to till the field just once 

while planting and applying 30% of the crop residue. The plot 

size of 100m
2
 was typical for studies intended for modelling 

purposes. MH140, a maize variety with a high yield, was 

utilized. The rows were spaced 0.75 x 0.25 m apart. Urea and 

diammonium phosphate (DAP) were the fertilizers used. 

2.5. Experimental Procedures 

Tillage was according to the local practice of tilling three 

times using the oxen-drawn “maresha” plow. The first and 

second tillage were, respectively, done in the first and second 

week of May at Arsi Negele and Hawassa and in the first and 

second week of June at Melkassa while the third tillage was 

done at planting time. Planting was from the last week of May 

to mid-June at Arsi Negele and Hawassa, and in the third and 

fourth week of June at Melkassa. The maize cultivar was the 

hybrid MH140. 0.75 x 0.25 m was the inter- and intra-row 

spacing. The fertilizers used were urea (46-0-0) and diam-

monium phosphate (DAP, 18-46-0). At the planting stage, 46 

kg P2O5 ha
-1

, 41 kg N ha
-1

, and 23 kg N ha
-1

 were applied. For 

the no-tillage plots, glyphosate was sprayed at a rate of 3 L 

ha
-1

 two weeks before planting to reduce weeds. Hand 

weeding was then conducted as needed during crop growth. In 

tilled plots, weeds were managed with hand hoes. 

2.6. Phenology and Yield Data 

Data on plant phenological stages (date of seed emergence, 

date of end of anthesis, and date of physiological maturity) 

were collected. Dates were noted when 50% of plant popula-

tion attained a particular stage. Total grain yield was deter-

mined from an area of 3 m
2
, oven dried to constant weight and 

expressed in dry weight on kg ha
-1

 basis. Past rainfed national 

variety trials with MH140 of maize and Awash miten of 

common bean crop varieties with sufficient records of crop 

management information for crop growth model evaluation 

were conducted at Melkassa. Grain yield, days to anthesis and 

physiological maturity data of 5 years for MH140 and 6 years 

for Awash miten cultivars were collected from the selected 

national variety trials conducted at Melkassa. The data were 

used to calibrate and evaluate CERES-Maize and CROP-

GRO-Dry bean. For the current study, crop phenology (days 

to anthesis and days to maturity) and final grain yield during 

harvest data were obtained from the two years (2019 and 2020) 

field experiments and multi-year National Variety Trial (NVT) 

experiments for MH140 of maize and Awash miten of com-

mon bean crop cultivars. 

2.7. Soil and Weather Data 

Daily rainfall, maximum temperature and minimum tem-

perature were obtained from the Ethiopian National Meteor-

ology Institute and the Ethiopian Institute of Agricultural Re-

search (EIAR). Sometimes not all data are available to run a 

CSM. Therefore, secondary data sources can be used including 

the National Aeronautics and Space Administration-Prediction 

of Worldwide Energy Resource (NASA-POWER) Power data 

portal that contains daily weather data and the harmonized 

world soil database developed by the International Soil Refer-

ence and Information Centre-World Inventory of Soil Emission 

Potentials (ISRIC-WISE) [19]. Daily solar radiation data were 

obtained from NASA-POWER (http://power.larc.nasa.gov). 

Soil profile data were obtained from field experiments, sec-

ondary sources, and the ISRIC-WISE soil profile database 

(https://www.isric.org).  

2.8. Model Calibration and Evaluation 

Crop models must be calibrated such that model parameters 

truly represent crop characteristics and crop responses to soil 

and atmospheric conditions based on datasets of soil charac-

teristics, climate and crop management. The mean estimated 

parameters of two seasons (2018 and 2019), under optimal 

growth conditions, and one season (2018) were used to cali-

brate the CSM-CERES-Maize and CSM-CROPGRO-Dry 

bean module, respectively. Cultivar calibration requires the 

estimation of 6 (Table 1) and 18 (Table 2) genetic coefficient 

parameters for the CSM-CERES-Maize and CROPGRO-Dry 

bean modules, respectively. The generalized likelihood un-

certainty estimation (GLUE) tool of the DSSAT was used to 

estimate cultivar specific genetic coefficients for the maize 

(MH 140) and common bean (Awash miten) cultivars. 

Comparing the model's simulated output with the observed 

data is the process of evaluating a model. This involves as-

sessing the model's performance using a range of statistical 

methods. Throughout the observational years, the simulated 

yield and phenological data (days to anthesis and maturity) 

http://www.sciencepg.com/journal/ijaas


International Journal of Applied Agricultural Sciences http://www.sciencepg.com/journal/ijaas 

 

152 

were compared with the observed grain yield. The models 

were tested statistically to assess their performance. [17] The 

model was evaluated for the days to anthesis, days to physi-

ological maturity, and final grain yield at harvest. The models 

were evaluated using the 2020 field experimental data and 

other four years of NVT experimental data for the 

CERES-Maize model and 5 yr of the NVT experimental data 

for the CROPGRO-Dry bean model. The performance of the 

models was evaluated by comparing the simulation output 

with the observed data using the following goodness-of-fit 

measures (Eq. 1, 2, and 3). 

The coefficient of determination (R
2
) 

R2 = 1-RSS/TSS               (1) 

Where RSS is the sum of squares of residuals and TSS is 

the total sum of squares. 

R
2
 values that are 1 or close to 1 indicate perfect fits be-

tween simulated and observed data. 

Root mean squared error (RMSE) 

𝑅𝑆𝑀𝐸 =  √
∑ (𝑆𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
              (2) 

where the values in a given year (i) are the simulated and 

observed values, respectively. A statistical measure of model 

uncertainty is the RMSE. Values near zero show excellent 

agreement and, thus, strong model performance. 

Index of agreement or d statistic (I) 

𝐼 = 1 −  
∑ (𝑆𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑆𝑖−𝑆𝑚|+|𝑂𝑖−𝑂𝑚|)2𝑛
𝑖=1

            (3) 

where Oi and Si are the corresponding observed and simu-

lated values for a certain data set i, and Om and Sm are the 

means of the observed and simulated values. Better agreement 

between the simulated and observed yields is indicated by 

values nearer 1. 

Table 1. Description of genetic coefficient parameters for the DSSAT CERES-Maize model. 

Trait Definition of trait 

P1 Degree days (base 8°C) from emergence to end of juvenile phase 

P2 Photoperiod sensitivity coefficient (0-1.0) 

P5 Degree days (base 8°C) from silking to physiological maturity 

G2 Potential kernel number 

G5 Potential kernel growth rate mg/ (kernel d) 

PHINT Degree days required for a leaf tip to emerge (phyllochron interval) (°C d) 

Table 2. Description of genetic coefficient parameters for CROPGRO- Dry bean model. 

Trait Definition of trait 

CSDL Critical short-day length below which reproductive development progresses with no daylength effect (for short day plants) (h) 

PPSEN Slope of the relative response of development to photoperiod with time (positive for short day plants) (1/h) 

EM-FL Time between plant emergence and flower appearance (R1) (photothermal days) 

FL-SH Time between first flower and first pod (R3) (photothermal days) 

FL-SD Time between first flower and first seed (R5) (photothermal days) 

SD-PM Time between first seed (R5) and physiological maturity (R7) (photothermal days) 

FL-LF Time between first flower (R1) and end of leaf expansion (photothermal days) 

LFMAX Maximum leaf photosynthesis rate at 30°C, 350 vpm CO2, and high light (mg CO2/m
2-s) 

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g) 

SIZELF Maximum size of full leaf (three leaflets) (cm2) 

XFRT Maximum fraction of daily growth that is partitioned to seed + shell 

WTPSD Maximum weight per seed (g) 
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Trait Definition of trait 

SFDUR Seed filling duration for pod cohort at standard growth conditions 

SDPDV Average seed per pod under standard growing conditions (#[seed]/pod) 

PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 

THRESH 
The maximum ratio of (seed/ (seed + shell)) at maturity causes seed to stop growing as their dry weight increases until shells are 

filled in a cohort 

SDPRO Fraction protein in seeds (g[protein]/g[seed]) 

SDLIP Fraction oil in seeds (g[oil]/g[seed]) 

 

3. Results and Discussion 

3.1. Model Calibration 

The genetic coefficients of the maize (MH 140) and com-

mon bean (Awash miten) cultivars under investigation are 

presented in Table 3. 

Table 3. Genetic coefficients of maize (MH 140) and common bean 

(Awash miten) cultivars. 

Maize (MH140) Common bean (Awash miten) 

Parameter Value Parameter Value Parameter Value 

P1 240.0 CSDL 12.17 SIZELF 135.0 

P2 0.700 PPSEN 0.020 XFRT 1.000 

P5 810.0 EM-FL 27.0 WTPSD 0.230 

G2 750.0 FL-SH 3.5 SFDUR 15.4 

G3 8.20 FL-SD 11.0 SDPDV 3.30 

PHINT 46.00 SD-PM 23.50 PODUR 6.0 

  FL-LF 18.00 THRSH 78.0 

  LFMAX 0.99 SDPRO .235 

  SLAVR 270. SDLIP .030 

3.2. Model Evaluation 

The Statistical evaluation results of the simulated against 

observed days to anthesis, maturity, and yield for MH140 

(maize) and Awash Miten (common bean) cultivars is presented 

in Table 4. For the number of days to anthesis, DSSAT showed 

good simulation performance. The R2 values for days to an-

thesis were (0.92 for MH140 and 0.78 for Awash miten), the 

RMSE values for days to anthesis were (1.2 for MH 140 and 

1.2 for Awash Miten) and the index of agreement (I) values 

were (I=0.97 for MH140 and I=0.84 for Awash Miten). There 

was strong agreement between the simulated and observed days 

to maturity of maize (0.88 for MH 140 and 0.75 for Awash 

miten). The R
2
 value for days to maturity were (0.94 for 

MH140 and 0.74 for Awash Miten). The RMSE value for days 

to maturity was as low as 4.1 days for MH 140 and 1.6 for 

Awash Miten cultivars. The 1:1 line graph showing the rela-

tionship between observed and simulated for days to anthesis 

and maturity of the two cultivars are presented in Figure 1. The 

simulated grain yield agreed with the observed data (I=0.61 and 

I=0.51 for MH 140 and Awash miten, respectively). The R
2
 

values were good (0.86 for MH 140 and 0.95 for Awash Miten). 

The RMSE values were also moderate (0.8 t/ha for MH 140 and 

1.1 t/ha for Awash miten) (Table 4). The 1:1 line graph showing 

the relationship between observed and simulated yields of the 

two cultivars are presented in Figure 2. In two of the observa-

tion years, yields were somewhat overstated, despite the fact 

that both models accurately represented the yield variability 

across the observation period and the long-term observed and 

simulated yields showed a good match. 

Table 4. Statistical evaluation of the simulated against observed days to anthesis, maturity, and yield for MH140 (maize) and Awash Miten 

(common bean) cultivars. 

Variable name 

Maize_ MH 140 Common bean_ Awash Miten 

OBS SIM R2 RMSE I OBS SIM R2 RMSE I 

Anthesis (days) 69 69 0.92 1.2 0.97 38 37 0.78 1.2 0.84 
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Variable name 

Maize_ MH 140 Common bean_ Awash Miten 

OBS SIM R2 RMSE I OBS SIM R2 RMSE I 

Maturity (days) 127 129 0.94 4.1 0.88 80 79 0.74 1.6 0.75 

Yield (t/ha) 6.1 6.9 0.86 0.8 0.81 3.4 4.5 0.95 1.1 0.51 

 
Figure 1. Observed versus simulated days to anthesis and maturity results for (a) the MH140 maize and (b) the Awash miten common bean 

cultivars. 

 
Figure 2. Observed versus simulated yield results for (a) MH140 and (b) Awash Miten cultivars. 

4. Conclusions and Recommendations 

We calibrated and evaluated the CERES-Maize and CROP-

GRO-Dry bean crop simulation models of the DSSAT. The es-

timated genetic parameter values of the two crop varieties cre-

ated using the GLUE tool of the DSSAT. The models’ statistics 

show that the simulated values agree with the observed ones, 

suggesting that the model was well calibrated and evaluated. The 

models can therefore be used to simulate the responses of MH 

140 of the maize and Awash miten of the common bean crop 

varieties to various crop and soil management options including 

climate smart agriculture technologies in different climate peri-
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ods in the great rift valley of Ethiopia. 
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