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Abstract 

Introduction: Type 2 diabetes is a significant global health concern, necessitating a thorough understanding of its metabolic 

processes for effective management. The role of glycated hemoglobin (HbA1c) is crucial, particularly in relation to lipid 

biomarkers, which warrants exploration to enhance early detection and prediction of diabetes risk in individuals. Objective: This 

study aimed to explore the associations between HbA1c and lipid biomarkers in diabetic and non-diabetic individuals and to 

identify key predictors of type 2 diabetes. Methods: A case-control study at the Central Hospital of Yaoundé involved 70 type 2 

diabetes patients and 67 non-diabetic controls. Data on sociodemographic characteristics, blood pressure, and biochemical 

markers were analyzed using Principal Component Analysis, Spearman’s rank correlation, multivariate linear and logistic 

regressions, and LASSO logistic regression. Results: The findings demonstrate a differential relationship between HbA1c and 

HDL-cholesterol in diabetic and non-diabetic groups, with diabetics exhibiting distinct metabolic profiles illustrated with lipid 

levels more closely associated with obesity and inflammation. Among non-diabetic participants, HbA1c was significantly 

inversely associated with HDL cholesterol (r = -0.337, p = 0.006), while in diabetic participants, it was positively associated with 

fasting blood glucose (r = 0.277, p = 0.023). Multivariate linear models indicated that the negative association between HDL 

cholesterol and HbA1c in non-diabetic participants was glycemia-independent. The predictive model identified HbA1c, age, 

education level, marital status, HDL cholesterol, and C-reactive protein as key predictors of type 2 diabetes, demonstrating high 

performance with a pseudo-R-square value of 0.8517, sensitivity of 94.03%, specificity of 96.97%, and an AUC of 0.9948. 

Notably, the adjusted cutoff value of HbA1c was 7.59%, significantly higher than the unadjusted value of 6.05% (t = 13.52, p = 

0.001). Conclusion: The study shows a distinct relationship between HbA1c and HDL-cholesterol, linking diabetes to lipid 

levels, obesity, and inflammation. These findings emphasize context-specific HbA1c interpretation for better diabetes risk 

prediction and management. 
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1. Introduction 

Diabetes mellitus, particularly type 2 diabetes (T2D), is a 

chronic metabolic disorder characterized by hyperglycemia 

resulting from insulin resistance, impaired insulin secretion, 

or both [1]. The increasing prevalence of type 2 diabetes (T2D) 

has emerged as a significant global public health challenge, 

affecting over 537 million adults worldwide as of 2021, 

according to the International Diabetes Federation (IDF). This 

figure is expected to rise dramatically, with projections esti-

mating 643 million by 2030 and 783 million by 2045 [2]. 

Accurate diagnosis and risk assessment are crucial for the 

effective management of diabetes, and HbA1c has emerged as 

a standard biomarker for diagnosing and monitoring glycemic 

levels [3]. HbA1c reflects average blood glucose concentra-

tions over the previous two to three months, making it essen-

tial for long-term glucose monitoring [4]. However, the rela-

tionship between HbA1c and various metabolic biomarkers, 

including fasting blood glucose (FBG), triglycerides (TG), 

and high-density lipoprotein (HDL) cholesterol, is complex 

and necessitates a nuanced investigation [5]. 

Research has demonstrated that HbA1c levels correlate 

significantly with FBG, making HbA1c an important tool for 

assessing glycemic status [6]. Elevated FBG levels are a 

hallmark of insulin resistance, and the association between 

FBG and HbA1c is particularly pronounced among certain 

population subgroups, such as those with obesity or metabolic 

syndrome [7]. Moreover, triglycerides, as a type of fat found 

in the bloodstream, have been implicated in the development 

of T2D due to their association with insulin resistance and 

inflammation [8]. High levels of triglycerides can disrupt the 

metabolic pathways that involve glucose, thus elevating the 

risk of developing diabetes [9]. 

Conversely, low levels of HDL cholesterol are considered a 

risk factor for T2D, as HDL is known for its role in reverse 

cholesterol transport and its anti-inflammatory properties [10]. 

A well-established link exists between low HDL cholesterol 

levels and increased insulin resistance, which can exacerbate 

the progression of T2D [11]. Understanding how these in-

terconnected biomarkers relate to HbA1c across various 

population segments is essential for refining diabetes risk 

assessment and improving clinical outcomes [12]. 

Studies have shown that the strength of these associations 

can vary significantly based on demographic factors, includ-

ing age, sex, and ethnicity [13]. For instance, Asian popula-

tions have been noted to display a stronger relationship be-

tween HbA1c and FBG than other ethnic groups, which could 

be attributed to different genetic backgrounds influencing 

glucose metabolism [10]. Additionally, evidence suggests that 

gender differences in metabolic profiles can also affect the 

relationship between HbA1c and various lipid parameters [8]. 

Therefore, assessing HbA1c in conjunction with lipid profile 

biomarkers in diverse subgroups could provide critical in-

sights into the pathophysiology of insulin resistance and T2D 

development. 

The optimal HbA1c cutoff values for diabetes diagnosis are 

pivotal in clinical practice. While the American Diabetes 

Association has set a threshold of 6.5% (48 mmol/mol) for 

diagnosing diabetes, this cutoff has been debated, particularly 

in populations with lipid abnormalities [14]. Some studies 

have proposed the need for adjusting the cutoff value based on 

the presence of other risk factors, such as triglyceride levels, 

which may modify the risk associated with specific HbA1c 

levels [15]. Adjusting the HbA1c cutoff could facilitate earlier 

detection of T2D, improving prevention efforts and enabling 

more effective management strategies [16]. 

What remains underexplored is the impact of confounding 

factors, including age, sex, ethnicity, and lifestyle behaviors, on 

the relationship between HbA1c and the aforementioned met-

abolic biomarkers [8]. These factors can significantly alter the 

interpretation of HbA1c as a diagnostic tool and complicate the 

establishment of a standardized approach to diabetes screening 

[9]. Understanding the influence of these confounding factors is 

vital to developing tailor-made risk assessment strategies for 

diabetes across various subpopulations [6]. 

This study sets out to assess the associations between HbA1c 

and various biomarkers, namely fasting blood glucose, triglyc-

erides, and HDL cholesterol, in different population subgroups. 

Furthermore, it aims to establish an adjusted cutoff value for 

HbA1c to predict T2D, considering the impact of confounding 

factors such as lipid profiles. This comprehensive approach will 

be instrumental in enhancing the prediction and management of 

type 2 diabetes, paving the way for individualized treatment 

strategies and targeted public health interventions. 

2. Materials and Methods 

2.1. Study Site and Study Design 

The study was conducted at the Yaoundé Central Hospital, 

a medical facility located in Yaoundé, in the Center Region of 

Cameroon within the Yaoundé II municipality. Specifically, 

the study occurred at the National Obesity Center and Endo-

crinology Unit within the hospital premises. 

A hospital-based, unmatched case-control study was con-

ducted at the Yaoundé Central Hospital. 

2.2. Study Population 

The study targeted individuals with type 2 diabetes and 

non-diabetic individuals attending the National Obesity 

Center and Endocrinology Unit of the Yaoundé Central Hos-

pital. 
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2.3. Sampling Size Calculation 

The sample size was determined using the formula by 

Jaykaran and Tamoghna [17]. Considering a control-to-case 

ratio of 1, 0.84 for 80% power, 1.96 for a 0.05 significance 

level, and the proportion exposed in the control group of 5.8% 

as reported by Bigna et al. [18], the minimum sample size 

required was 126 individuals, comprising 63 cases and 63 

controls. 

2.4. Sampling Procedure 

Due to the hospital-based nature of the study, all individuals 

with and without diabetes were approached during their 

regular clinic visits using convenience sampling. 

2.5. Selection Criteria 

Participants included individuals aged 20 years and above 

with type 2 diabetes and non-diabetic individuals visiting the 

National Obesity Center and Endocrinology Unit of the Ya-

oundé Central Hospital who provided consent to participate. 

Exclusion criteria encompassed individuals with severe 

chronic illnesses affecting metabolic profiles, those under-

going treatment for specific medical conditions, pregnant 

women, individuals on medications impacting glucose or lipid 

profiles other than standard diabetes medications, and those 

with incomplete data on essential characteristics or bi-

omarkers. 

2.6. Ethical Considerations 

The study obtained approval from the Center Regional 

Ethics Committee for Human Health Research (approval 

number 006/CRERSHC/2023). Participants were informed 

about the study's objectives, procedures, risks, and benefits, 

and their confidentiality was strictly maintained. Blood col-

lection followed WHO guidelines, ensuring participant safety 

and confidentiality. 

2.7. Data Collection 

Data were collected using a structured questionnaire cov-

ering demographic details, anthropometric measurements, 

blood pressure readings, and biochemical parameters. 

2.8. Parameter Measurements 

In compliance with standardized protocols, weight and 

height measurements were conducted on participants to the 

nearest 0.1 kilogram for weight measurement and to the 

nearest 0.1 cm for height measurement. The Body Mass Index 

(BMI) was then computed by dividing the weight by the 

square of the height. 

Blood pressure (BP) was determined utilizing a mercury 

sphygmomanometer (Omron M3, Omron Healthcare Co., 

Ltd., Kyoto, Japan) (adult size) through the auscultatory 

method. Systolic blood pressure (SBP) was identified at the 

onset of the first Korotkoff sound, while diastolic blood 

pressure (DBP) was noted at the point of sound cessation. 

Blood pressure categorization aligned with the 2017 

ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/N

MA/PCNA Guideline [19], setting normal blood pressure as 

SBP <120 mmHg and DBP < 80 mmHg. 

Blood collection adhered to World Health Organization 

(WHO) standards [20]. Venous blood samples were drawn 

following a minimum 12-hour fast, ensuring prompt handling 

and processing to preserve sample integrity. Trained phle-

botomists executed all blood collection processes, maintain-

ing standard protocols to reduce contamination risks. 

Serum glucose concentration analysis utilized the glucose 

oxidase 4-aminoantipyrine peroxidase (GOD-PAP) method 

[21]. Furthermore, the Finecare™ HbA1c Rapid Quantitative 

Test assessed glycated hemoglobin (HbA1c) levels by pro-

cessing whole blood samples collected into tubes with eth-

ylene diamine tetraacetate (EDTA) as an anticoagulant. The 

test process included loading the sample on the Test Cartridge 

and generating results post-incubation. C-reactive protein 

(CRP) levels were determined via latex-enhanced nephelom-

etry using the PA54 Specific Protein Analyzer. 

Fasting blood samples, collected after a minimum 12-hour 

fast, and total cholesterol levels were estimated using the 

cholesterol oxidase 4-aminoantipyrine peroxidase 

(CHOD-PAD) method with spectrophotometric measurement. 

High-density lipoprotein (HDL) cholesterol estimation em-

ployed the cholesterol oxidase peroxidase (CHOD-POD) 

method, while triglyceride levels were determined via the 

glycerophosphate oxidase peroxidase (GOD-PAP) method. 

The calculation of low-density lipoprotein (LDL) cholesterol 

involved applying the Friedewald equation [22]. 

According to the guidelines of the United States National 

Cholesterol Education Program, Adult Treatment Panel III 

(NCEP-ATP III) [23], an abnormal lipid profile is defined as 

having one or more of the following: total cholesterol (TC) ≥ 

200 mg/dL, HDL-cholesterol (HDL-c) < 40 mg/dL, 

LDL-cholesterol (LDL-c) ≥ 130 mg/dL, triglycerides ≥ 150 

mg/dL, and a TC/HDL-c ratio ≥ 5. 

2.9. Data Quality Control 

The investigators underwent a one-day training session, 

followed by a presurvey conducted on 14 eligible diabetic 

patients to ensure consistency, and reliability, and to minimize 

intra- and interobserver variation. Supervision was provided 

by the main investigators throughout the data collection and 

analysis processes. 

2.10. Statistical Analysis 

In this study, a comprehensive statistical analysis was 

conducted to examine the relationships between various 
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biomarkers and the occurrence of type 2 diabetes. Descriptive 

statistics were employed to summarize the data, with the mean 

and standard deviation reported for continuous variables, and 

frequency and percentage reported for categorical variables. 

To assess the differential metabolic profile among diabetic 

and non-diabetic participants, multivariate logistic regression 

was used including an interaction term HbA1c_diabetes status 

using IBM-SPSS 26.0 for Windows (IBM Corporation, Ar-

monk, NY, USA). To confirm the difference in metabolic 

profile in the two groups, principal component analysis was 

conducted using GraphPad Prism 9 (GraphPad Software, San 

Diego, CA, USA). To assess the strength of the relationships 

between HbA1c, fasting blood glucose, and lipid profile 

biomarkers, Spearman correlation coefficients were calcu-

lated. This analysis was followed by a multivariate linear 

regression to examine the association between fasting blood 

glucose, lipid profile biomarkers, and HbA1c. Both unad-

justed and adjusted coefficients were reported, along with 95% 

confidence intervals and p-values. This allowed for the iden-

tification of significant predictors while controlling for po-

tential confounding variables. All these analyses were per-

formed using IBM-SPSS 26.0 for Windows (IBM Corpora-

tion, Armonk, NY, USA). 

To develop a predictive model for the occurrence of type 2 

diabetes, LASSO (Least Absolute Shrinkage and Selection 

Operator) logistic regression with cross-validation was em-

ployed. The coefficients, adjusted odds ratios, and 95% con-

fidence intervals were reported for this model. The model's 

performance was evaluated using a range of metrics, includ-

ing Pseudo R2, log-likelihood, sensitivity, specificity, positive 

predictive value, negative predictive value, area under the 

curve (AUC), mean squared error (MSE), root mean squared 

error (RMSE), mean absolute error (MAE), accuracy, Akaike 

Information Criterion (AIC), and Bayesian Information Cri-

terion (BIC). These metrics provide a comprehensive as-

sessment of the model's predictive ability and its fit to the 

data. 

The Receiver Operating Characteristic (ROC) curve, cou-

pled with the Youden index, was used to generate corrected 

and uncorrected cutoff values of HbA1c. A one-sample t-test 

was then used to compare the corrected cutoff value to the 

uncorrected and recommended cutoff values, ensuring the 

validity and reliability of the identified thresholds. The pre-

dictive LASSO logistic regression using cross-validation was 

computed using Stata Release 16 (StataCorp LLC, College 

Station, TX, USA), with the significance level set at 0.05 to 

ensure the results are statistically significant. 

Charts and graphs were created using GraphPad Prism 9 

(GraphPad Software, San Diego, CA, USA) and MS Excel 

365 (Microsoft Corporation, Redmond, WA, USA). 

3. Results 

3.1. General Characteristics of the Population 

Table 1 summarizes the general characteristics of the study 

population. The findings of this case-control study offer 

several key insights into the characteristics and health profiles 

of diabetic and non-diabetic individuals. The study sample, 

comprising 137 participants, was evenly divided between 

diabetic (n=70) and non-diabetic (n=67) individuals, with a 

majority being female (70%). Notably, the diabetic and 

non-diabetic groups were statistically homogeneous regarding 

sex (p=0.557), indicating no significant gender bias. However, 

diabetic participants were significantly older than their 

non-diabetic counterparts (p<0.001), with an average age of 

45.4 years across the entire population. 

Table 1. Sociodemographic characteristics of diabetic cases and controls. 

Variables Diabetic (n=70) Non-diabetic (n=67) Total p-value 

Sex – N (%) 

Male 22 (31.4) 18 (26.9) 40 (29.2) 
0.557 

Female 48 (68.6) 49 (73.1) 97 (70.8) 

Age (years) – Mean (SD) 56.8 (12.6) 33.4 (11.9) 45.4 (17.0) < 0.001 

Education – N (%) 

None 3 (4.3) 0 (0.0) 3 (2.2) 

< 0.001 
Primary 19 (27.1) 5 (7.5) 24 (17.5) 

Secondary 34 (48.6) 11 (16.4) 45 (32.8) 

Post-graduate 14 (20.0) 51 (76.1) 65 (47.5) 

Marital status – N (%) 

Single 7 (10.0) 47 (70.1) 54 (39.4) < 0.001 
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Variables Diabetic (n=70) Non-diabetic (n=67) Total p-value 

Widow 16 (22.9) 3 (4.5) 19 (13.9) 

Divorced 2 (2.9) 2 (3.0) 4 (2.9) 

Married 45 (64.3) 15 (22.4) 60 (43.8) 

Profession – N (%) 

Student 0 (0.0) 34 (50.7) 34 (24.8) 

< 0.001 

Housewife 17 (24.3) 2 (3.0) 19 (13.9) 

Trader 3 (4.5) 12 (17.1) 15 (10.9) 

Teacher 4 (6.0) 3 (4.3) 7 (5.1) 

Tailor 1 (1.5) 3 (4.3) 4 (2.9) 

Retired 3 (4.5) 17 (24.3) 20 (14.6) 

Other 20 (29.9) 18 (25.7) 38 (27.7) 

Body mass index – N (%)     

Underweight 1 (1.4) 2 (3.0) 3 (2.2) 0.233 

Normal weight 14 (20.0) 23 (34.3) 37 (27.0)  

Overweight 33 (47.1) 24 (35.8) 57 (41.6)  

Obese 22 (31.4) 18 (26.9) 40 (29.2)  

Systolic blood pressure – Mean (SD) 135.4 (19.8) 121.4 (13.7) 128 (18) < 0.001 

Diastolic blood pressure – Mean (SD) 84.2 (11.9) 80.5 (10.7) 82 (11) 0.057 

 

In terms of education, a significant majority (47.5%) of 

participants had attained at least a postgraduate level, with 

non-diabetic individuals achieving a higher education level 

compared to diabetic participants (p<0.001). Marital status 

also differed significantly between the groups; the highest 

proportion of the study population was married (43.8%), with 

diabetic participants more likely to be married than 

non-diabetic individuals (p<0.001). Conversely, non-diabetic 

participants were more likely to be single. 

The distribution of professions varied significantly between 

the two groups (p<0.001), with a substantial proportion of 

participants being students (24.8%) or having other unspeci-

fied professions. Interestingly, the body mass index (BMI) 

was similar between diabetic and non-diabetic participants 

(p=0.233), with a high proportion of overweight individuals 

across the entire population (41.6%). This indicates that 

overweight status is a prevalent health issue regardless of 

diabetic status. 

Regarding blood pressure, systolic blood pressure was 

significantly higher among diabetic participants (135.4 ± 19.8 

mmHg) compared to non-diabetic participants (121.4 ± 13.7 

mmHg) (p<0.001), suggesting a potential comorbidity of 

hypertension with diabetes. However, diastolic blood pressure 

did not differ significantly between the two groups (p=0.057). 

3.2. Biochemical Parameters 

The findings presented in Figure 1 reveal distinct bio-

chemical profiles between diabetic and non-diabetic partici-

pants. Diabetic individuals exhibited significantly higher 

levels of glycated hemoglobin (7.5% vs. 5.1%, p < 0.001) and 

fasting blood glucose (1.7 g/L vs. 0.8 g/L, p < 0.001), indi-

cating poorer long-term and short-term glycemic control. 

Interestingly, the levels of C-reactive protein, an inflamma-

tory biomarker, were comparable between the two groups (p = 

0.122), suggesting that diabetes was not associated with a 

significant increase in systemic inflammation in this study 

population. In terms of lipid profiles, diabetic participants had 

significantly higher triglyceride levels (1.7 g/L vs. 1.5 g/L, p < 

0.001), as shown on Figure 2. However, other lipid parameters, 

including total cholesterol, HDL-cholesterol, 

LDL-cholesterol, and the total cholesterol/HDL-cholesterol 

ratio, did not differ significantly between the groups (p ≥ 0.05). 

These results underscore the importance of comprehensive 

management strategies for diabetic patients, focusing on both 

glycemic control and lipid management to mitigate the risk of 

associated health complications. Further research is needed to 

elucidate the underlying mechanisms and develop targeted 

interventions to improve health outcomes in individuals with 

diabetes. 
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Figure 1. Distribution of HbA1c, fasting blood glucose, and 

C-reactive protein among diabetic and non-diabetic participants. 

 
Figure 2. Lipid profile markers among diabetic and non-diabetic 

participants. 

Legend: Total chol: total cholesterol, HDL-Chol: HDL-cholesterol, 

LDL-chol: LDL-cholesterol, TG: triglycerides. 

3.3. Metabolic Patterns in the Diabetic and 

Non-Diabetic Participants 

Logistic regression modeling, incorporating an interaction 

term (HbA1c_Diabetes status), was employed to determine 

whether the association between glycated hemoglobin 

(HbA1c) and lipid biomarkers differed between diabetic and 

non-diabetic participants (Table 2). The results indicated that 

the interaction term was not significant in the logistic regres-

sion models examining the relationship between HbA1c and 

LDL-cholesterol, triglycerides, total cholesterol levels, and 

the total cholesterol/HDL-cholesterol ratio (p ≥ 0.05). This 

suggests that there is no significant difference in the metabolic 

profile of the association between HbA1c and these lipid 

biomarkers. 

However, the interaction term was significant in the logistic 

regression model involving HbA1c and HDL-cholesterol 

(adjusted coefficient = 1.01, p = 0.030). The positive coeffi-

cient indicates that the relationship between HbA1c and 

HDL-cholesterol is stronger in the diabetic group as compared 

to the non-diabetic group. This significant interaction term 

(HbA1c_Diabetes status) provides statistical evidence that the 

relationship between HbA1c and HDL-cholesterol differs 

between diabetic and non-diabetic groups. 

Principal component analysis (PCA) loading plots were 

employed to compare the metabolic profiles of diabetic and 

non-diabetic participants (Figure 3). In non-diabetic individ-

uals, PC1 was dominated by a lipid profile, including high 

loadings for total cholesterol, HDL-cholesterol, total choles-

terol/HDL-cholesterol ratio, and LDL-cholesterol, while PC2 

was characterized by a metabolic syndrome profile, with high 

loadings for HDL-cholesterol, total cholesterol, HbA1c, BMI, 

and age. In contrast, diabetic participants exhibited a shifted 

metabolic profile, with PC1 reflecting a lipid profile strongly 

associated with obesity (high loadings for total cholesterol, 

HDL-cholesterol, LDL-cholesterol, total cholester-

ol/HDL-cholesterol ratio, and BMI), and PC2 representing a 

lipid profile linked with inflammation (high loadings for total 

cholesterol, HDL-cholesterol, LDL-cholesterol, total choles-

terol/HDL-cholesterol ratio, and C-reactive protein). These 

findings indicate that diabetes is associated with distinct 

metabolic profiles, where lipid profiles are more closely 

linked with obesity and inflammation compared to 

non-diabetic individuals. 

  
Figure 3. Loading plots of metabolic profiles of non-diabetic participants (on the left) and diabetic participants (on the right). 
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This finding highlights the distinct metabolic profiles of 

these two populations and underscores the importance of 

considering diabetic status when interpreting the relationship 

between HbA1c and dyslipidemia, particularly in the context 

of hypoalphalipoproteinemia. 

3.4. Correlation Analysis 

The correlation coefficients indicating the strength of the 

relationships between HbA1c and the other variables are 

presented in Table 3. The correlation analysis reveals distinct 

patterns of association between HbA1c and other variables in 

different subgroups of the population. In the overall popula-

tion, HbA1c exhibited significantly positive association with 

fasting blood glucose and triglycerides (p < 0.05). The posi-

tive correlation (r = 0.667) between fasting blood glucose and 

HbA1c suggests that elevated fasting blood glucose levels are 

associated with higher HbA1c levels. Similarly, the positive 

correlation (r = 0.210) between triglycerides and HbA1c 

indicates that higher triglyceride levels are linked to elevated 

HbA1c levels. 

Among non-diabetic participants, HbA1c was significantly 

associated only with HDL cholesterol (p < 0.05). The ob-

served negative correlation (r = -0.337) suggests that lower 

HDL cholesterol levels are associated with higher HbA1c 

levels. In contrast, among diabetic participants, HbA1c was 

significantly associated only with fasting blood glucose (p < 

0.05). The positive correlation (r = 0.277) observed between 

HbA1c and fasting blood glucose indicates that higher fasting 

blood glucose levels are associated with elevated HbA1c 

levels. 

Table 2. Multivariate logistic models examining the association between lipid biomarkers, glycated hemoglobin, and confounders. 

Variable 

HDL-cholesterol LDL-cholesterol Triglycerides Total cholesterol TChol/HDL Ratio 

Adj. β p-value Adj. β p-value Adj. β p-value Adj. β p-value Adj. β p-value 

HbA1c (%) -1.03 0.013* 0.11 0.770 0.31 0.453 -0.48 0.356 1.53 0.331 

Diabetes status           

Yes 5.34 0.043* -2.16 0.370 -4.07 0.144 1.59 0.611 -13.67 0.139 

No 1  1  1  1  1  

HbA1c_Diabetes status 1.01 0.030* -0.20 0.626 -0.70 0.146 0.58 0.315 -2.14 0.191 

Age (years) -0.02 0.405 -0.03 0.212 -0.00 0.977 -0.03 0.306 0.01 0.870 

Sex           

Female 0.42 0.375 0.02 0.965 -0.04 0.930 0.07 0.910 0.46 0.603 

Male 1  1  1  1  1  

BMI 0.07 0.169 0.14 0.010* -0.03 0.549 0.22 0.004* 0.08 0.156 

Hypertension status           

Elevated blood pressure -0.28 0.621 -0.44 0.444 -0.50 0.463 -0.17 0.823 -0.93 0.395 

Hypertension stage 1 1.21 0.220 -0.63 0.483 -0.82 0.369 -21.09 0.999 -19.48 0.999 

Hypertension stage 2 -0.39 0.446 -0.74 0.154 -0.03 0.960 -0.37 0.576 -0.40 0.668 

Normal 1  1  1  1  1  

C-reactive protein (mg/dl) -0.05 0.158 -0.02 0.262 0.03 0.465 -0.01 0.707 0.02 0.326 

Education           

Primary 2.12 0.152 0.98 0.510 -0.40 0.801 -0.06 0.974 0.41 0.834 

Secondary 1.05 0.131 -0.24 0.712 0.60 0.495 0.14 0.862 -0.55 0.674 

Post-secondary 0.94 0.096 -0.31 0.561 0.14 0.829 0.03 0.965 -0.23 0.821 

None 1  1  1  1  1  

Marital status           
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Variable 

HDL-cholesterol LDL-cholesterol Triglycerides Total cholesterol TChol/HDL Ratio 

Adj. β p-value Adj. β p-value Adj. β p-value Adj. β p-value Adj. β p-value 

Widow 0.87 0.140 1.06 0.070 -1.31 0.056 1.82 0.017* -0.01 0.990 

Divorced 0.48 0.501 0.72 0.317 -1.27 0.119 1.99 0.029* 0.97 0.413 

Married 1.41 0.266 -0.08 0.945 -1.22 0.358 0.76 0.584 -19.99 0.999 

Single 1  1  1  1  1  

TChol/HDL Ratio: Total cholesterol/HDL-cholesterol ratio, Adj. β: adjusted Coefficient, *p-value with this superscript was statistically 

significant (p < 0.05). 

Table 3. Multivariate logistic models examining the association between lipid biomarkers, glycated hemoglobin, and confounders. 

Variables 

Spearman correlation p-value 

All participants 

Fasting blood glucose 0.667 < 0.001* 

Total cholesterol 0.049 0.576 

HDL-cholesterol -0.162 0.063 

Total cholesterol/HDL ratio 0.181 0.037* 

LDL-cholesterol 0.026 0.767 

Triglycerides 0.210 0.006* 

 Non-Diabetic participants 

Fasting blood glucose -0.005 0.970 

Total cholesterol -0.044 0.723 

HDL-cholesterol -0.337 0.006* 

Total cholesterol/HDL ratio 0.221 0.075 

LDL-cholesterol 0.066 0.596 

Triglycerides -0.005 0.965 

 Diabetic participants 

Fasting blood glucose 0.277 0.023* 

Total cholesterol -0.041 0.744 

HDL-cholesterol -0.070 0.574 

Total cholesterol/HDL ratio 0.094 0.450 

LDL-cholesterol -0.011 0.932 

Triglycerides 0.110 0.374 

95% CI: 95% confidence interval and *p-value with this superscript was statistically significant (p < 0.05). 

3.5. Multivariable Linear Regression Analysis 

To elucidate the contribution of lipid profile biomarkers to 

HbA1c levels, multivariable analyses were conducted among 

the overall population and non-diabetic participants, specifi-

cally focusing on the influence of glycemia. Diabetic partic-

ipants were not examined as an individual group due to the 
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absence of a significant correlation between HbA1c and lipid 

profile biomarkers in the initial correlation analysis. 

In the overall population, the unadjusted model (Model 1) 

revealed a significant association between triglycerides and 

HbA1c (Table 4). However, this association became 

non-significant after adjusting for fasting blood glucose 

(Model 2), suggesting that the relationship between triglyc-

erides and HbA1c depends on glycemia. Furthermore, the 

association remained non-significant even after adjusting for 

fasting blood glucose and other potential confounders, in-

cluding C-reactive protein, body mass index, sex, and age 

(Model 3). This further substantiates the dependence of the 

association on glycemia. 

Table 4. Multivariate linear analysis of HbA1c in unadjusted, glycemia-adjusted, and fully adjusted models among overall participants. 

Variable 

Model 1 (Unadjusted) Model 2 (Adjusted for glycemia) Model 3 (Fully adjusted) 

β 95%CI p-value Adj. β 95%CI p-value Adj. β 95%CI p-value 

Triglycerides 0.91 0.18, 1.64 0.015* 0.33 -0.32, 0.97 0.317 -0.01 -0.63, 0.60 0.964 

Fasting blood 

glucose 
   1.14 0.83, 1.46 <0.001* 0.78 0.45, 1.10 <0.001* 

CRP       0.00 -0.01, 0.02 0.868 

BMI       -0.04 -0.09, 0.00 0.064 

Sex       -0.20 -0.71, 0.31 0.443 

Age       0.02 0.01, 0.04 0.009* 

Education       -0.12 -0.47, 0.23 0.498 

Marital status       0.21 0.02, 0.40 0.027* 

Hypertension 

status 
      0.16 -0.05, 0.38 0.129 

CRP: C-reactive protein, and BMI: Body mass index, 95% CI: 95% confidence interval, β: Coefficient, Adj. β: Adjusted coefficient, and 

*p-value with this superscript was statistically significant (p < 0.05). 

Among non-diabetic participants, a significant negative 

association was observed between HDL-cholesterol and 

HbA1c (p = 0.011) in the unadjusted model (Table 5). This 

association persisted even after adjusting for fasting blood 

glucose (p = 0.011), indicating that the relationship is inde-

pendent of glycemia (Model 2). Moreover, the association 

between HDL cholesterol and HbA1c remained significant (p 

= 0.044) even after adjusting for fasting plasma glucose (FPG) 

and the same potential confounders mentioned above (Model 

3). This further supports the independence of the association 

from glycemia. 

These findings underscore the importance of considering 

lipid profile biomarkers in the context of glycemia when 

interpreting HbA1c levels, particularly in non-diabetic indi-

viduals. 

Table 5. Multivariate linear analysis of HbA1c in unadjusted, glycemia-adjusted, and fully adjusted models among non-diabetic participants. 

Variable 

Model 1 (Unadjusted) Model 2 (Adjusted for glycemia) Model 3 (Fully adjusted) 

β 95%CI p-value Adj. β 95%CI p-value Adj. β 95%CI p-value 

HDL-cholesterol -3.08 -5.45, -0.72 0.011* -3.15 -5.56, -0.75 0.011* -2.97 -5.86, -0.09 0.044* 

Fasting blood 

glucose 
   -0.38 -2.30, 1.54 0.693 -0.25 -2.46, 1.96 0.820 

CRP       -0.04 -0.09, 0.01 0.100 

BMI       0.02 -0.02, 0.06 0.356 
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Variable 

Model 1 (Unadjusted) Model 2 (Adjusted for glycemia) Model 3 (Fully adjusted) 

β 95%CI p-value Adj. β 95%CI p-value Adj. β 95%CI p-value 

Sex       -0.12 -0.53, 0.28 0.542 

Age       -0.01 -0.04, 0.02 0.446 

Education       -0.07 -0.52, 0.38 0.745 

Marital status       0.05 -0.15, 0.25 0.628 

Hypertension 

status 
      -0.05 -0.23, 0.13 0.606 

CRP: C-reactive protein, BMI: Body mass index, HDL: high-density lipoprotein, 95% CI: 95% confidence interval, β: Coefficient, Adj. β: 

Adjusted coefficient, and *p-value with this superscript was statistically significant (p < 0.05). 

3.6. Development of a Predictive Model 

To predict the HbA1c cutoff required to determine the 

presence of type 2 diabetes, a LASSO regression model was 

constructed using the following covariates: sex, age, educa-

tion level, marital status, occupation, body mass index (BMI), 

hypertension status, high-density lipoprotein (HDL) choles-

terol, low-density lipoprotein (LDL) cholesterol, total cho-

lesterol, triglycerides, and C-reactive protein. Among these 

covariates, the LASSO regression identified HbA1c, age, 

education level, marital status, HDL-cholesterol, and 

C-reactive protein as significant predictors to be included in 

the final model. (Table 6). 

The LASSO logistic regression model, developed to predict 

the HbA1c cutoff for detecting type 2 diabetes, demonstrated 

good performance across multiple evaluation metrics (Table 

7). The model included independent variables such as HbA1c, 

age, education level, marital status, HDL cholesterol, and 

C-reactive protein. The pseudo-R-square value of 0.8517 

indicated a strong goodness-of-fit, with a log-likelihood of 

-13.67. The model exhibited high sensitivity (94.03%) and 

specificity (96.97%), reflecting its ability to accurately iden-

tify both positive and negative cases. The positive predictive 

value (96.92%) and negative predictive value (94.12%) fur-

ther underscored the model's reliability in predicting type 2 

diabetes. 

The Area Under the Curve (AUC) of 0.9948 indicated 

outstanding discriminatory power, suggesting that the 

model effectively distinguishes between individuals with 

and without type 2 diabetes. The Mean Squared Error 

(MSE) was 0.03052795, the Root Mean Squared Error 

(RMSE) was 0.0616976, and the Mean Absolute Error 

(MAE) was 0.0616976, all of which were notably low, 

indicating minimal prediction errors. The overall accuracy 

of the model was 95.49%, demonstrating its high predictive 

performance. 

Additionally, the Akaike Information Criterion (AIC) of 

41.34 and the Bayesian Information Criterion (BIC) of 61.58 

suggested that the model strikes a good balance between fit 

and complexity. These metrics collectively highlight the 

robustness and reliability of the LASSO logistic regression 

model in predicting the HbA1c cutoff for detecting type 2 

diabetes. 

The odds of having type 2 diabetes increased by approxi-

mately 34.94 times for each one-unit increase in HbA1c levels, 

underscoring the critical role of HbA1c as a strong predictor. 

Additionally, the odds increased by approximately 22% for 

each one-year increase in age, indicating that older individu-

als are at a higher risk. Conversely, the odds decreased by 

approximately 7% for each one-unit increase in education 

level, suggesting that individuals with higher education levels 

may have a lower risk, possibly due to better health literacy 

and lifestyle choices. Marital status was also associated with 

an increased risk, with the odds of having type 2 diabetes 

increasing by approximately 19% for married individuals 

compared to those who are not. Notably, the odds increased by 

approximately 487.36 times for each one-unit increase in 

HDL-cholesterol levels, indicating a strong association that 

warrants further investigation. Lastly, the odds increased by 

approximately 7% for each one-unit increase in C-reactive 

protein levels, suggesting that higher levels of this inflam-

matory marker were associated with an increased risk of type 

2 diabetes. These findings highlight the importance of HbA1c, 

age, education level, marital status, HDL-cholesterol, and 

C-reactive protein as significant predictors of type 2 diabetes, 

providing a parsimonious and interpretable model for pre-

dicting the risk of this condition. 
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Table 6. LASSO logistic analysis to predict type 2 diabetes using HbA1c and other confounders. 

Variable 

Coefficient Odds ratio 

p-value 

Value 95% CI Value 95%CI 

HbA1c 3.55 1.62, 5.48 34.94 5.06, 241.27 < 0.001 

Age 0.20 0.05, 0.35 1.22 1.05, 1.41 0.009 

Education level -0.07 -1.66, 1.52 0.93 0.19, 4.58 0.930 

Marital status 0.17 -0.79, 1.13 1.19 0.45, 3.10 0.726 

HDL-cholesterol 6.19 -4.69, 17.07 487.36 0.01, 2.58 107 0.265 

C-reactive protein 0.07 -0.11, 0.25 1.07 0.90, 1.28 0.428 

Constant -33.58 -54.33, -12.82 2.62 10-15 2.53 10-24, 2.7 10-6 0.002 

 

Table 7. Evaluation parameters to assess the quality of the devel-

oped LASSO logistic model. 

Metric Value 

Pseudo R2 0.8517 

Log-likelihood - 13.67 

Sensitivity 94.03% 

Specificity 96.97% 

Positive predictive value 96.92% 

Negative predictive value 94.12% 

Area under the curve (AUC) 0.9948 

Mean Squared Error (MSE) 0.03052795 

Root Mean Squared Error (RMSE) 0.0616976 

Mean Absolute Error (MAE) 0.0616976 

Accuracy 95.49% 

Akaike Information Criterion (AIC) 41.34 

Bayesian Information Criterion (BIC) 61.58 

3.7. Predicting Adjusted HbA1c Cutoff 

The Receiver Operating Characteristic (ROC) curve, cou-

pled with the Youden index, was employed to compute the 

unadjusted and adjusted cutoff values of HbA1c (Figure 4). 

The results indicated that the unadjusted and adjusted cutoff 

values of HbA1c were 6.05% and 7.59%, respectively. These 

two cutoff values were found to be statistically different (t = 

13.52, p = 0.001), suggesting that the effect of confounders 

led to an increase in the cutoff value of HbA1c. Furthermore, 

when comparing the adjusted cutoff to the recommended 

value for detecting type 2 diabetes using HbA1c (6.50%), the 

difference was also found to be statistically significant (t = 

9.71, p = 0.001). This indicates that confounders, including 

HDL-cholesterol, contributed to a higher cutoff value of 

HbA1c. 

 
Figure 4. ROC curve of unadjusted and adjusted HbA1c. 

4. Discussion 

The results of this study suggest a differential relationship 

between HbA1c and HDL-cholesterol in diabetic and 

non-diabetic groups. Previous research has shown that dia-

betic individuals have significantly lower HDL levels com-

pared to non-diabetic groups, indicating a more pronounced 

interaction between HbA1c and lipid levels in diabetic pop-

ulations, influenced by diabetes status [24]. Additionally, 

these findings highlight that diabetes is associated with unique 

metabolic profiles, where lipid profiles are more closely 

linked with obesity and inflammation. A previous study re-

vealed that dysfunctional adipose tissue in obesity fosters a 
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pro-inflammatory environment, contributing to type 2 diabe-

tes, with visceral fat accumulation correlating with systemic 

inflammation and dyslipidemia factors more prominent in 

diabetic individuals than in non-diabetic counterparts [25]. 

The association between triglycerides and glycated hemo-

globin (HbA1c) being dependent on glycemia is a complex 

relationship that has been observed in several studies. This 

present finding suggests that the link between lipid metabo-

lism and glucose control is not straightforward and may be 

influenced by overall blood glucose levels. 

Research has shown that elevated triglycerides are often 

associated with poor glycemic control in patients with dia-

betes. A study found that HbA1c can be an indicator of tri-

glyceride level and can be one of the predictors of cardio-

vascular risk factors in type 2 diabetes mellitus [26]. Elevated 

blood glucose levels can lead to increased triglyceride pro-

duction, as excess glucose is converted into fatty acids and 

stored as triglycerides [27]. Insulin resistance, common in 

type 2 diabetes, disrupts the regulation of both glucose and 

lipid metabolism, often resulting in higher levels of both 

HbA1c and triglycerides. Improved glycemic control, indi-

cated by lower HbA1c levels, is associated with better lipid 

profiles, including reduced triglyceride levels [28]. This 

supports the idea that there is a connection between HbA1c 

and triglyceride levels. Likewise, this relationship under-

scores the importance of comprehensive metabolic control in 

managing diabetes and reducing cardiovascular risk. 

However, the relationship appears to be more nuanced 

when considering different levels of glycemia. Zheng et al. 

[29] observed that elevated triglyceride levels were strongly 

associated with inadequate glycemic control, suggesting that 

the association may be more pronounced in individuals with 

higher blood glucose levels. This aligns with the finding that 

the relationship is dependent on glycemia. 

Interestingly, some research has found that the association 

may not be as strong as previously thought. A study by Ro-

driguez-Gutierrez et al. [30] concluded that triglycerides do 

not impair the interpretation of HbA1c assay. Patients and 

clinicians can now be confident that hypertriglyceridemia is 

not an important factor when interpreting HbA1c results. This 

contradicts the idea of a strong, direct relationship between 

triglycerides and HbA1c. 

Thus, the complex interplay between glucose and lipid 

metabolisms could explain the dependency on glycemia. In 

individuals with higher blood glucose levels, insulin re-

sistance may play a more significant role in affecting triglyc-

eride levels and HbA1c, potentially strengthening their asso-

ciation. Conversely, in those with better glycemic control, 

other factors may have a more substantial influence on tri-

glyceride levels, weakening the relationship with HbA1c. 

The finding that the association between HDL-cholesterol 

(HDL-C) and glycated hemoglobin (HbA1c) is independent 

of glycemia among the non-diabetic population is an intri-

guing result that challenges some previous assumptions about 

lipid metabolism and glucose control. This relationship sug-

gests that HDL-C levels may be influenced by factors beyond 

just blood glucose levels, even in individuals without diabe-

tes. 

A study by Huang et al. [31] supports this finding, showing 

that HDL-C was inversely associated with glycosylated he-

moglobin after adjusting for other covariates. This inverse 

relationship persisted even after accounting for various factors, 

indicating that the link between HDL-C and HbA1c is not 

solely dependent on glycemic status. However, it is important 

to note that this study was conducted on diabetic patients, 

which contrasts with the non-diabetic population mentioned 

in the current finding. 

Interestingly, research by Gatti et al. [32] found that poor 

glycemic control is an independent risk factor for low HDL 

cholesterol in patients with type 2 diabetes. While this seems 

to contradict the current finding, it is crucial to remember that 

the present finding focuses on non-diabetic individuals, where 

the mechanisms at play may differ. 

The independence of the HDL-C and HbA1c association 

from glycemia in non-diabetics suggests that other mecha-

nisms, such as inflammation, oxidative stress, or genetic 

factors, may play a role in this relationship. This aligns with 

the findings of Naqvi et al. [26], who observed that HbA1c 

can be an indicator of triglyceride level and can be one of the 

predictors of cardiovascular risk factors. Although this study 

focused on triglycerides rather than HDL-C, it supports the 

idea that HbA1c may reflect broader metabolic processes 

beyond just glucose control. 

The current finding underscores the complex interplay 

between lipid metabolism and glucose homeostasis, even in 

non-diabetic individuals. It highlights the need for compre-

hensive approaches to cardiovascular risk assessment that 

consider both lipid profiles and glycemic markers, regardless 

of diabetic status. Further research is needed to elucidate the 

specific mechanisms underlying this independent association 

in non-diabetic populations. 

The implications of these findings for detecting type 2 

diabetes using HbA1c are that the dependence of the asso-

ciation between triglycerides and HbA1c on glycemia could 

lead to potential false positives or negatives in diabetes 

diagnoses, as elevated triglyceride levels might influence 

HbA1c levels even in the absence of hyperglycemia. Con-

versely, the independent association between HDL choles-

terol and HbA1c in non-diabetic individuals suggests that 

low HDL cholesterol levels could serve as an early indicator 

of impaired glucose metabolism, even when HbA1c levels 

are within the normal range. This highlights the importance 

of comprehensive lipid profiling in diabetes screening and 

management, as evaluating triglyceride and HDL cholesterol 

levels alongside HbA1c can provide a more comprehensive 

understanding of an individual's metabolic health. Moreover, 

these findings imply that universal HbA1c cutoffs for dia-

betes diagnosis may not be suitable for all individuals, and 

further research is needed to determine whether li-

pid-specific or population-specific cutoffs could improve 
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screening accuracy. Additionally, in individuals with 

dyslipidemia, HbA1c levels may not accurately reflect 

glycemic control, emphasizing the need for monitoring both 

lipid profiles and HbA1c levels to effectively manage their 

risk of diabetes and related complications. This led us to 

develop a predictive model of type 2 diabetes occurrence to 

predict the adjusted cutoff value of HbA1c in this study. 

The LASSO logistic model has identified HbA1c, age, ed-

ucation level, marital status, HDL-cholesterol, and C-reactive 

protein (CRP) as significant predictors of type 2 diabetes. This 

finding aligns with existing literature that underscores the 

multifactorial nature of type 2 diabetes. For instance, HbA1c is 

a well-established marker for long-term glycemic control and is 

closely linked to diabetes management and complications [28]. 

Age is another critical factor, as the risk of type 2 diabetes 

increases with advancing age [33]. Education level and marital 

status are socio-demographic factors that influence health 

behaviors and access to health care, thereby affecting diabetes 

risk [34]. HDL-cholesterol, often referred to as ―good choles-

terol,‖ has been shown to have an inverse relationship with 

diabetes risk, with higher levels being protective [35]. Lastly, 

elevated CRP levels indicate inflammation, which is a known 

contributor to insulin resistance and type 2 diabetes [28]. These 

findings collectively highlight the complex interplay of bio-

logical, and socio-demographic factors in the development of 

type 2 diabetes. 

The use of the Receiver Operating Characteristic (ROC) 

curve, along with the Youden index, to determine the adjusted 

cutoff values of HbA1c for predicting type 2 diabetes is a 

robust method for enhancing diagnostic accuracy. The ad-

justed cutoff value of 7.59% for HbA1c, as indicated in the 

study, aligns with findings from other research that emphasize 

the importance of precise cutoff points in diabetes diagnosis. 

For instance, a study published by Zhou and Qin [36] dis-

cussed how covariate adjustments in ROC analysis can refine 

cutoff values, thereby enhancing the predictive power of 

biomarkers like HbA1c. In contrast, some studies suggest that 

while adjusted cutoff values provide better individualized risk 

assessments, they may not significantly outperform traditional 

thresholds in broader population screenings [37]. This un-

derscores the need for a balanced approach in clinical practice, 

considering both adjusted and unadjusted values for com-

prehensive diabetes risk evaluation. 

While the study provides valuable insights into the associ-

ations between HbA1c and various biomarkers, several limi-

tations must be acknowledged. Firstly, the case-control study 

design, with a relatively small sample size, may limit the 

generalizability of the findings to the broader population. 

However, the detailed and rigorous data collection methods 

employed in this study enhance the reliability of the results. 

Secondly, the study was conducted at a single center, the 

Central Hospital of Yaoundé, which could introduce selection 

bias and may not be representative of other healthcare settings 

or regions. Nonetheless, the comprehensive assessment of 

sociodemographic characteristics, blood pressure, and bio-

chemical markers adds robustness to the analysis. 

Thirdly, the case-control nature of the data collection does 

not allow for the establishment of temporal relationships or 

causality between the biomarkers and type 2 diabetes. Despite 

this, the use of advanced statistical techniques, such as mul-

tivariate LASSO logistic regression, provides a sophisticated 

approach to identifying predictors of type 2 diabetes. 

Additionally, the study did not account for potential con-

founding factors such as lifestyle behaviors, dietary habits, 

and genetic predispositions, which could influence the asso-

ciations observed. Nonetheless, the rigorous adjustment for 

key confounders, such as fasting blood glucose and other 

biomarkers, strengthens the validity of the findings. 

Lastly, the adjusted cutoff value of HbA1c, while statisti-

cally significant, requires further validation in larger, more 

diverse populations to confirm its clinical utility. Despite this, 

the significant difference between the adjusted and unadjusted 

cutoff values highlights the importance of considering con-

founders in the diagnosis of type 2 diabetes. 

5. Conclusions 

This case-control study revealed significant differences in 

age, education, marital status, blood pressure, and biochemi-

cal profiles between diabetic and non-diabetic individuals. 

Diabetic participants were older, less educated, and more 

likely to be married than their non-diabetic counterparts. 

They also exhibited higher systolic blood pressure, poorer 

glycemic control, and elevated triglyceride levels. Future 

studies should aim to elucidate the underlying mechanisms 

linking these factors and develop targeted interventions to 

improve health outcomes in individuals with diabetes. 

This study also reveals a complex relationship between 

triglycerides and glycated hemoglobin (HbA1c), dependent 

on glycemia, suggesting that lipid metabolism and glucose 

control are intricately linked. 

The findings of this study suggest that the relationship 

between HbA1c and HDL-cholesterol differs between dia-

betic and non-diabetic groups, with diabetes being associated 

with distinct metabolic profiles where lipid levels are more 

closely linked to obesity and inflammation. Notably, in 

non-diabetic individuals, the association between 

HDL-cholesterol and HbA1c is independent of glycemia, 

implying that HDL-cholesterol levels are influenced by fac-

tors other than blood glucose, underscoring the complex 

interplay between lipid metabolism and glycemic control. 

Building on these metabolic insights, the LASSO logistic 

model identified HbA1c, age, education level, marital status, 

HDL-cholesterol, and C-reactive protein (CRP) as significant 

predictors of type 2 diabetes. The adjusted HbA1c cutoff 

value for detecting type 2 diabetes was 7.59%, significantly 

higher than the unadjusted value (6.05%) and the recom-

mended cutoff (6.50%). 

These findings underscore the critical importance of inter-

preting HbA1c levels within the context of lipid profile bi-
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omarkers and glycemic status, especially in non-diabetic 

individuals. Furthermore, the study presents a robust predic-

tive model for type 2 diabetes risk, integrating HbA1c, de-

mographic factors, and key biomarkers. Further research is 

warranted to validate these findings and explore whether 

lipid-specific or population-specific cutoffs could be benefi-

cial to enhance screening accuracy. Regular monitoring of 

HDL cholesterol levels in non-diabetic individuals with ele-

vated HbA1c may aid in identifying those at higher risk of 

developing diabetes, thereby facilitating early intervention 

and prevention strategies. 
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