
International Journal of Data Science and Analysis

2024, Vol. 10, No. 5, pp. 86-99

https://doi.org/10.11648/j.ijdsa.20241005.11

*Corresponding author:

Received: 29 September 2024; Accepted: 14 October 2024; Published: 12 November 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Review Article

A Comparative Study of Parallel Processing, Distributed

Storage Techniques, and Technologies: A Survey on Big

Data Analytics

Saliha Mezzoudj
1, *

, Meriem Khelifa
2

, Yasmina Saadna
3

1
Department of Computer Science, University of Algiers, Algiers, Algeria

2
Department of Computer Science and Information Technologies, University of Kasdi Merbah Ouargla, Ouargla, Algeria

3
Department of Computer Science, University of Batna 2, Batna, Algeria

Abstract

The significance of developing Big Data applications has increased in recent years, with numerous organizations across various

industries relying more on insights derived from vast amounts of data. However, conventional data techniques and platforms

struggle to cope the Big Data, exhibiting sluggish responsiveness and deficiencies in scalability, performance, and accuracy. In

response to the intricate challenges posed by Big Data, considerable efforts have been made, leading to the creation of a range of

distributions and technologies. This article addresses the critical need for efficient processing and storage solutions in the context

of the ever-growing field of big data. It offers a comparative analysis of various parallel processing techniques and distributed

storage frameworks, emphasizing their importance in big data analytics. Our study begins with definitions of key concepts,

clarifying the roles and interconnections of parallel processing and distributed storage. It further evaluates a range of

architectures and technologies, such as MapReduce, CUDA, Storm, Flink, MooseFS, and BeeGFS and others technologies,

discussing their advantages and limitations in managing large-scale datasets. Key performance metrics are also examined,

providing a comprehensive understanding of their effectiveness in big data scenarios.

Keywords

Parallel Processing Frameworks, Distributed Storage Frameworks, MapReduce, CUDA, Storm, Flink, MooseFS, BeeGFS

1. Introduction

Big data is a term that refers to the astronomical amount of

data that is produced and stored daily. This data comes from

different sources, such as networks social media, e-commerce

sites, mobile apps, etc. Businesses and organizations in-

creasingly need this data to develop new products and ser-

vices, improve internal processes and better understand the

behaviors of their client. Big data is characterized by its

volume, velocity, variety, veracity, and value, often referred to

as the "5Vs." Volume refers to the vast amounts of data gen-

erated every second, while velocity indicates the speed at

which this data is processed and analyzed. Variety highlights

the diverse formats and sources of data, including structured,

semi-structured, and unstructured forms. Veracity addresses

the accuracy and reliability of the data, which is crucial for

http://www.sciencepg.com/journal/ijdsa
http://www.sciencepg.com/journal/367/archive/3671005
http://www.sciencepg.com/
https://orcid.org/0009-0002-6230-0220
https://orcid.org/0009-0002-2153-598X

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

87

making informed decisions. Finally, value represents the

insights and benefits that can be extracted from analyzing big

data, enabling organizations to drive innovation, improve

operations, and enhance customer experiences.

Big data has also become a powerful tool for researchers

and analysts. They cause the data to discover new trends and

analyze consumer behaviors. Thanks to big data, it is also

possible to improve predictions and economic models.

Although big data is a powerful force, it is important to note

that it also involves of the risks. For example, the data can be

used for malicious purposes, and companies and organiza-

tions are finding it increasingly difficult to manage and ana-

lyze this amount of data.

Big data is a large amount of data that exceeds processing

capabilities of a conventional computer. This data is usually

stored and analyzed in the goal of discovering trends, patterns

and insights. The benefits of big data are many. Among the

main ones are: A better understanding of customers and their

needs, a better ability to anticipate changes, process and an-

alyze ever-increasing volumes of data, making it easier to

decision-making and process optimization [28].

Indeed, to manage complex situations in big data generally

use:

1) Parallel processing: that is a computing technique that

consists of executing several tasks simultaneously on

computers connected together. This technique is par-

ticularly used in big data to process mass data. With

parallel processing, computers can process data faster

and reduce latency.

2) Distributed data: Distributed data in big data is data that

is distributed over several computers connected together.

These data are processed by specific algorithms. Which

reduce latency. These algorithms harness the power of

calculation of computers connected together to process

data faster.

3) Flexibility: It is the ability to adapt processes and tools

to changes. Rapid and. constant movements. Compa-

nies that succeed in big data are flexible and able to

adapt quickly to changes. They also have the ability to

process and analyze a large amount of data in real time.

4) Scalability: Big data scalability or scaling up is the

ability to process a larger amount of data and to meet an

ever-increasing demand in terms of capacity processing

and analysis. Companies that succeed in big data have

an architecture and scalable processes, allowing them to

process a larger amount of data without compromising

perform.

In this paper, we provide an overview of the latest tech-

nologies created for Big Data. We classify and thoroughly

compare these technologies based not only on their applica-

tions, advantages, limitations, and characteristics, but also

according to different layers, including Data Storage Layer,

Data Processing Layer, Data Querying Layer, Data Access

Layer, and Management Layer. This approach enhances the

understanding of the relationships between different Big Data

technologies and how they operate.

This paper is organized as follows. Section 2 defines Big

Data preprocessing and presents some of its applications.

Section 3 identifies parallel computing and its applications

API. Section 4 presents big data processing frameworks and

compares some main frameworks developed on top of it.

Section 5 presents comparison between Big data parallel and

distributed storage systems. Section 6 presents future in Big

data analytics.

2. Big Data Pre-processing

Big Data pre-processing is an important step in the value

creation process in big data. It consists of transforming raw

data into structured and cleaned data to facilitate analysis and

management. This step is essential because it allows organi-

zations to discover and act on insights from their thee

pre-processing steps for big data are as follows:

2.1. Big Data Cleaning

Refers to identifying and cleaning up inconsistencies. In-

accuracies and inaccuracies in data. This process may involve

identifying and correction of errors, filling of missing values

and standardization of formats of data.

2.2. Big Data Transformation

Big data transformation is a data processing technique that

consists of modifying data from one format to another, or to

transform it into a form that is easier to use or analyze. This

may include converting raw data into a form structured,

merging data from different sources, or creating tables and

graphs from raw data.

2.3. Big Data Reduction

It is a data processing technique that consists of reducing

the volume of data to be processed by deleting unnecessary

data or reducing the size of data. This can reduce the time

required for data processing, reduce storage and transmission

costs, or facilitate analysis and interpretation Data.

2.4. Big Data Integration

It is a technique of integrating and merging data from dif-

ferent sources to create a single database. This integration

makes it possible to have a global and coherent view of the

data, which facilitates their use. For this step, the ETL tool is

generally used.

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

88

Figure 1. ETL process.

2.4.1. ETL Approach [1]

In English ETL is (extract, transform, load), which is an

automated process consisting of three main tasks: extraction,

transformation, loading. This process extracts information

from raw data, then transforms this information in order to be

able to upload it and integrate it into a data warehouse.

Among the benefits of ETL we can mention:

1) Quickly integrate a large amount of data.

2) No additional system installed, so the ETL is

non-informative.

3) The load can be smoothed over the entire system.

4) Simplify and streamline the architecture.

5) Allows to have a coherent and homogeneous database.

6) Optimize performance, by performing data cleansing.

2.4.2. The Phases of the ETL Process

A. Extracting data

This task makes it possible to extract the most relevant data

from different data sources such as spreadsheets, applications

or database systems data. We have two types of data extraction

[1]. The following table will allow us to explain these two types,

thus to establish a comparison between the two:

Table 1. The difference between the two types of extraction in an ETL process [2].

Complete extraction Incremental extraction

Captures the dataset. Captures only data that has changed since the last extraction.

Typically used in initial

data loading or the

refresh case full of

data.

There are two use cases possible:

1-Real-time extraction: the extraction is do neat the time of transaction in the of transaction in the source system.

2-Deferred extraction: the extraction of all loadings in a given period.

B. Data transformation

This task aims to clean the data to improve their quality and

establish the consistency. The different data processing op-

tions possible in this phase [1]:

1) Filtering, cleaning, deduplication, deletion, decoding,

conversion.

2) Perform calculations, translations or summaries based

on the raw data.

3) Data validation and authentication.

4) Formatting data in tables or joined tables.

C. Loading data

The last phase consists of sending the transformed data

from the transformation zone to the target data warehouse.

There are three types of loading:

1) Initial loading: the out of the data warehouse activation.

2) Incremental loading: is done once the initial loading is

complete, to overwrite and delete data in the data

warehouse.

3) Full load: this type of loading requires complete un-

loading data loaded off initial load [2].

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

89

2.4.3. Other Approaches

There are other approaches that are also used to facilitate

the integration of data. We will present some of these ap-

proaches: [2]

(i). CDC (Change Data Capture)

Identifies and captures only source data that has changed

and moves it to the target system. CDC can be used inde-

pendently for data movement transformed into a data lake or

other repository in real time, as it can also be used during the

extraction step of the ETL for the reduction of the necessary

resources.

(ii). SDI (Stream Data Integration)

SDI continuously integrates data as it becomes available.

sources instead of integrating the extracted data instantly at a

given time. It activates a data store to power analytics, ma-

chine learning, and applications in real time to improve the

customer experience.

(iii). Data virtualization

This approach consists of using a software abstraction layer

to create a view: unified, integrated and fully usable data,

without copying, transforming or loading physically the

source data on a target system.

Data virtualization enables the creation of virtual data

warehouses, data lakes and data stores from the same source

data for thedata storage without the expense and complexity

of creating and managing separate platforms for each.

3. Parallel Computing

Parallel computing is the process of implementing electronic

architectures. digital electronics allowing information to be

processed simultaneously. Perform these parallel tasks is pos-

sible thanks to the use of several processors or cores si- simul-

taneously. Unlike the time-sharing technique used by a system

operating system (OS) to run multiple programs on a single

processor, or when a operating system chooses to run multiple

programs on a single processor without interaction between

them. Parallelism relies on specialized algorithms and some-

times specific language sand platforms dedicated to parallel

computing. These techniques have aim of carrying out the

greatest number of operations in the shortest possible time.

3.1. The goal of Performing Calculations in

Parallel

Parallel architectures have become the dominant paradigm

for all computers since the end of the 1950s, The main reasons

for parallel computing:

1) Saves execution time and consequently decreases the

loss of money linked to the expenses (electricity for the

operation and cooling of the machines).

2) Allows you to deal with larger and more complex

problems using the high performance computing sys-

tems (intensive computing) for industrial applications

trills or simulation of scientific phenomena (eliminates

the limits and reduces the cost physical experience).

3.2. Automatic Parallelization

Represents the compilation procedure of a program that

transforms the source code written for sequential machines to

parallelized executables for multi-computers. The purpose of

the latter is to simplify and reduce development time parallel

programs because they are much more complicated to write

than programs sequential. For this, from different platforms

API (Application Programming Interface for parallel compu-

ting have been implemented, in particular:

3.2.1. POSIX Threads (Pthreads)

POSIX threads, commonly known as pthreads, are a

threading API based on standards for C/C++ [3], it allows one

program to control multiple workflows different overlapping in

time, each workflow is called a thread hence the pthreads name

was inspired. This API defines a standard interface that libraries

can are going to use to create and manage threads, while al-

lowing the operating system manage the low-level details

needed to create and maintain threads [4].

POSIX threads are primarily useful for multi-processor or

multi-processor systems, where threads can be scheduled to

run on separate processors and run in parallel with other

threads. They can also be used to create fine parallelism

within a single processor [5]. Pthreads defines a set of types,

functions and constants of the programming language. C

grammar provided by the “pthread.h” library. Threads have

running status independent and an independent address space;

they are not required to share the same process or memory

space than their creator. There are about 100 thread proce-

dures, all prefixed with "pthread" and they can be classified

into four groups:

1) Thread management to create, join threads, etc.

2) Mutex that represent a lock (mechanism that imposes

access limits to A resource)

3) Conditional variables or monitor, a synchronization

construct that per- sets threads to have both mutual ex-

clusion and the ability to wait (bloquer) that a certain

condition becomes false.

4) Synchronization between threads using locks and

read-barriers writing.

5) Twist locks which make a thread simply wait in a loop

("spin") while repeatedly checking if the lock is avail-

able [6].

3.2.2. Open Multi-Processing (OpenMP)

Represents a programming interface for parallel computing

on an architecture with shared memory [7]. This API supports

cross-platform parallel programming with shared memory in

C/C++ and Fortran. Supported by many platforms including

GNU/Linux, OS X and Windows, it defines a portable and

scalable model with a simple and flexible interface to develop

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

90

parallel applications on platforms ranging from desktop

computers to supercomputers [7].

OpenMP is an implementation of multithreading, a paral-

lelization method in which a main thread (a series of sequen-

tial instructions) is divided into sub-threads, and the system

distributes the tasks between them to then be executed sim-

ultaneously and the environment runtime assigns them to

different processors. In other words, just add “#pragma omp”

directives in the code to indicate the parts to be parallelized

(and com- how to do it), then the compiler and the operating

system take care of the rest [7].

Sections of code that run in parallel are marked accordingly

with compiler directives that form threads before section

execution. Each thread is assigned an ID. After executing the

parallelized code, the thread reconnects to the main thread and

continues until the end of the program. OpenMP functions

arecontained in a C/C++ header file called "omp.h" [7], Basic

elements can be classified into six groups:

1) Thread creation: The omp parallel pragma is used to

spawn the sub threads necessary to perform the work

included in the parallel construction. the thread origin

will be designated as the master thread with thread ID 0.

2) Work-sharing constructs: Is used to specify how to as-

sign an independent on one or all threads (omp for or

omp do to divide the loop iterations, sections for as-

signment of consecutive but independent code blocks

ants to sub-threads, single and master specifying a block

of code that is executed by a single thread and a block of

code will be executed by the master thread only respec-

tively) [8].

3) Variant directives: are one of the main features intro-

duced in the. OpenMP 5.0 specification to help pro-

grammers improve the portability of forms. They allow

the adaptation of OpenMP pragmas and user code to

compile time [7].

4) Clauses: to keep the integrity of the parallelism of the

code, most of the variables of the code OpenMP are

visible by default to all threads. However, private vari-

ables are sometimes necessary to avoid race conditions

and values must be transmitted between the sequential

part and the parallel region (Attribute clauses of data

sharing, synchronization clauses, scheduling clauses, IF

control, Initialization, Data Copy...)

5) User-level: runtime which represents routines used to

modify/check the number of threads, detect if the exe-

cution context is in a parallel region, how many number

of processors in the current system, set/disable locks,

security functions synchronization, etc.

6) Environment variables: which represents method to

modify features runtime of OpenMP applications and

used to control the scheduling of loop iterations, default

thread count, etc. [8].

3.2.3. Message Passing Interface (MPI)

Represents an API born from a standardization effort, de-

fining the standardized and portable messaging mission de-

signed to run on architectures parallel computing. The MPI

standard is not a library, but specifies what such a library

should provide as functionality such as syntax and semantics of

routines, this makes it very useful to a wide range of users

writing portable messaging programs in C, C++ and Fortran,

and any language able to interface with such libraries including

C#, Java or Python [9]. There are several open-source MPI

implementations that have helped make it a standard for par-

allel programming by message passing [10]. MPI's objectives

are high performance, scalability a normed in parallel on sev-

eral computers. MapReduce is often used for bulk data pro-

cessing applications, such as the processing of logs, click data

analysis and pattern recognition.

MapReduce was popularized by Google and is now imple-

mented in several frameworks open source, such as Apache

Hadoop and Apache Spark. Additionally, libraries MapReduce

are available for different programming portability.

The MPI is process-oriented, the problem to be addressed is

broken down into several processes, each of these processes is

generally associated with a calculation node. An MPI process

can contain a single thread (common case) or several threads.

MPI processes are identified by their ranks, if n-number of

processes are running, the rank of the processes goes from 0 to

n-1. MPI provides several features. The following concepts

provide a context for all of these capabilities and help the pro-

grammer decide which feature use in its application programs.

The four basic elements can be classified as following:

Introduced with the first MPI-1 release:

1) Communicator which is responsible for creating objects

connect groups of processes in the MPI session. Each

communicator gives each contained process a inde-

pendent identifier and organizes its contained processes

into an ordered topology.

2) Point-to-point basics represented by a number of im-

portant MPI functions aunts involve communication

between two specific processes (MPI_Send and

MPI_Recv...) Point-to-point operations, as they are

called, are particular- useful in structured or irregular

communications.

3) collective basics which represents collective functions

involve communication between all the processes of a

process group (MPI_Bcast, MPI_Reduce and

MPI_alltoall...). Other operations perform more so-

phisticated tasks, such as that rearranging n data items.

4) Derived data types predefined constants (MPI_INT,

MPI_CHAR, MPI_DOUBLE) so that MPI can support

heterogeneous environments where types data can be

represented differently on different nodes. [10]

3.2.4. Compute Unified Device Architecture (CUDA)

Represents an API created by Nvidia that allows software to

use certain types graphics processing units (GPUs) for gen-

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

91

eral-purpose processing, this platform parallel computing form is

a software layer that provides direct access to the GPU, this is an

approach called General Purpose Computing on GPU (GPGPU)

[11]. This eliminates the bottlenecks caused by software running

on the host CPU, resulting in a dramatic increase in application

performance. CUDA allows programs to be compiled into device

code that can run directly on GPUs [12].

CUDA is designed to work with programming language

such as C, C++and Fortran, Third-party wrappers are also

available for Python, Java, R, MATLAB. This accessibility

allows specialists in parallel programming to more easily use

GPU resources, unlike earlier APIs like Direct3D and

OpenGL, that required advanced graphics programming skills.

Powered GPUs by CUDA also support programming

frameworks such as OpenMP, OpenACC and OpenCL and

HIP by compiling this code in CUDA [12].

Graphics Processing Units (GPUs) are highly parallel allow-

ing efficient manipulation of large blocks of data. This design has

makes them a more efficient tool than general-purpose (CPUs)

for algorithms in situations where the processing of large blocks

of data is carried out in parallel (learning automation, crypto-

graphic hash functions, molecular dynamics simulations, physics

engines...). CUDA provides both a low-level API (CUDA Driver

API, non-single source) and higher level API (CUDA Runtime

API, single source) and handles a collection of libraries, tools,

and technologies that deliver performance high in multiple ap-

plication areas ranging from artificial intelligence to computing

high performance [11].

CUDA has several particularities compared to parallel

programming, in particularly are:

1) explicit prioritization of memory areas (private, local,

global) allows so much to finely organize the transfers

between them.

2) grouping threads into grids of grids (local 1D, 2D or 3D

grids threads that can quickly share local memory)

Local grids are ordered in a global grid allowing access

to the global memory.

3.2.5. MapReduce

Represents a distributed programming API for processing

massive data in parallel on clusters of servers. It was intro-

duced by Google in 2004 and is become popular for data

processing on large amounts of data. The tasks are distributed

on the different nodes of the cluster for efficient parallel ex-

ecution. MapReduce is often used in conjunction with the

Hadoop Distributed File System to process data in parallel on

large server clusters [13].

MapReduce is used to process large amounts of data across

many parallel computers. This allows complex tasks to be

broken down into simple sub-tasks which can be perf lan-

guages, such as Java, python, Ruby, and C++. It is a powerful

tool for data processing applications in mass and is widely

used in industry [14]. The MapReduce model consists of two

main steps:

1) The "Map" step which takes as input a list of key-value

pairs and returns a list intermediate key-value pairs. It

filters and distributes the work on different nodes of the

cluster or map, using a function sometimes called a

mapper.

2) The "Reduce" step which takes as input the list of in-

termediate key-value pairs and returns a list of final

key-value pairs. It organizes and reduces the results of

each node into a consistent response to a query, using a

function called reducer.

3.3. Comparative Table Between APIs

To better understand the differences between the APIs, we

present the following table:

Table 2. Comparison between APIs.

POSIX OpenMP MPI CUDA MapReduce

USE

Programming systems
Parallel treatment on a

single processor

Treatment parallel on sev-

eral processor

Treatment by- runs on

GPU

Distributed of

treatment on data

LANGUAGE

Fortran, C, C++ Fortran, C, C++ Fortran, C, C++ Fortran, C, C++ Java,Python,C++

PLATFORM

Executive hardware Processor Cluster GPUs Hadoop

ABSTRACTION

- - - + + +

COMMUNICATION

Shared memorygey Shared memory Network Shared memory Network

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

92

Figure 2. Big data frameworks.

4. Big Data Processing Framework’s

The rapid growth of digital data generated by various

sources makes it inefficient the use of traditional methods of

storage, processing and analysis. These limitations have led to

the development of new technologies to process and store

very large data sets. As a result, several implementation

frameworks have emerged to big data processing. We will

focus in this research on the comparison of the most important

and most frequently used frameworks in the free software

landscape [25, 27].

4.1. STORM

Apache Storm is a distributed processing framework for

streaming data in time real. Storm was originally developed

by Nathan Martz of Back Type, acquired by Twitter in 2011

and was incorporated into Apache projects later in 2014.

Apache Storm is designed to process and analyze large

amounts of unlimited data streams that can come from various

sources and post real-time updates to the user interface or

other locations without storing any actual data. Storm is

highly scalable in nature and offers low latency with an

easy-to-use interface through which developers can program

in virtually any programming language [15].

4.2. DISCO

Disco open-source framework was developed in 2008 at

Nokia research center in order to meet the real challenges of

handling massive amounts of data and the framework has

since been actively developed by Nokia. Disco is the latest

addition to the list growing use of Big Data tools, which al-

lows the parallel processing of large amounts of data and

using Python makes it robust and easy to use [16].

4.3. HERON

Apache Heron is a distributed stream processing frame-

work developed by Twitter. According to the creators of

Twitter, the scale and diversity of Twitter data has increased,

and Heron is a real-time analytics platform for processing

streaming and scalability. It was presented at SIGMOD.

Heron is compatible with the Apache Storm API [17].

4.4. SAMZA

Developed internally at LinkedIn in 2013 and later donated

to Apache Software Foundation. Samza is now adopted by

several large companies it is based on a unified design for

stateful processing of batch data and data streams in real time

at high volume. Samza is designed to support high throughput

for streams data while providing fast fail over and high relia-

bility. For at-To tint these design goals, Samza uses some key

abstractions, such as partitioned streams, change log capture,

and local state management [18].

4.5. FLINK

Apache Flink is a distributed processing framework for

processing of unlimited data streams. Flink was started in

2009 at the Technical University of Berlin under the name

Stratosphere. Flink is known to process data a hundred times

faster than MapReduce. Thanks to a very flexible windowing

mechanism, Flink programs can calculate early and approx-

imate results, as well as delayed and precise results of early

and approximate results, as well as late and precise results

through the same process of combining different systems for

both use cases [19].

4.6. Comparison between Big Data Processing Frameworks’s

Table 3. Comparison of different frameworks according to architecture and processing model.

ARCHITECTURE

FLINK SAMZA STORM HERON DISCO

A four-layer architecture.

The core is a motor data

flow distributed who

Three-layer architecture.

A streaming layer that is

responsible for the sup-

Architecture-based on

master/slave, it allows

only one node master.

The overall architecture

of Heron based on usage

of API Storm used to

Architecture who is

composed of two ele-

ments main: the file

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

93

receives the programs of

the users. Flink possesses

two APIs main: API data

set and the Stream API

data. Flink is a pro-

cessing system stream

does not offer storage; it

is designed to read data

from various streaming

systems and various

storage.

ply of a source replayable

data, the execution layer

which is responsible of

scheduling and the

management of re-

sources, and the treat-

ment layer is responsible

for data processing and

stream management.

Three components main.

Nimbus, Zookeeper and

the Super view finder.

Nimbus is a master who

distributes the work

between all available

workers Zookeeper is

used for all the coordina-

tion between Nimbus and

supervisors.

create and submit topol-

ogies to a planner. The

planner executes each

topology act like a task

composed of several

containers. One of the

containers executed the

topology Master, that is

responsible topology

management.

system distributed Disco

(DDFS). The DDFS

provides access to data of

the application,

MAP/Reduce is respon-

sible of the task combi-

nations chained and

scheduling.

PROCESSING MODEL

FLINK SAMZA STORM HERON DISCO

The programs Flink are

compiled and converted

to graphic flow data.

Each edge represents a

flow of data, and each

vertex represents a oper-

ator that used a logic

defined by the applica-

tion for data processing.

Consists of four abstrac-

tions, topology, spouts,

bolts, stream. The bolts

are the units of treatment

of one application of

Storm which can perform

various tasks.

Consists of four abstrac-

tions, topology, spouts,

bolts, stream. The bolts

are the units of treatment

of one application of

Storm which can perform

various tasks.

Heron is suitable for

processing engine flow

developed by Twitter and

given to Apache. Ac-

cording to Twit- ter, the

flow rate is 10-14x

higher than that of Storm

in all experiences, its

latency is lower to that of

Storm.

MapReduce is the only

framework of data pro-

cessing for Disco. The

phases Map and Reduce

have each their own flow

concepts data. Thanks to

task combinations

chained, Disco supports a

remarkable variety of

data flow.

Table 4. Comparison of different frameworks according to scheduling and fault tolerance.

SCHEDULING

FLINK SAMZA STORM HERON DISCO

There are three strata

planning strategies in

Flink for the allocation

resource: at the same time

planning, planning pare-

suse from sources plan-

ning and pipeline region.

All planning strategies

tion tries at the same time

to allocate resources

sources needed in only

once when the task begins.

For planning tasks and the re-

source negotiation, Samza relies

on managers of clusters like

YARN and mesos.

Storm has four built-in

schedulers: Default,

Insulation, Mul-

titenant, and Re-

sources Aware. Tea

default Storm sched-

uler is fair scheduler

that takes into account

each node when

scheduling tasks.

By disregarding

order component

nuancing, we

have ease the

deployment on a

infrastructure

shared running

different order

frames such as

Mesos, YARN or

a personal envi-

ronment read.

The scheduler of DISCO

done part Of the manager

of resources and is purely

responsible of scheduling

of the resources for the

execution of applica-

tions. The scheduler offer

two policies scheduling,

FIFO and Fair.

FAULT TOLERANCE

FLINK SAMZA STORM HERON DISCO

Flink provides a reliable

execution with guarantees

of cohesion "exact-

ly-once". It takes regularly

of snapshots distributed

from the flow of data and

states opertors. These

snapshots serve check-

points coherent, in case of

failure, the system can go

back to these checkpoints.

Samza executed in background a

service log capture of the changes

Who checked in THE changes

incre-mental to a place known to

the system native files. A failed

task maybe restarted replaying the

news paper of the changes.

When a container restart after a

failure, it research the last points

of check and start to accept mes-

sages from the last point of con-

trol.

Nimbus and the Super

visors are designed

like demons rapid, but

resilient and stateless,

with all their stored

data in Zookeeper or

on local disks, avoid-

ing. Thus all loss

catastrophic in case of

failure processes or

processor.

Highly tolerant to

break downs with

data stored

Zookeeper or on

the local disks,

Avoiding all loss

catastrophic in

case of failure

processes or

processor.

Disco is highly fault

tolerant. The DDFS

ensures the fault toler-

ance using the replication

of data. The data blocks

stocked in the Da-

ta-Nodes are replicated

and distributed in the

cluster to ensure fiability

and high availability.

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

94

Table 5. Comparison of different frameworks according to speed.

SPEED

FLINK SAMZA STORM HERON DISCO

It handles speeds more

fast by allowing to itera-

tive processing take

place on the same node

rather than having the

cluster who performs

them independently.

The tasks in Samza may

present a latency of the

order of a few millisec-

onds when they are run

with Apache Kafka. The

approach of memoriza-

tion buffer is different.

Due to the treat-lie in

almost in real time.

Storm processes data

with very low latency for

give a result with mini-

mal delay.

Heron is built with a

wide range improve-

ments architectural with

an execution engine fast,

latency can be as weak as

possible.

Due to the treatment in

batches of one large

volume of data, Disco

takes more computation

time, which means that

the latency is more im-

portant aunt and that

Disco is relatively slow.

5. Parallel and Distributed Storage

Systems

There are several systems for parallel and distributed file

storage such as Hadoop Distributed File System (HDFS)

which is the storage manager in Hadoop. It makes it possible

to store the different blocks of partitions on the different nodes

of the distributed architecture. Tachyon which is a

memory-centric distributed storage system similar to HDFS

and many other systems like [24-27].

5.1. GlusterFS (Gluster File System)

It Is an open-source distributed high-availability file system

that can scale from modular way to store several petabytes of

data with a simple structure (two software elements): server

and client. This is commercial support provided by redhat

which is accessible through NFS or FUSE. Scale-out storage

systems based on GlusterFS are suitable for unstructured data.

data such as documents, images, audio and video files, and log

files [20].

Figure 3. The architecture of a GlusterFS.

5.2. CEPH

It is a free distributed storage platform designed for high

availability, using readable by any type of service, the three

types of storage are available (object, block and file). CEPH

uses a hashing algorithm to determine the location of a block

and allows a CEPH client to talk directly to the ods service in

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

95

order to access data, CEPH supports “erasure-coding” as well

as replication to avoid data loss and possible to use with Ha-

doop. It is built of two types of servers: Server Monitor (MON)

(3 Minimum), and Object Storage Server (OSD) [21].

Figure 4. The architecture of a CEPH.

5.3. NFS (Network File System)

It is a distributed file system protocol originally developed

by Sun Micro historical network sharing systems under

Unix.NFS follows the client-server computing model. The

server implements the file system shared and the storage to

which the clients connect, the clients implement the interface

user on the shared file system, mounted in the client's local

file space [20].

Figure 5. The architecture of an NFS.

5.4. BeeGFS

It is a parallel cluster file system, it combines multiple

storage servers to provide a highly scalable shared network

file system with content from interlaced files BeeGFS is an

Open Source software (and not free for the server part). In

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

96

such a system, high throughput demands of a large number of

customers can easily be met, but a single customer can benefit

from the aggregated performance of all storage servers of the

system, there are 3 types of servers: Management Server for

Configuring and Monitoring Services, Metadata Server Ded-

icated to File Metadata, Data Server [22].

Figure 6. The architecture ofBeeGFS process.

5.5. MooseFS

It is a fault-tolerant distributed file system, developed by

Genius SA, it is based on the use of FUSE, the file system is

POSIX compatible and does not require adaptation of the

programs to be able to use it. The system is distributed: the

files are cut into packets of 64 MB and distributed over the

machines called "chunk server», or data servers. MooseFS

consists of three types of servers [20, 23]:

1) The MasterServer

2) Met logger Server

3) The Chunck Server

Figure 7. The architecture of MooseFS Process.

5.6. IBM GPFS (IBM General Parallel File

System)

It is a file system used to distribute and manage data across

multiple servers, and is implemented in many computing

environments for high large-scale performance and storage. It

is described as a file system parallel because GPFS data is

divided into blocks and spread across multiple disks in an

array, then read in parallel when accessing the data. This

allows speeds of higher reading and writing.

Figure 8. The architecture of an IBM GFS.

5.7. A Comparison of Previous Storage Systems

Table 6. Comparison of different distributed storage systems.

 GlusterFS CEPH NFS BeeGFS MooseFS IBMGFS

Get to API libglusterfs, Librados NFS POSIX POSIX, FUSE POSIX, NFS,

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

97

 GlusterFS CEPH NFS BeeGFS MooseFS IBMGFS

NFS, Swift

FUSE

(C,C++,

Swift, FUSE)

HDFS, FUSE,

SMB

open source YES YES YES
Customer=YES

Server=EULA
YES NO

MDSnecessary NO NO NO Metadata+ Manage Metadata+ Manage NO

Tools of move- lies of data YES YES NO YES NO YES

Easy to put in place + + + + + + + +

Consistency of data + + - – + + + + + +

Safety and availability of data + + + – + + + + + +

Scalability + + + – + + + +

performance + + + + + + + + +

Replication of data YES YES NO YES YES YES

Cost + + + - + - + +

6. Future in Big Data Analytics

Future trends in big data analytics focus on the integration

of parallel processing techniques with advanced distributed

storage solutions. Key trends include:

1) Increased Scalability: As data volumes grow, frame-

works will evolve to better handle large-scale data

processing by effectively distributing workloads across

resources.

2) Enhanced Performance: Innovations in algorithms and

hardware will drive improvements in processing speeds

and efficiency, making real-time analytics more feasible.

3) Cloud Integration: The shift towards cloud-based ser-

vices will facilitate more flexible and cost-effective

storage and processing options, catering to diverse data

needs.

4) Deep learning Integration: There will be a rise in

frameworks that support deep learning workloads, al-

lowing for better data-driven insights and predictive

analytics.

5) Hybrid Architectures: The combination of on-premises

and cloud resources in hybrid architectures will gain

traction, allowing organizations to optimize their data

processing strategies.

6) Improved Data Governance: As data privacy concerns

increase, frameworks will incorporate more robust data

governance and security measures to protect sensitive

information.

7) Interoperability: There will be a push for greater interop-

erability among different frameworks and tools, enabling

more seamless data processing across varied systems.

Overall, the future landscape of big data analytics will be char-

acterized by more efficient, flexible, and intelligent processing

methods, driven by ongoing technological advancements.

7. Conclusion

Big Data is a technology that provides significant ad-

vantages to businesses, including enhancements in business

processes, improved decision-making, and increased opera-

tional efficiency. The advantages of Big Data are numerous,

enabling companies to boost their performance and make

better-informed decisions. Although Big Data can be intricate

and demanding in terms of resources, it can also be very lu-

crative and contribute to long-term business success. We’ve

observed that parallel processing of large datasets is an ef-

fective and cost-efficient method to accelerate the handling of

substantial volumes of data. This approach facilitates the

execution of multiple tasks simultaneously, reducing pro-

cessing times. It is especially beneficial for applications that

require simultaneous data processing.

Indeed, the benefits of parallel processing are substantial,

which encompass quicker processing times, more efficient

utilization of IT resources, and reduced processing costs.

Nonetheless, parallel data processing can also introduce

challenges, especially related to synchronization and com-

munication among the various nodes. To maximize the ad-

vantages of parallel data processing, it is crucial for develop-

ers and administrators to grasp the underlying principles and

techniques associated with this technology. In addition to

various frameworks and distributed data storage systems, this

form of storage enables users to store and share data across

multiple systems or network devices. It provides enhanced

scalability and improved data availability, with data being

spread across several systems or connected devices. Distrib-

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

98

uted storage is particularly well-suited for large information

systems and organizations that require the management of

significant volumes of data. Furthermore, it offers increased

flexibility and heightened data security.

Abbreviations

ETL Extract Transform Load

CDC Change Data Capture

SDI Stream Data Integration

Pthreads POSIX Threads

OpenMP Open Multi-Processing

MPI Message Passing Interface

CUDA Compute Unified Device Architecture

GlusterFS Gluster File System

NFS Network File System

IBM GPFS IBM General Parallel File System

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., & Yahia, S. B.

(2019). Data quality in ETL process: A preliminary study.

Procedia Computer Science, 159, 676-687.

https://doi.org/10.1016/j.procs.2019.09.223

[2] Yang, S., & Kim, J. K. (2020). Statistical data integration in

survey sampling: A review. Japanese Journal of Statistics and

Data Science, 3(2), 625-650.

https://doi.org/10.48550/arXiv.2001.03259

[3] Butenhof, D. R. (1993). Programming with POSIX threads.

Addison-Wesley Professional.

[4] Shen, J. P., & Lipasti, M. H. (2013). Modern processor design:

fundamentals of superscalar processors. Waveland.

[5] Culler, D., Singh, J. P., & Gupta, A. (1999). Parallel computer

architecture: a hardware/software approach. Gulf Professional

Publishing.

[6] Castelló, A., Gual, R. M., Seo, S., Balaji, P., Quintana-Orti, E.

S., & Pena, A. J. (2020). Analysis of threading libraries for

high performance computing. IEEE Transactions on Comput-

ers, 69(9), 1279-1292.

https://doi.org/10.1109/TC.2020.2970706

[7] Silberschatz, A., Galvin, P. B., & Gagne, G. (2012). Operating

system concepts.

[8] OpenMP, A. R. B. (2013, July). OpenMP application program

interface version 4.0. In The OpenMP Forum, Tech. Rep.

[9] Nielsen, F., & Nielsen, F. (2016). Introduction to MPI: the

message passing interface. Introduction to HPC with MPI for

Data Science, 21-62.

https://doi.org/10.1007/978-3-319-21903-5_2

[10] Sur, S., Koop, M. J., & Panda, D. K. (2006, November).

High-performance and scalable MPI over InfiniBand with re-

duced memory usage: an in-depth performance analysis. In

Proceedings of the 2006 ACM/IEEE conference on Super-

computing (pp. 105-es).

https://doi.org/10.1109/SC.2006.34

[11] Tuomanen, B. (2018). Hands-On GPU Programming with

Python and CUDA: Explore high-performance parallel com-

puting with CUDA. Packt Publishing Ltd.

[12] Abi-Chahla, F. (2008). Nvidia’s CUDA: The End of the CPU?.

Tom’s Hardware, (s 15).

[13] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data

processing on large clusters. Communications of the ACM,

51(1), 107-113.

https://doi.org/10.1145/1327452.1327492

[14] Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., &

Khan, S. U. (2016). MapReduce: Review and open challenges.

Scientometrics, 109, 389-422.

https://doi.org/10.1007/s11192-016-1945-y

[15] Laku, L. I. Y., Mohammed, A. F. Y., Fawaz, A. H., & Youn, C.

H. (2019, February). Performance Evaluation of Apache Storm

With Writing Scripts. In 2019 21st International Conference on

Advanced Communication Technology (ICACT) (pp.

728-733). IEEE.

https://doi.org/10.1007/978-3-030-79478-1_24

[16] Mundkur, P., Tuulos, V., & Flatow, J. (2011, September). Disco:

a computing platform for large-scale data analytics. In Pro-

ceedings of the 10th ACM SIGPLAN workshop on Erlang (pp.

84-89). https://doi.org/10.1145/2034654.2034670

[17] Wu, H., & Fu, M. (2021). Heron Streaming: Fundamentals,

Applications, Operations, and Insights. Springer Nature.

[18] Gürcan, F., & Berigel, M. (2018, October). Real-time pro-

cessing of big data streams: Lifecycle, tools, tasks, and chal-

lenges. In 2018 2nd International Symposium on Multidisci-

plinary Studies and Innovative Technologies (ISMSIT) (pp.

1-6). IEEE. https://doi.org/10.1109/ISMSIT.2018.8567061

[19] Friedman, E., & Tzoumas, K. (2016). Introduction to Apache

Flink: stream processing for real time and beyond. “O’Reilly

Media, Inc."

[20] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W., &

Ousterhout, J. K. (1991, September). Measurements of a dis-

tributed file system. In Proceedings of the thirteenth ACM

symposium on Operating systems principles (pp. 198-212).

https://doi.org/10.1145/121133.121164

[21] Jin, L., Zhai, X., Wang, K., Zhang, K., Wu, D., Nazir, A., … &

Liao, W. H. (2024). Big data, machine learning, and digital

twin assisted additive manufacturing: A review. Materials &

Design, 113086. https://doi.org/10.1016/j.matdes.2024.113086

[22] Abramson, D., Jin, C., Luong, J., & Carroll, J. (2020, February).

A BeeGFS-based caching file system for data-intensive paral-

lel computing. In Asian Conference on Supercomputing Fron-

tiers (pp. 3-22). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-48842-0_1

http://www.sciencepg.com/journal/ijdsa

International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa

99

[23] Liu, M. (2024). Key Technology of Distributed Memory File

System Based on High-Performance Computer. International

Journal of Cooperative Information Systems, 33(02), 2350019.

https://doi.org/10.1142/S0218843023500193

[24] Mezzoudj, S., Behloul, A., Seghir, R., & Saadna, Y. (2021). A

parallel content-based image retrieval system using spark and

tachyon frameworks. Journal of King Saud Universi-

ty-Computer and Information Sciences, 33(2), 141-149.

https://doi.org/10.1016/j.jksuci.2019.01.003

[25] Saliha, M., Ali, B., & Rachid, S. (2019). Towards large-scale

face-based race classification on spark framework. Multimedia

Tools and Applications, 78(18), 26729-26746.

https://doi.org/10.1007/s11042-019-7672-7

[26] Mezzoudj, S. (2020). Towards large scale image retrieval

system using parallel frameworks. In Multimedia Information

Retrieval. IntechOpen.

https://doi.org/10.5772/intechopen.94910

[27] Saadna, Y., Behloul, A., & Mezzoudj, S. (2019). Speed limit

sign detection and recognition system using SVM and MNIST

datasets. Neural Computing and Applications, 31(9),

5005-5015. https://doi.org/10.1007/s00521-018-03994-w

[28] Meriem, K., Saliha, M., Amine, F. M., & Khaled, B. M. (2024).

Novel Solutions to the Multidimensional Knapsack Problem

Using CPLEX: New Results on ORX Benchmarks. Journal of

Ubiquitous Computing and Communication Technologies,

6(3), 294-310. https://doi.org/10.1007/11499305_

http://www.sciencepg.com/journal/ijdsa

