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Abstract 

The significance of developing Big Data applications has increased in recent years, with numerous organizations across various 

industries relying more on insights derived from vast amounts of data. However, conventional data techniques and platforms 

struggle to cope the Big Data, exhibiting sluggish responsiveness and deficiencies in scalability, performance, and accuracy. In 

response to the intricate challenges posed by Big Data, considerable efforts have been made, leading to the creation of a range of 

distributions and technologies. This article addresses the critical need for efficient processing and storage solutions in the context 

of the ever-growing field of big data. It offers a comparative analysis of various parallel processing techniques and distributed 

storage frameworks, emphasizing their importance in big data analytics. Our study begins with definitions of key concepts, 

clarifying the roles and interconnections of parallel processing and distributed storage. It further evaluates a range of 

architectures and technologies, such as MapReduce, CUDA, Storm, Flink, MooseFS, and BeeGFS and others technologies, 

discussing their advantages and limitations in managing large-scale datasets. Key performance metrics are also examined, 

providing a comprehensive understanding of their effectiveness in big data scenarios. 
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1. Introduction 

Big data is a term that refers to the astronomical amount of 

data that is produced and stored daily. This data comes from 

different sources, such as networks social media, e-commerce 

sites, mobile apps, etc. Businesses and organizations in-

creasingly need this data to develop new products and ser-

vices, improve internal processes and better understand the 

behaviors of their client. Big data is characterized by its 

volume, velocity, variety, veracity, and value, often referred to 

as the "5Vs." Volume refers to the vast amounts of data gen-

erated every second, while velocity indicates the speed at 

which this data is processed and analyzed. Variety highlights 

the diverse formats and sources of data, including structured, 

semi-structured, and unstructured forms. Veracity addresses 

the accuracy and reliability of the data, which is crucial for 
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making informed decisions. Finally, value represents the 

insights and benefits that can be extracted from analyzing big 

data, enabling organizations to drive innovation, improve 

operations, and enhance customer experiences. 

Big data has also become a powerful tool for researchers 

and analysts. They cause the data to discover new trends and 

analyze consumer behaviors. Thanks to big data, it is also 

possible to improve predictions and economic models. 

Although big data is a powerful force, it is important to note 

that it also involves of the risks. For example, the data can be 

used for malicious purposes, and companies and organiza-

tions are finding it increasingly difficult to manage and ana-

lyze this amount of data. 

Big data is a large amount of data that exceeds processing 

capabilities of a conventional computer. This data is usually 

stored and analyzed in the goal of discovering trends, patterns 

and insights. The benefits of big data are many. Among the 

main ones are: A better understanding of customers and their 

needs, a better ability to anticipate changes, process and an-

alyze ever-increasing volumes of data, making it easier to 

decision-making and process optimization [28]. 

Indeed, to manage complex situations in big data generally 

use: 

1) Parallel processing: that is a computing technique that 

consists of executing several tasks simultaneously on 

computers connected together. This technique is par-

ticularly used in big data to process mass data. With 

parallel processing, computers can process data faster 

and reduce latency. 

2) Distributed data: Distributed data in big data is data that 

is distributed over several computers connected together. 

These data are processed by specific algorithms. Which 

reduce latency. These algorithms harness the power of 

calculation of computers connected together to process 

data faster. 

3) Flexibility: It is the ability to adapt processes and tools 

to changes. Rapid and. constant movements. Compa-

nies that succeed in big data are flexible and able to 

adapt quickly to changes. They also have the ability to 

process and analyze a large amount of data in real time. 

4) Scalability: Big data scalability or scaling up is the 

ability to process a larger amount of data and to meet an 

ever-increasing demand in terms of capacity processing 

and analysis. Companies that succeed in big data have 

an architecture and scalable processes, allowing them to 

process a larger amount of data without compromising 

perform. 

In this paper, we provide an overview of the latest tech-

nologies created for Big Data. We classify and thoroughly 

compare these technologies based not only on their applica-

tions, advantages, limitations, and characteristics, but also 

according to different layers, including Data Storage Layer, 

Data Processing Layer, Data Querying Layer, Data Access 

Layer, and Management Layer. This approach enhances the 

understanding of the relationships between different Big Data 

technologies and how they operate. 

This paper is organized as follows. Section 2 defines Big 

Data preprocessing and presents some of its applications. 

Section 3 identifies parallel computing and its applications 

API. Section 4 presents big data processing frameworks and 

compares some main frameworks developed on top of it. 

Section 5 presents comparison between Big data parallel and 

distributed storage systems. Section 6 presents future in Big 

data analytics. 

2. Big Data Pre-processing 

Big Data pre-processing is an important step in the value 

creation process in big data. It consists of transforming raw 

data into structured and cleaned data to facilitate analysis and 

management. This step is essential because it allows organi-

zations to discover and act on insights from their thee 

pre-processing steps for big data are as follows: 

2.1. Big Data Cleaning 

Refers to identifying and cleaning up inconsistencies. In-

accuracies and inaccuracies in data. This process may involve 

identifying and correction of errors, filling of missing values 

and standardization of formats of data. 

2.2. Big Data Transformation 

Big data transformation is a data processing technique that 

consists of modifying data from one format to another, or to 

transform it into a form that is easier to use or analyze. This 

may include converting raw data into a form structured, 

merging data from different sources, or creating tables and 

graphs from raw data. 

2.3. Big Data Reduction 

It is a data processing technique that consists of reducing 

the volume of data to be processed by deleting unnecessary 

data or reducing the size of data. This can reduce the time 

required for data processing, reduce storage and transmission 

costs, or facilitate analysis and interpretation Data. 

2.4. Big Data Integration 

It is a technique of integrating and merging data from dif-

ferent sources to create a single database. This integration 

makes it possible to have a global and coherent view of the 

data, which facilitates their use. For this step, the ETL tool is 

generally used. 
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Figure 1. ETL process. 

2.4.1. ETL Approach [1] 

In English ETL is (extract, transform, load), which is an 

automated process consisting of three main tasks: extraction, 

transformation, loading. This process extracts information 

from raw data, then transforms this information in order to be 

able to upload it and integrate it into a data warehouse. 

Among the benefits of ETL we can mention: 

1) Quickly integrate a large amount of data. 

2) No additional system installed, so the ETL is 

non-informative. 

3) The load can be smoothed over the entire system. 

4) Simplify and streamline the architecture. 

5) Allows to have a coherent and homogeneous database. 

6) Optimize performance, by performing data cleansing. 

2.4.2. The Phases of the ETL Process 

A. Extracting data 

This task makes it possible to extract the most relevant data 

from different data sources such as spreadsheets, applications 

or database systems data. We have two types of data extraction 

[1]. The following table will allow us to explain these two types, 

thus to establish a comparison between the two: 

Table 1. The difference between the two types of extraction in an ETL process [2]. 

Complete extraction Incremental extraction 

Captures the dataset. Captures only data that has changed since the last extraction. 

Typically used in initial 

data loading or the 

refresh case full of 

data. 

There are two use cases possible: 

1-Real-time extraction: the extraction is do neat the time of transaction in the of transaction in the source system. 

2-Deferred extraction: the extraction of all loadings in a given period. 

 

B. Data transformation 

This task aims to clean the data to improve their quality and 

establish the consistency. The different data processing op-

tions possible in this phase [1]: 

1) Filtering, cleaning, deduplication, deletion, decoding, 

conversion. 

2) Perform calculations, translations or summaries based 

on the raw data. 

3) Data validation and authentication. 

4) Formatting data in tables or joined tables. 

C. Loading data 

The last phase consists of sending the transformed data 

from the transformation zone to the target data warehouse. 

There are three types of loading: 

1) Initial loading: the out of the data warehouse activation. 

2) Incremental loading: is done once the initial loading is 

complete, to overwrite and delete data in the data 

warehouse. 

3) Full load: this type of loading requires complete un-

loading data loaded off initial load [2]. 
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2.4.3. Other Approaches 

There are other approaches that are also used to facilitate 

the integration of data. We will present some of these ap-

proaches: [2] 

(i). CDC (Change Data Capture) 

Identifies and captures only source data that has changed 

and moves it to the target system. CDC can be used inde-

pendently for data movement transformed into a data lake or 

other repository in real time, as it can also be used during the 

extraction step of the ETL for the reduction of the necessary 

resources. 

(ii). SDI (Stream Data Integration) 

SDI continuously integrates data as it becomes available. 

sources instead of integrating the extracted data instantly at a 

given time. It activates a data store to power analytics, ma-

chine learning, and applications in real time to improve the 

customer experience. 

(iii). Data virtualization 

This approach consists of using a software abstraction layer 

to create a view: unified, integrated and fully usable data, 

without copying, transforming or loading physically the 

source data on a target system. 

Data virtualization enables the creation of virtual data 

warehouses, data lakes and data stores from the same source 

data for thedata storage without the expense and complexity 

of creating and managing separate platforms for each. 

3. Parallel Computing 

Parallel computing is the process of implementing electronic 

architectures. digital electronics allowing information to be 

processed simultaneously. Perform these parallel tasks is pos-

sible thanks to the use of several processors or cores si- simul-

taneously. Unlike the time-sharing technique used by a system 

operating system (OS) to run multiple programs on a single 

processor, or when a operating system chooses to run multiple 

programs on a single processor without interaction between 

them. Parallelism relies on specialized algorithms and some-

times specific language sand platforms dedicated to parallel 

computing. These techniques have aim of carrying out the 

greatest number of operations in the shortest possible time. 

3.1. The goal of Performing Calculations in 

Parallel 

Parallel architectures have become the dominant paradigm 

for all computers since the end of the 1950s, The main reasons 

for parallel computing: 

1) Saves execution time and consequently decreases the 

loss of money linked to the expenses (electricity for the 

operation and cooling of the machines). 

2) Allows you to deal with larger and more complex 

problems using the high performance computing sys-

tems (intensive computing) for industrial applications 

trills or simulation of scientific phenomena (eliminates 

the limits and reduces the cost physical experience). 

3.2. Automatic Parallelization 

Represents the compilation procedure of a program that 

transforms the source code written for sequential machines to 

parallelized executables for multi-computers. The purpose of 

the latter is to simplify and reduce development time parallel 

programs because they are much more complicated to write 

than programs sequential. For this, from different platforms 

API (Application Programming Interface for parallel compu-

ting have been implemented, in particular: 

3.2.1. POSIX Threads (Pthreads) 

POSIX threads, commonly known as pthreads, are a 

threading API based on standards for C/C++ [3], it allows one 

program to control multiple workflows different overlapping in 

time, each workflow is called a thread hence the pthreads name 

was inspired. This API defines a standard interface that libraries 

can are going to use to create and manage threads, while al-

lowing the operating system manage the low-level details 

needed to create and maintain threads [4]. 

POSIX threads are primarily useful for multi-processor or 

multi-processor systems, where threads can be scheduled to 

run on separate processors and run in parallel with other 

threads. They can also be used to create fine parallelism 

within a single processor [5]. Pthreads defines a set of types, 

functions and constants of the programming language. C 

grammar provided by the “pthread.h” library. Threads have 

running status independent and an independent address space; 

they are not required to share the same process or memory 

space than their creator. There are about 100 thread proce-

dures, all prefixed with "pthread" and they can be classified 

into four groups: 

1) Thread management to create, join threads, etc. 

2) Mutex that represent a lock (mechanism that imposes 

access limits to A resource) 

3) Conditional variables or monitor, a synchronization 

construct that per- sets threads to have both mutual ex-

clusion and the ability to wait (bloquer) that a certain 

condition becomes false. 

4) Synchronization between threads using locks and 

read-barriers writing. 

5) Twist locks which make a thread simply wait in a loop 

("spin") while repeatedly checking if the lock is avail-

able [6]. 

3.2.2. Open Multi-Processing (OpenMP) 

Represents a programming interface for parallel computing 

on an architecture with shared memory [7]. This API supports 

cross-platform parallel programming with shared memory in 

C/C++ and Fortran. Supported by many platforms including 

GNU/Linux, OS X and Windows, it defines a portable and 

scalable model with a simple and flexible interface to develop 
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parallel applications on platforms ranging from desktop 

computers to supercomputers [7]. 

OpenMP is an implementation of multithreading, a paral-

lelization method in which a main thread (a series of sequen-

tial instructions) is divided into sub-threads, and the system 

distributes the tasks between them to then be executed sim-

ultaneously and the environment runtime assigns them to 

different processors. In other words, just add “#pragma omp” 

directives in the code to indicate the parts to be parallelized 

(and com- how to do it), then the compiler and the operating 

system take care of the rest [7]. 

Sections of code that run in parallel are marked accordingly 

with compiler directives that form threads before section 

execution. Each thread is assigned an ID. After executing the 

parallelized code, the thread reconnects to the main thread and 

continues until the end of the program. OpenMP functions 

arecontained in a C/C++ header file called "omp.h" [7], Basic 

elements can be classified into six groups: 

1) Thread creation: The omp parallel pragma is used to 

spawn the sub threads necessary to perform the work 

included in the parallel construction. the thread origin 

will be designated as the master thread with thread ID 0. 

2) Work-sharing constructs: Is used to specify how to as-

sign an independent on one or all threads (omp for or 

omp do to divide the loop iterations, sections for as-

signment of consecutive but independent code blocks 

ants to sub-threads, single and master specifying a block 

of code that is executed by a single thread and a block of 

code will be executed by the master thread only respec-

tively) [8]. 

3) Variant directives: are one of the main features intro-

duced in the. OpenMP 5.0 specification to help pro-

grammers improve the portability of forms. They allow 

the adaptation of OpenMP pragmas and user code to 

compile time [7]. 

4) Clauses: to keep the integrity of the parallelism of the 

code, most of the variables of the code OpenMP are 

visible by default to all threads. However, private vari-

ables are sometimes necessary to avoid race conditions 

and values must be transmitted between the sequential 

part and the parallel region (Attribute clauses of data 

sharing, synchronization clauses, scheduling clauses, IF 

control, Initialization, Data Copy...) 

5) User-level: runtime which represents routines used to 

modify/check the number of threads, detect if the exe-

cution context is in a parallel region, how many number 

of processors in the current system, set/disable locks, 

security functions synchronization, etc. 

6) Environment variables: which represents method to 

modify features runtime of OpenMP applications and 

used to control the scheduling of loop iterations, default 

thread count, etc. [8]. 

 

3.2.3. Message Passing Interface (MPI) 

Represents an API born from a standardization effort, de-

fining the standardized and portable messaging mission de-

signed to run on architectures parallel computing. The MPI 

standard is not a library, but specifies what such a library 

should provide as functionality such as syntax and semantics of 

routines, this makes it very useful to a wide range of users 

writing portable messaging programs in C, C++ and Fortran, 

and any language able to interface with such libraries including 

C#, Java or Python [9]. There are several open-source MPI 

implementations that have helped make it a standard for par-

allel programming by message passing [10]. MPI's objectives 

are high performance, scalability a normed in parallel on sev-

eral computers. MapReduce is often used for bulk data pro-

cessing applications, such as the processing of logs, click data 

analysis and pattern recognition. 

MapReduce was popularized by Google and is now imple-

mented in several frameworks open source, such as Apache 

Hadoop and Apache Spark. Additionally, libraries MapReduce 

are available for different programming portability. 

The MPI is process-oriented, the problem to be addressed is 

broken down into several processes, each of these processes is 

generally associated with a calculation node. An MPI process 

can contain a single thread (common case) or several threads. 

MPI processes are identified by their ranks, if n-number of 

processes are running, the rank of the processes goes from 0 to 

n-1. MPI provides several features. The following concepts 

provide a context for all of these capabilities and help the pro-

grammer decide which feature use in its application programs. 

The four basic elements can be classified as following: 

Introduced with the first MPI-1 release: 

1) Communicator which is responsible for creating objects 

connect groups of processes in the MPI session. Each 

communicator gives each contained process a inde-

pendent identifier and organizes its contained processes 

into an ordered topology. 

2) Point-to-point basics represented by a number of im-

portant MPI functions aunts involve communication 

between two specific processes (MPI_Send and 

MPI_Recv...) Point-to-point operations, as they are 

called, are particular- useful in structured or irregular 

communications. 

3) collective basics which represents collective functions 

involve communication between all the processes of a 

process group (MPI_Bcast, MPI_Reduce and 

MPI_alltoall...). Other operations perform more so-

phisticated tasks, such as that rearranging n data items. 

4) Derived data types predefined constants (MPI_INT, 

MPI_CHAR, MPI_DOUBLE) so that MPI can support 

heterogeneous environments where types data can be 

represented differently on different nodes. [10] 

3.2.4. Compute Unified Device Architecture (CUDA) 

Represents an API created by Nvidia that allows software to 

use certain types graphics processing units (GPUs) for gen-
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eral-purpose processing, this platform parallel computing form is 

a software layer that provides direct access to the GPU, this is an 

approach called General Purpose Computing on GPU (GPGPU) 

[11]. This eliminates the bottlenecks caused by software running 

on the host CPU, resulting in a dramatic increase in application 

performance. CUDA allows programs to be compiled into device 

code that can run directly on GPUs [12]. 

CUDA is designed to work with programming language 

such as C, C++and Fortran, Third-party wrappers are also 

available for Python, Java, R, MATLAB. This accessibility 

allows specialists in parallel programming to more easily use 

GPU resources, unlike earlier APIs like Direct3D and 

OpenGL, that required advanced graphics programming skills. 

Powered GPUs by CUDA also support programming 

frameworks such as OpenMP, OpenACC and OpenCL and 

HIP by compiling this code in CUDA [12]. 

Graphics Processing Units (GPUs) are highly parallel allow-

ing efficient manipulation of large blocks of data. This design has 

makes them a more efficient tool than general-purpose (CPUs) 

for algorithms in situations where the processing of large blocks 

of data is carried out in parallel (learning automation, crypto-

graphic hash functions, molecular dynamics simulations, physics 

engines...). CUDA provides both a low-level API (CUDA Driver 

API, non-single source) and higher level API (CUDA Runtime 

API, single source) and handles a collection of libraries, tools, 

and technologies that deliver performance high in multiple ap-

plication areas ranging from artificial intelligence to computing 

high performance [11]. 

CUDA has several particularities compared to parallel 

programming, in particularly are: 

1) explicit prioritization of memory areas (private, local, 

global) allows so much to finely organize the transfers 

between them. 

2) grouping threads into grids of grids (local 1D, 2D or 3D 

grids threads that can quickly share local memory) 

Local grids are ordered in a global grid allowing access 

to the global memory. 

3.2.5. MapReduce 

Represents a distributed programming API for processing 

massive data in parallel on clusters of servers. It was intro-

duced by Google in 2004 and is become popular for data 

processing on large amounts of data. The tasks are distributed 

on the different nodes of the cluster for efficient parallel ex-

ecution. MapReduce is often used in conjunction with the 

Hadoop Distributed File System to process data in parallel on 

large server clusters [13]. 

MapReduce is used to process large amounts of data across 

many parallel computers. This allows complex tasks to be 

broken down into simple sub-tasks which can be perf lan-

guages, such as Java, python, Ruby, and C++. It is a powerful 

tool for data processing applications in mass and is widely 

used in industry [14]. The MapReduce model consists of two 

main steps: 

1) The "Map" step which takes as input a list of key-value 

pairs and returns a list intermediate key-value pairs. It 

filters and distributes the work on different nodes of the 

cluster or map, using a function sometimes called a 

mapper. 

2) The "Reduce" step which takes as input the list of in-

termediate key-value pairs and returns a list of final 

key-value pairs. It organizes and reduces the results of 

each node into a consistent response to a query, using a 

function called reducer. 

3.3. Comparative Table Between APIs 

To better understand the differences between the APIs, we 

present the following table: 

Table 2. Comparison between APIs. 

POSIX OpenMP MPI CUDA MapReduce 

USE 

Programming systems  
Parallel treatment on a 

single processor  

Treatment parallel on sev-

eral processor 

Treatment by- runs on 

GPU 

Distributed of 

treatment on data 

LANGUAGE 

Fortran, C, C++ Fortran, C, C++ Fortran, C, C++ Fortran, C, C++ Java,Python,C++ 

PLATFORM 

Executive hardware  Processor Cluster GPUs Hadoop 

ABSTRACTION 

- - - + + + 

COMMUNICATION 

Shared memorygey Shared memory  Network Shared memory  Network 
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Figure 2. Big data frameworks. 

4. Big Data Processing Framework’s 

The rapid growth of digital data generated by various 

sources makes it inefficient the use of traditional methods of 

storage, processing and analysis. These limitations have led to 

the development of new technologies to process and store 

very large data sets. As a result, several implementation 

frameworks have emerged to big data processing. We will 

focus in this research on the comparison of the most important 

and most frequently used frameworks in the free software 

landscape [25, 27]. 

4.1. STORM 

Apache Storm is a distributed processing framework for 

streaming data in time real. Storm was originally developed 

by Nathan Martz of Back Type, acquired by Twitter in 2011 

and was incorporated into Apache projects later in 2014. 

Apache Storm is designed to process and analyze large 

amounts of unlimited data streams that can come from various 

sources and post real-time updates to the user interface or 

other locations without storing any actual data. Storm is 

highly scalable in nature and offers low latency with an 

easy-to-use interface through which developers can program 

in virtually any programming language [15]. 

4.2. DISCO 

Disco open-source framework was developed in 2008 at 

Nokia research center in order to meet the real challenges of 

handling massive amounts of data and the framework has 

since been actively developed by Nokia. Disco is the latest 

addition to the list growing use of Big Data tools, which al-

lows the parallel processing of large amounts of data and 

using Python makes it robust and easy to use [16]. 

4.3. HERON 

Apache Heron is a distributed stream processing frame-

work developed by Twitter. According to the creators of 

Twitter, the scale and diversity of Twitter data has increased, 

and Heron is a real-time analytics platform for processing 

streaming and scalability. It was presented at SIGMOD. 

Heron is compatible with the Apache Storm API [17]. 

4.4. SAMZA 

Developed internally at LinkedIn in 2013 and later donated 

to Apache Software Foundation. Samza is now adopted by 

several large companies it is based on a unified design for 

stateful processing of batch data and data streams in real time 

at high volume. Samza is designed to support high throughput 

for streams data while providing fast fail over and high relia-

bility. For at-To tint these design goals, Samza uses some key 

abstractions, such as partitioned streams, change log capture, 

and local state management [18]. 

4.5. FLINK 

Apache Flink is a distributed processing framework for 

processing of unlimited data streams. Flink was started in 

2009 at the Technical University of Berlin under the name 

Stratosphere. Flink is known to process data a hundred times 

faster than MapReduce. Thanks to a very flexible windowing 

mechanism, Flink programs can calculate early and approx-

imate results, as well as delayed and precise results of early 

and approximate results, as well as late and precise results 

through the same process of combining different systems for 

both use cases [19]. 

4.6. Comparison between Big Data Processing Frameworks’s 

Table 3. Comparison of different frameworks according to architecture and processing model. 

ARCHITECTURE 

FLINK SAMZA STORM HERON DISCO 

A four-layer architecture. 

The core is a motor data 

flow distributed who 

Three-layer architecture. 

A streaming layer that is 

responsible for the sup-

Architecture-based on 

master/slave, it allows 

only one node master. 

The overall architecture 

of Heron based on usage 

of API Storm used to 

Architecture who is 

composed of two ele-

ments main: the file 

http://www.sciencepg.com/journal/ijdsa


International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa 

 

93 

receives the programs of 

the users. Flink possesses 

two APIs main: API data 

set and the Stream API 

data. Flink is a pro-

cessing system stream 

does not offer storage; it 

is designed to read data 

from various streaming 

systems and various 

storage. 

ply of a source replayable 

data, the execution layer 

which is responsible of 

scheduling and the 

management of re-

sources, and the treat-

ment layer is responsible 

for data processing and 

stream management. 

Three components main. 

Nimbus, Zookeeper and 

the Super view finder. 

Nimbus is a master who 

distributes the work 

between all available 

workers Zookeeper is 

used for all the coordina-

tion between Nimbus and 

supervisors. 

create and submit topol-

ogies to a planner. The 

planner executes each 

topology act like a task 

composed of several 

containers. One of the 

containers executed the 

topology Master, that is 

responsible topology 

management. 

system distributed Disco 

(DDFS). The DDFS 

provides access to data of 

the application, 

MAP/Reduce is respon-

sible of the task combi-

nations chained and 

scheduling. 

PROCESSING MODEL 

FLINK SAMZA STORM HERON DISCO 

The programs Flink are 

compiled and converted 

to graphic flow data. 

Each edge represents a 

flow of data, and each 

vertex represents a oper-

ator that used a logic 

defined by the applica-

tion for data processing. 

Consists of four abstrac-

tions, topology, spouts, 

bolts, stream. The bolts 

are the units of treatment 

of one application of 

Storm which can perform 

various tasks. 

Consists of four abstrac-

tions, topology, spouts, 

bolts, stream. The bolts 

are the units of treatment 

of one application of 

Storm which can perform 

various tasks. 

Heron is suitable for 

processing engine flow 

developed by Twitter and 

given to Apache. Ac-

cording to Twit- ter, the 

flow rate is 10-14x 

higher than that of Storm 

in all experiences, its 

latency is lower to that of 

Storm. 

MapReduce is the only 

framework of data pro-

cessing for Disco. The 

phases Map and Reduce 

have each their own flow 

concepts data. Thanks to 

task combinations 

chained, Disco supports a 

remarkable variety of 

data flow. 

Table 4. Comparison of different frameworks according to scheduling and fault tolerance. 

SCHEDULING 

FLINK SAMZA STORM HERON DISCO 

There are three strata 

planning strategies in 

Flink for the allocation 

resource: at the same time 

planning, planning pare-

suse from sources plan-

ning and pipeline region. 

All planning strategies 

tion tries at the same time 

to allocate resources 

sources needed in only 

once when the task begins. 

For planning tasks and the re-

source negotiation, Samza relies 

on managers of clusters like 

YARN and mesos. 

Storm has four built-in 

schedulers: Default, 

Insulation, Mul-

titenant, and Re-

sources Aware. Tea 

default Storm sched-

uler is fair scheduler 

that takes into account 

each node when 

scheduling tasks. 

By disregarding 

order component 

nuancing, we 

have ease the 

deployment on a 

infrastructure 

shared running 

different order 

frames such as 

Mesos, YARN or 

a personal envi-

ronment read. 

The scheduler of DISCO 

done part Of the manager 

of resources and is purely 

responsible of scheduling 

of the resources for the 

execution of applica-

tions. The scheduler offer 

two policies scheduling, 

FIFO and Fair. 

FAULT TOLERANCE 

FLINK SAMZA STORM HERON DISCO 

Flink provides a reliable 

execution with guarantees 

of cohesion "exact-

ly-once". It takes regularly 

of snapshots distributed 

from the flow of data and 

states opertors. These 

snapshots serve check-

points coherent, in case of 

failure, the system can go 

back to these checkpoints. 

Samza executed in background a 

service log capture of the changes 

Who checked in THE changes 

incre-mental to a place known to 

the system native files. A failed 

task maybe restarted replaying the 

news paper of the changes. 

When a container restart after a 

failure, it research the last points 

of check and start to accept mes-

sages from the last point of con-

trol. 

Nimbus and the Super 

visors are designed 

like demons rapid, but 

resilient and stateless, 

with all their stored 

data in Zookeeper or 

on local disks, avoid-

ing. Thus all loss 

catastrophic in case of 

failure processes or 

processor. 

Highly tolerant to 

break downs with 

data stored 

Zookeeper or on 

the local disks, 

Avoiding all loss 

catastrophic in 

case of failure 

processes or 

processor. 

Disco is highly fault 

tolerant. The DDFS 

ensures the fault toler-

ance using the replication 

of data. The data blocks 

stocked in the Da-

ta-Nodes are replicated 

and distributed in the 

cluster to ensure fiability 

and high availability. 
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Table 5. Comparison of different frameworks according to speed. 

SPEED 

FLINK SAMZA STORM HERON DISCO 

It handles speeds more 

fast by allowing to itera-

tive processing take 

place on the same node 

rather than having the 

cluster who performs 

them independently. 

The tasks in Samza may 

present a latency of the 

order of a few millisec-

onds when they are run 

with Apache Kafka. The 

approach of memoriza-

tion buffer is different. 

Due to the treat-lie in 

almost in real time. 

Storm processes data 

with very low latency for 

give a result with mini-

mal delay. 

Heron is built with a 

wide range improve-

ments architectural with 

an execution engine fast, 

latency can be as weak as 

possible. 

Due to the treatment in 

batches of one large 

volume of data, Disco 

takes more computation 

time, which means that 

the latency is more im-

portant aunt and that 

Disco is relatively slow. 

 

5. Parallel and Distributed Storage 

Systems 

There are several systems for parallel and distributed file 

storage such as Hadoop Distributed File System (HDFS) 

which is the storage manager in Hadoop. It makes it possible 

to store the different blocks of partitions on the different nodes 

of the distributed architecture. Tachyon which is a 

memory-centric distributed storage system similar to HDFS 

and many other systems like [24-27]. 

5.1. GlusterFS (Gluster File System) 

It Is an open-source distributed high-availability file system 

that can scale from modular way to store several petabytes of 

data with a simple structure (two software elements): server 

and client. This is commercial support provided by redhat 

which is accessible through NFS or FUSE. Scale-out storage 

systems based on GlusterFS are suitable for unstructured data. 

data such as documents, images, audio and video files, and log 

files [20]. 

 
Figure 3. The architecture of a GlusterFS. 

5.2. CEPH 

It is a free distributed storage platform designed for high 

availability, using readable by any type of service, the three 

types of storage are available (object, block and file). CEPH 

uses a hashing algorithm to determine the location of a block 

and allows a CEPH client to talk directly to the ods service in 
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order to access data, CEPH supports “erasure-coding” as well 

as replication to avoid data loss and possible to use with Ha-

doop. It is built of two types of servers: Server Monitor (MON) 

(3 Minimum), and Object Storage Server (OSD) [21]. 

 
Figure 4. The architecture of a CEPH. 

5.3. NFS (Network File System) 

It is a distributed file system protocol originally developed 

by Sun Micro historical network sharing systems under 

Unix.NFS follows the client-server computing model. The 

server implements the file system shared and the storage to 

which the clients connect, the clients implement the interface 

user on the shared file system, mounted in the client's local 

file space [20]. 

 
Figure 5. The architecture of an NFS. 

5.4. BeeGFS 

It is a parallel cluster file system, it combines multiple 

storage servers to provide a highly scalable shared network 

file system with content from interlaced files BeeGFS is an 

Open Source software (and not free for the server part). In 
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such a system, high throughput demands of a large number of 

customers can easily be met, but a single customer can benefit 

from the aggregated performance of all storage servers of the 

system, there are 3 types of servers: Management Server for 

Configuring and Monitoring Services, Metadata Server Ded-

icated to File Metadata, Data Server [22]. 

 
Figure 6. The architecture ofBeeGFS process. 

5.5. MooseFS 

It is a fault-tolerant distributed file system, developed by 

Genius SA, it is based on the use of FUSE, the file system is 

POSIX compatible and does not require adaptation of the 

programs to be able to use it. The system is distributed: the 

files are cut into packets of 64 MB and distributed over the 

machines called "chunk server», or data servers. MooseFS 

consists of three types of servers [20, 23]: 

1) The MasterServer 

2) Met logger Server 

3) The Chunck Server 

 
Figure 7. The architecture of MooseFS Process. 

5.6. IBM GPFS (IBM General Parallel File 

System) 

It is a file system used to distribute and manage data across 

multiple servers, and is implemented in many computing 

environments for high large-scale performance and storage. It 

is described as a file system parallel because GPFS data is 

divided into blocks and spread across multiple disks in an 

array, then read in parallel when accessing the data. This 

allows speeds of higher reading and writing. 

 
Figure 8. The architecture of an IBM GFS. 

5.7. A Comparison of Previous Storage Systems 

Table 6. Comparison of different distributed storage systems. 

 GlusterFS CEPH NFS BeeGFS MooseFS IBMGFS 

Get to API libglusterfs, Librados NFS POSIX POSIX, FUSE POSIX, NFS, 
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 GlusterFS CEPH NFS BeeGFS MooseFS IBMGFS 

NFS, Swift 

FUSE 

(C,C++, 

Swift, FUSE) 

HDFS, FUSE, 

SMB 

open source YES YES YES 
Customer=YES 

Server=EULA 
YES NO 

MDSnecessary NO NO NO Metadata+ Manage Metadata+ Manage NO 

Tools of move- lies of data  YES YES NO YES NO YES 

Easy to put in place  + + + + + + + + 

Consistency of data + + - – + + + + + + 

Safety and availability of data + + + – + + + + + + 

Scalability + + + – + + + + 

performance + + + + + + + + + 

Replication of data YES YES NO YES YES YES 

Cost + + + - + - + + 

 

6. Future in Big Data Analytics 

Future trends in big data analytics focus on the integration 

of parallel processing techniques with advanced distributed 

storage solutions. Key trends include: 

1) Increased Scalability: As data volumes grow, frame-

works will evolve to better handle large-scale data 

processing by effectively distributing workloads across 

resources. 

2) Enhanced Performance: Innovations in algorithms and 

hardware will drive improvements in processing speeds 

and efficiency, making real-time analytics more feasible. 

3) Cloud Integration: The shift towards cloud-based ser-

vices will facilitate more flexible and cost-effective 

storage and processing options, catering to diverse data 

needs. 

4) Deep learning Integration: There will be a rise in 

frameworks that support deep learning workloads, al-

lowing for better data-driven insights and predictive 

analytics. 

5) Hybrid Architectures: The combination of on-premises 

and cloud resources in hybrid architectures will gain 

traction, allowing organizations to optimize their data 

processing strategies. 

6) Improved Data Governance: As data privacy concerns 

increase, frameworks will incorporate more robust data 

governance and security measures to protect sensitive 

information. 

7) Interoperability: There will be a push for greater interop-

erability among different frameworks and tools, enabling 

more seamless data processing across varied systems. 

Overall, the future landscape of big data analytics will be char-

acterized by more efficient, flexible, and intelligent processing 

methods, driven by ongoing technological advancements. 

7. Conclusion 

Big Data is a technology that provides significant ad-

vantages to businesses, including enhancements in business 

processes, improved decision-making, and increased opera-

tional efficiency. The advantages of Big Data are numerous, 

enabling companies to boost their performance and make 

better-informed decisions. Although Big Data can be intricate 

and demanding in terms of resources, it can also be very lu-

crative and contribute to long-term business success. We’ve 

observed that parallel processing of large datasets is an ef-

fective and cost-efficient method to accelerate the handling of 

substantial volumes of data. This approach facilitates the 

execution of multiple tasks simultaneously, reducing pro-

cessing times. It is especially beneficial for applications that 

require simultaneous data processing. 

Indeed, the benefits of parallel processing are substantial, 

which encompass quicker processing times, more efficient 

utilization of IT resources, and reduced processing costs. 

Nonetheless, parallel data processing can also introduce 

challenges, especially related to synchronization and com-

munication among the various nodes. To maximize the ad-

vantages of parallel data processing, it is crucial for develop-

ers and administrators to grasp the underlying principles and 

techniques associated with this technology. In addition to 

various frameworks and distributed data storage systems, this 

form of storage enables users to store and share data across 

multiple systems or network devices. It provides enhanced 

scalability and improved data availability, with data being 

spread across several systems or connected devices. Distrib-
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uted storage is particularly well-suited for large information 

systems and organizations that require the management of 

significant volumes of data. Furthermore, it offers increased 

flexibility and heightened data security. 

Abbreviations 

ETL Extract Transform Load 

CDC Change Data Capture 

SDI Stream Data Integration 

Pthreads POSIX Threads 

OpenMP Open Multi-Processing 

MPI Message Passing Interface 

CUDA Compute Unified Device Architecture 

GlusterFS Gluster File System 

NFS Network File System 

IBM GPFS IBM General Parallel File System 
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