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Abstract: The study area defined by the coordinates (90°E — 92°FE,23° N — 25°N) is a significant region in Bangladesh,
where accurate rainfall predictions are crucial for both the local population and policymakers. Understanding rainfall patterns
in this area is vital for effective planning and resource management. Data on atmospheric variables, including temperature,
rainfall, humidity, sea level pressure, and wind speed were collected from the Bangladesh Meteorological Department for various
locations across the study grids for the period of 1964 to 2015. The descriptive statistics revealed that the pattern of the data of
climate parameters is not normal. This dataset serves as the foundation for analyzing climate parameters and forecasting rainfall
levels within the specified regions of Bangladesh. This study evaluates machine learning techniques, focusing on artificial neural
networks (ANN) and classification and regression trees, C5.0, Random Forest, and Gradient Boosting as alternatives to traditional
statistical models for predicting atmospheric phenomena. It reveals that conventional models often rely on assumptions unsuitable
for chaotic systems like the atmosphere. Among the assessed models ANN, CART, C5.0, Random Forest (RF), and Gradient
Boosting Machines (GBM) the ANN demonstrated the highest predictive capabilities for rainfall forecasting in Bangladesh,
achieving superior training accuracy and Kappa values while also being recognized as the best overall performer based on
ranking metrics.
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1. Introduction as a renewable energy source; consistent rainfall ensures
adequate water in reservoirs for electricity generation, thus
supporting the country’s energy supply. Rainfall also sustains
ecosystem health by nourishing forests, wetlands, and wildlife
habitats, maintaining biodiversity and environmental balance.
Various economic activities such as fishing, transportation,
and industry rely on sufficient rainfall. Furthermore,
rainfall affects public health by influencing water quality and
availability, ensuring clean water supplies, and controlling
airborne dust and pollutants. Lastly, rainfall is integral to
climate balance by regulating temperatures and supporting
weather patterns essential for diverse ecological and human
activities. In summary, rainfall is vital for agriculture, water
resources management, flood control, hydropower generation,
ecosystem health, economic activities, public health, and

Rainfall is crucial for Bangladesh, significantly impacting
various life aspects. It plays an essential role in the
agricultural sector, which is a major economic contributor.
Sufficient rainfall promotes crop growth, thereby ensuring
food security for the population. It affects planting, irrigation,
and harvesting schedules, directly influencing crop yields
and farmers’ livelihoods. Additionally, rainfall is vital for
replenishing water sources like rivers, lakes, and groundwater,
which are necessary for drinking water, sanitation, and
domestic and industrial uses. While excessive rainfall can
cause floods, regulated and predictable rainfall is essential for
managing river and reservoir water levels to prevent droughts
and severe flooding. Bangladesh depends on hydropower
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maintaining climate balance in Bangladesh.

Predicting rainfall in Bangladesh is essential for various
reasons. As an agricultural nation, a large segment of the
population relies on farming for their livelihoods. Accurate
rainfall forecasts empower farmers to make informed choices
regarding planting, irrigation, and harvesting, which enhances
crop yields and reduces losses. Due to its low-lying terrain and
extensive river networks, Bangladesh is particularly vulnerable
to flooding. Timely and accurate rainfall predictions
are crucial for effective flood management and mitigation,
enabling authorities to issue warnings and execute evacuation
plans to safeguard lives and property. In addition to flooding,
the country faces other weather-related challenges such as
cyclones and landslides. Rainfall forecasting is a critical
component of early warning systems, enhancing preparedness
and response strategies to lessen the impact of these disasters
on communities. Effective management of water resources
depends on precise rainfall predictions, which facilitate the
planning and operation of reservoirs, dams, and irrigation
systems, ensuring water availability during dry spells while
controlling excess during the rainy season. Heavy rainfall can
result in waterlogging and the spread of waterborne diseases;
reliable rainfall forecasts allow health authorities to prepare for
and mitigate risks associated with potential disease outbreaks.

Accurate rainfall forecasting is vital in urban settings for
the design and maintenance of effective drainage systems to
avert urban flooding, an issue that is increasingly pressing
due to ongoing urbanization in Bangladesh. Weather-related
disruptions can significantly affect the economy. Reliable
rainfall predictions help various sectors, including agriculture,
infrastructure, and public services, to minimize disruptions
and plan more effectively, thereby enhancing economic
stability. As one of the countries most susceptible to climate
change effects, dependable rainfall forecasts are essential for
formulating long-term strategies to adapt to shifting weather
patterns and mitigate adverse impacts. Accurate rainfall
forecasting is crucial for ensuring food security, protecting
lives and property, managing water resources, maintaining
public health, supporting economic stability, and adapting
to climate change in Bangladesh. Rainfall significantly
influences reservoir water levels, with climate change causing
unpredictable variations that can lead to either overflow
or drought. This study utilized several machine learning
models to predict rainfall in Tasik Kenyir, and Terengganu,
employing Bayesian Linear Regression, Boosted Decision
Tree Regression, Decision Forest Regression, and Neural
Network Regression across various scenarios and timeframes.
The results indicated that Boosted Decision Tree Regression
achieved the highest accuracy [1].

Bangladesh, located in South Asia, receives significant
rainfall each year, particularly during the monsoon season.
Accurate rainfall predictions for specific regions are essential
to prevent flooding and agricultural losses in the country.
This study focuses on forecasting rainfall levels in the grid
area defined by (90°FE — 92°FE,23°N — 25°N), which
has been identified as vulnerable to flood risks due to
heavy precipitation. Rainfall is a crucial climatic factor

that profoundly impacts Bangladesh’s economy, society,
and environment. The country is situated in a region
highly prone to climate variability and change, leading to
frequent natural disasters such as floods, landslides, and
droughts. These disasters adversely affect the economy,
agriculture, infrastructure, and human lives. Consequently,
precise and reliable rainfall predictions are vital for effective
decision-making across various sectors, including agriculture,
water resource management, disaster management, and urban
planning.

Several researchers have explored the uncertainties related
to weather systems [2-8]. A variety of studies have
concentrated on data mining, particularly through the use of
classification algorithms [9-12]. One of the most effective
and straightforward methods for extracting information from
large datasets is the decision tree construction technique. This
paper reviews and discusses various decision tree algorithms
applied to different datasets. Numerous studies confirm
the effectiveness of data mining techniques for predictive
purposes. Weather forecasting, including the prediction of
precipitation labels, is a chaotic system influenced by both
temporal and spatial factors. It represents one of the most
critical and challenging tasks undertaken by meteorological
services globally, requiring expertise from multiple specialized
fields. The complexity in meteorology arises from making
decisions amid uncertainty. A review highlighted the use of
artificial neural networks in weather prediction and examined
their advantages [13]. The chaotic characteristics associated
with atmospheric phenomena have also garnered interest
from contemporary scientists [9-12, 14]. Classification and
Regression Trees (CART) utilize the GINI Index as a splitting
criterion within a binary tree structure [15, 16]. CART
can handle both nominal and continuous attributes while
constructing decision trees. It also accommodates missing
values through surrogate tests to achieve fairly accurate results
and employs cross-validation in its pruning method. The
researcher presents a small application of the CART algorithm
for weather prediction in Hong Kong based on factors such as
year, month, average pressure, relative humidity, cloud cover,
precipitation, and average temperature [17]. The authors in
the study applied data mining techniques to analyze weather
data and uncover hidden patterns within large datasets [18].
This approach transformed the collected information into
actionable knowledge for classifying and predicting weather
conditions in Gaza City, providing valuable forecasts that
aided decision-making processes. Kumar compared various
classification methods including Decision Trees, Rule-based
Methods, Neural Networks, Naive Bayes, Bayesian Belief
Networks, and Support Vector Machines [19]. Effective
weather prediction also requires advanced statistical models
that do not rely on assumptions about the underlying system.

Numerous global studies have developed stochastic weather
models, which are statistical models functioning as random
number generators. These models produce outputs that closely
mimic the weather data they are designed to replicate [3].
The artificial neural network (ANN), first introduced in 1964
[20], has become a prominent soft computing technique
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in weather forecasting. Chattopadhyay et al. specifically
applied soft computing methods for rainfall prediction [21].
Kalogirou et. al. utilized ANN for forecasting rainfall by
dividing data into homogeneous sub-populations [22]. Other
soft computing techniques, such as self-organizing maps,
backpropagation neural networks, and fuzzy rule systems,
have also been used for rainfall prediction [23]. Michaelides
et al. also conducted a comparative analysis of ANN and
multiple linear regression for estimating missing rainfall data
in Cyprus [24]. Badr et. al. developed ten distinct statistical
models, incorporating both linear and nonlinear methods, to
forecast seasonal rainfall anomalies in the Sahel region [25].
Generalized linear models (GLMs) and generalized additive
models (GAMs) are regression models based on likelihood
principles. GLMs extend the standard ordinary least squares
(OLS) model [26] by integrating a link function that connects
the mean of the response variable to the predictors [27].
GAMs replace the link function in GLMs with a nonparametric
smoothing function, allowing for nonlinear relationships
between predictors and responses [28]. Given that Sahel
rainfall anomalies follow a normal Gaussian distribution, a
normal identity link function was employed in constructing the
GLM, while a cubic regression spline was used in the GAM.
In addition to GLM, GAM, and MARS (Multivariate Adaptive
Regression Splines), four tree-based modeling techniques
were applied: classification and regression trees [16], Bayesian
additive regression trees (BART) [29], bagged categorical
and regression trees [30], and a random forest (RF) model
[31]. The tree models underwent cost-complexity pruning, and
suitable prior information for error variance was utilized in the
BART model [25].

Meteorological phenomena have historically been
forecasted using statistical models such as simple linear
regression, multiple linear regression, and the Markov Chain
Model. However, these models rely on assumptions that may
not hold in the chaotic nature of the atmosphere. Numerical
models, which are based on nonlinear operator equations,
provide an alternative but are sensitive to initial conditions,
complicating the solutions. In contrast, machine learning
methods do not depend on such assumptions, allowing for
rapid information processing and effective mapping of input
to output variables. This capability makes them particularly
suitable for modeling complex nonlinear relationships. In
this research, the following steps will be undertaken: data
collection and exploratory data analysis, which will include
visualization, outlier detection, and data trimming to refine
and summarize atmospheric data. Various machine learning
models, including the MLP model and CART model, will
be fitted to the data. The fit quality of these models will be
assessed using performance metrics, and the best-performing
model will be selected.

In recent years, machine learning (ML) algorithms have
been utilized to develop precise rainfall prediction models,
surpassing traditional statistical methods. Among the most
commonly used ML models in rainfall prediction studies
are artificial neural networks (ANNs) and decision trees
(DTs). ANNs are nonlinear models that can learn from large

datasets and make accurate predictions based on input data.
The researchers are inspired by the human brain’s structure,
where numerous interconnected neurons work together to
process and analyze information. Conversely, DTs are
a machine learning algorithm that predicts outcomes by
recursively splitting the input data into subsets based on the
characteristics. This study aims to predict rainfall levels
in the grid area defined by (90°E — 92°FE,23° N — 25°N)
in Bangladesh, a region prone to flood risks due to heavy
rainfall during the monsoon season. The primary goal of
this research is to compare the performance of ANN-based
and DT-based classification methods in predicting rainfall
levels in this area. We will train and test both models
using a comprehensive dataset of historical rainfall data
for the region and evaluate their performance using various
metrics. This study seeks to contribute to the development
of accurate and reliable rainfall prediction models that can
aid effective flood and disaster management decision-making
processes. Machine learning techniques have increasingly
been applied in weather prediction and forecasting, with ANNs
and DTs being among the most favored methods. ANNs
are artificial intelligence models that learn from extensive
datasets to make accurate predictions based on input data,
while DTs make predictions by recursively partitioning the
input data into subsets according to their features. This
research is significant as it supports the creation of accurate
and dependable rainfall prediction models that can improve
decision-making processes for flood and disaster management.
Reliable rainfall prediction models can help mitigate or reduce
the impact of natural disasters by providing early warning
systems to stakeholders, including farmers, water managers,
and policymakers. Additionally, these models can facilitate
efficient resource allocation, such as relief supplies, during and
after a disaster. Furthermore, comparing the performance of
ANN-based and DT-based classification methods in predicting
rainfall levels can provide insights into the relative strengths
and weaknesses of both models. This information can be
valuable for researchers and practitioners in the field of
machine learning, guiding future research and the development
of rainfall prediction models. Overall, the findings of this
study may influence the application of machine learning in
climate and weather prediction. Moreover, this research adds
to the growing body of literature on rainfall prediction in
Bangladesh, which is vital for sustainable development and
disaster risk reduction initiatives in the country. The main
objectives of this research are as follows: to analyze the
characteristics of atmospheric data, to apply machine learning
models for predicting precipitation labels in the selected
study areas, to evaluate the quality of fit of the machine
learning models using performance metrics, to assess the
cross-validation results of the models fitted to the study areas,
and to identify the best-fitting model among those used for
the study regions. These studies highlight the potential of
machine learning algorithms for accurate rainfall prediction
while suggesting that the choice of algorithm may depend
on specific regional characteristics and dataset attributes. In
Bangladesh, further research is needed to determine the most
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effective machine learning algorithms for rainfall prediction,
particularly in specific regions or localities.

2. Method and Materials

Atmospheric precipitation forecasting will be analyzed
for environmental phenomena. The previous section
covered earlier research, along with the background and
rationale for this study. In the upcoming section,
the methodologies employed to forecast rainfall levels
will be detailed.  Various machine learning techniques,
including Artificial Neural Networks (ANN), Classification
and Regression Trees (CART), Random Forest (RF), and
Gradient Boosting Machines (GBM), were utilized to make
rainfall predictions. To identify the most effective predictive
model, the performance of these machine learning methods
was assessed using specific evaluation metrics.

2.1. Artificial Neural Network

Artificial Neural Network (ANN) is a fundamental model
that includes at least three distinct layers: an input layer,
multiple hidden layers, and an output layer.

Figure 1. An Artificial Neural Network (ANN) with four nodes at the input layer, four
nodes at the first hidden layer, three nodes at the second hidden layer, and finally two
nodes at the output layer.

It necessitates that neurons in adjacent layers are fully
interconnected, which results in a substantial number of weight
parameters that must be optimized during training. The ANN
architecture applies to various types of learning, including
supervised learning, unsupervised learning, and reinforcement
learning (RL). While this model enjoyed widespread use
in earlier applications, its popularity has diminished due
to its complexity, slow convergence rates, and average
performance. Nevertheless, Multi-Layer Perceptron (MLP)
serves as a foundational model for more sophisticated neural
network architectures. For instance, the advanced adaptive
learning neural network (AdaNet) allows MLPs to adjust their
structures dynamically in response to the training dataset,
making it suitable for optimizing mobile networks that are
continuously evolving. The Multi-layer Perceptron (MLP)

was created to address this limitation. It is a type of neural
network that enables a non-linear relationship between inputs
and outputs. An MLP consists of input and output layers,
along with one or more hidden layers that contain numerous
interconnected neurons. In contrast to the original Perceptron,
where each neuron is required to have a specific activation
function that sets a threshold such as ReLU or sigmoid neurons
in a Multilayer Perceptron can utilize any chosen activation
function.

Backpropagation is the learning algorithm that enables the
Multilayer Perceptron to iteratively update the weights in the
network, to minimize the cost function. For backpropagation
to function correctly, there is a crucial requirement. The
function that combines inputs and weights in a neuron, such
as the weighted sum, and the activation function, like ReLU,
must be differentiable. These functions need to have a bounded
derivative because Gradient Descent is commonly employed as
the optimization algorithm in the Multilayer Perceptron.

2.2. Decision Tree Induction

Decision tree (DT) learning is a type of supervised learning
widely used in data mining, statistics, and machine learning.
Originating in the late 1970s and early 1980s, J. Ross
Quinlan, a prominent figure in machine learning, developed
the decision tree method known as Iterative Dichotomiser
(ID3) [32]. ID3 was succeeded by C4.5 and Classification and
Regression Tree (CART), which further refined the decision
tree approach. According to Han ez al. ID3, C4.5, and CART
utilize an optimization technique involving a non-backtracking
approach, constructing decision tree algorithms in a top-down
recursive divide-and-conquer manner [32]. The methodology
for decision trees is outlined below.

i) The algorithm is invoked by passing three parameters:
D indicates the dataset, the attribute list indicates the
list of attribute descriptions, and the Attribute selection
method selects the best attribute according to class.

ii) The tree begins with a single leaf, /N, which represents
the tuples of training in D.

iii) If all of the tuples in D belong to the same class, leaf N
will be categorized with the class.

iv) Else the algorithm uses the Attribute selection approach
to establish the splitting criterion. The splitting criterion
instructs which characteristic to check at node N
by selecting the “optimal” method for separating or
partitioning the tuples in D into discrete classes.

v) The splitting criterion is designated at node N, and it
acts as a test at the node. For each conclusion of the
splitting criterion, a branch is formed from node N. The
data items in D are split in this manner.

vi) The method recursively applies the same technique to
create a decision tree for the data items for every
resulting partition.

vii) The recursive partitioning process is terminated
immediately if all of the itemsets in subdivision D
are members of the same class, or there are not any
additional features that allow the tuples can be further
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divided up, or there are also no tuples for a certain

branch, hence partition D; is empty.
viii) The eventual results decision tree is restored.

Classification and Regression Tree: In 1984, statisticians

L. Breiman, J. Friedman, R. Olshen, and C. Stone published
the book “Classification and Regression Trees” (CART) [33].
CART represents a specific approach within decision tree
induction. Similar to other decision tree methods, CART
employs the Gini index as a criterion for effectively splitting
a given dataset into partitions. The Gini index quantifies the
impurity of dataset D, whether it’s a partition of data or a set
of training instances.

Gini(D

= 1—sz )

Here, p is the probability of tuple D. Gini(D) gives the
partitioning as,

iy D
Ginia(D) = D] x Gini(D1) + — D x Gini(Dz2) (2)
And finally,

AGini(A) = Gini(D) — Ginia(D) 3)

The splitting property is chosen to maximize impurity
reduction. The procedure continues till the data can no longer
be split any further. CART is capable of handling both data
types, numerical as well as categorical.

C5.0: Computer scientist J. Ross Quinlan introduced
the C5.0 algorithm as an enhancement to his earlier C4.5
algorithm [34]. C5.0 is a well-known decision tree method
that partitions data based on the attribute that provides the
highest information gain. This splitting criterion selects
attributes that maximize the information gain at each step.
Each subset resulting from the initial partition is recursively
divided based on different attributes until further partitioning
is not feasible. Compared to other methods, C5.0 decision
trees operate similarly but are notably easier to interpret and
implement. C5.0 is capable of handling both quantitative
and qualitative criteria efficiently. The anticipated information
required to categorize a tuple in D is expressed as follows:
Info(D) = — 3" | pilogap;. In this context, p; represents
the nonzero probability that a randomly selected tuple from
D is part of class C;, which is estimated using the formula
1Ci,pl

D]
D

. Additionally, I'n fo(D) is referred to as the entropy of

If attribute A takes on discrete values, these values directly
relate to the v outcomes of a test performed on A. Attribute
A can divide D into v distinct partitions. The measure
Infos(D) quantifies the expected information needed to
classify a tuple from D based on the partitioning created by
A. A lower expected information requirement indicates higher
purity among the partitions. Information gain is defined as
the difference between the initial information requirement and

the new requirement. In other words, the information gain
is defined as Gain(A) = Info(D) — Infoa(D), indicating
how much is gained by making a decision based on attribute
A. The attribute A that provides the highest information gain,
Gain(A), is selected as the splitting attribute at node N. The
measure of information gain tends to favor tests with numerous
outcomes, meaning it tends to choose attributes that have a
larger number of values. C4.5, which is an advancement of
ID3, utilizes a modified version of information gain called
the gain ratio to address this bias. It implements a form
of normalization for information gain by utilizing a split
information” value that is defined I'n fo(D) as

D; D;
SplitInfos(D Z ||D|| I <|Dj|>
The Gain ratio (GR) is defined as GR(A) =
Gain(A)
SplitInfoa(D)’

2.3. Random Forest

Random Forest, developed by L. Breiman in 2001, stands
as one of the most influential algorithms in machine learning
[31]. It is a classification method that operates by constructing
a collection of tree-structured classifiers. = The Random
Forest (RF) algorithm selects a random subset of features at
each iteration and constructs decision trees using the CART
procedure [32]. As described by Hastie et al. (2009), the
operation of Random Forest can be summarized as follows
[35]:

i) First, the algorithm creates bootstrapping samples Z of
the total size of the training data N from a training set
with a replacement which is also known as bagging.

ii) Expand the random-forest tree towards the bootstrap
sample by recursively repeating the procedures below
for each tree terminal node until the minimum node size
is attained.

(a) Among the p variables, choose m variables at
random.

(b) Choose the best variable or split-point from the m
options.

(c) Divide each node into two daughter nodes.

iii) Return the tree ensemble.

This approach effectively builds a robust model capable of
handling both qualitative and quantitative data. The resulting
Random Forest model can then be employed for classifying
new datasets or test datasets.

2.4. Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a well-known
boosting method pioneered by Jerome Friedman [36]. GBM is
considered comparable in performance to advanced techniques
like random forests. Unlike random forests, GBM constructs
trees sequentially, where each tree learns from the mistakes
(pseudo residuals) of its predecessors [37]. GBM begins with
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an initial weak learner and iteratively builds trees based on
the residuals of the previous models. Each tree is trained
on a modified version of the original dataset. GBM operates
as a boosting method by sequentially creating trees, aiming
to improve predictive accuracy with each iteration. All the
individual trees collectively form a single predictive model
used for making predictions on new data.

2.5. Assessment of Performance of Algorithm

In this study, these algorithms are assessed using evaluation
metrics including accuracy (ACY), Recall (RCL) or sensitivity,
specificity (SPE), positive predictive value (PPV), negative
predictive value (NPV), Cohen’s Kappa (KPA), F} score (F}),
Detection Rate (DER), balanced accuracy (BAC), and ROC
curve with AUC. The k-fold cross-validation techniques are
applied to determine these performance metrics. For each
classifier, a confusion matrix is generated, which is a 2 x 2 table
used to evaluate the performance of a classification algorithm.
This matrix includes true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). The confusion
matrix facilitates the calculation of these evaluation metrics
[38]. Sensitivity denotes the model’s capacity to accurately
detect true positive cases. It is alternatively known as recall or
the true positive rate. Sensitivity is calculated by dividing the
total number of correctly identified positive instances by the
sum of true positives, which also encompasses false positives.
Mathematically, sensitivity can be computed as follows:

TP
Sensitim’ty = m (4)
Specificity pertains to the model’s ability to correctly
identify true negative cases. It is also known as the true
negative rate. Specificity is calculated by dividing the total
number of correctly identified negative instances by the sum of
true negatives, which also includes false negatives. Specificity
can be defined as:
TN
Specificity = —————— 5
peci ficity FPLTN (5)
The accuracy of any predictive method is fundamental in
evaluating its performance. It measures the ratio of correctly
predicted data points across the entire evaluation. The highest
achievable accuracy is 1.0, and the lowest is 0.0. It is easily
calculated by dividing the number of correctly predicted points
by the total number of projections. Additionally, it can be
stated as,
TP+ TN

A - 6
CUraY = rp T FP+ TN + FN ©

This study gathered the highest levels of precision attained
using various ML algorithms.

Negative predictive value refers to the model’s ability to
predict the presence of negative cases among those predicted
as negative. NPV is a metric used to evaluate the accuracy of
a specific model. Mathematically, NPV can be computed as

follows:

. . TN
Negative Predictive Value = FNELTN @)
Positive predictive value indicates the model’s capability to
predict the presence of positive cases among those predicted
as positive. It is also known as precision. This characteristic
assesses the likelihood of someone being a true positive case
given a positive test result. PPV can be quantified by

TP

Positive Predictive Value = TP+ FP ®)

The F) score evaluates the accuracy of a test by combining

its precision and recall. Precision is also known as positive

predictive value, and recall as sensitivity. The F} score

assesses how accurately a model predicts outcomes across all

data. It is calculated using the harmonic mean of a model’s

precision and recall. The equation below can be used to
compute it:

2 x Precision x Recall
F = 9
! Precision + Recall ©)

The ROC curve, also called the receiver operating
characteristic curve, illustrates how well a classification model
performs across various thresholds. It plots two parameters:
true positive rate and false positive rate. AUC stands for the
area under the ROC curve, which measures the area beneath
the entire ROC curve in two dimensions. AUC compares two
models and evaluates how effectively a single model performs
across different thresholds.

Cohen’s kappa statistic provides a more effective method
for addressing multi-class and misaligned class issues.
It quantifies agreement between expected and actual
classifications within a dataset. The kappa statistic can
evaluate not only a single classifier but also multiple classifiers
together. Its values indicate different levels of agreement: 0
indicates no agreement, 0 to 0.20 suggests slight agreement,
0.21 to 0.40 indicates fair agreement, 0.41 to 0.60 signifies
moderate agreement, 0.61 to 0.80 represents substantial
agreement, and 0.81 to 1 denotes almost perfect agreement
[39]. It can be calculated by

Accuracy — Random Accuracy

Kappa = (10)

1 — Random Accuracy

Random Accuracy is the ration between {(TN+FP)
(TN+FN)+(FN+TP) (FP+TP)} and {(TP+FP+TN+FN)
(TP+FP+TN+FN)}. Predicting Precipitation is crucial for
both humans and the environment, and various models are
employed for this purpose. Each model operates based on
its specific algorithms. Evaluating the performance of these
models helps identify the most effective one for forecasting
Precipitation levels. The next section will delve into the
dataset’s characteristics used in this study. Understanding
the dataset will provide insights into how well these models
can be applied to achieve accurate predictions.
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3. Data Description

The data on the atmospheric variables- temperature,
dew point temperature, maximum temperature, minimum

Observatories of BMD

temperature, humidity, rainfall, sea level pressure, and wind
speed of different locations of the study grid were collected
from the Bangladesh Meteorological Department (BMD) for
the period of 1964 to 2015.

26°N -

25°N 1

L]

-

=
]

Lattitude

23°N -

22°N -

21°N A

88°E 89°E

90°E
Longitude

T

91°E 92°E

Figure 2. The 34 observatories of Bangladesh Meteorological Department (BMD) and the locations considered for this study are black-filled circled.

The whole country is divided into five grids which are
Grid (88°FE — 90°E,25°N — 27°N) or North-West Region:
Dinajpur, Rangpur, Sydpur; Grid (88°F — 90°E,23°N —
25°N) or West-Middle Region:  Jessore, Chudanga,
Faridpur, Ishurdi, Tangail, Rajshahi, Bogra; Grid (90°F —
92°F,23°N — 25°N) or North-East Region: Madaripur,
Chandpur, Comilla, Dhaka, Srimangal, Mymensingh, Sylhet;
Grid (88°E — 90°E,21°N — 23°N) or South-West Region:
Khepupara, Bhola, Potuakhali, Mongla, Satkhira, Barisal,
Khulna; and Grid (91°F — 93°E,21°N — 23°N) or South-

East Region: Teknaf, Cox’s Bazar, Kutubdia, Chittagong,
Hatiya, Sandwip, Rangamati, Sitakunda, Maijdi Court,
Feni. The series for the climate parameters are generated
from the available data from the locations of the grid
(90°FE — 92°FE,23°N — 25°N). The available data
for the different stations are presented in Table 1. The
available locations (Latitude, Longitude) in the grid (90°E —
92°FE,23°N — 25°N) in Bangladesh to collect data are
Chandpur (23.23, 90.7), Comilla (23.43, 91.18), Dhaka (23.78,
90.38), Madaripur (23.17, 90.18), Mymensingh (24.73, 90.42),
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Srimangal (24.3, 91.73), Sylhet (24.9, 91.88), also presented
in Table 1 and in the Figure 2. The table shows the available
data for different locations in Bangladesh within the longitude
range of 90°E to 92°E' and latitude range of 23°N to 25°N
(Table 1). The locations included are Chandpur, Comilla,
Dhaka, Madaripur, Mymensing, Srimangal, and Sylhet. The
table provides the coordinates (latitude and longitude) for
each location, the duration of the data available, and the total
number of months of data. The data durations vary, with the
earliest starting in 1960 and the latest ending in 2015. The
locations with the longest data duration are Comilla, Dhaka,
Mymensing, Srimangal, and Sylhet, each with 672 months
of data, while Madaripur has the shortest duration with 468
months of data (Table 1). The data for this study are derived
from the available location data by calculating the average
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and the summary results are presented in Table 2 and the
correlations between the parameters are illustrated in Table 3.

Table 1. Available data of the different locations of the Grid (90° E — 92° E,23° N —
25° N) in Bangladesh considered in this study.

Location (Latitude, Longitude) Duration No. of Month
Chandpur (23.23, 90.7) 1964-2015 624
Comilla (23.43, 91.18) 1960-2015 672
Dhaka (23.78, 90.38) 1960-2015 672
Madaripur (23.17, 90.18) 1977-2015 468
Mymensing (24.73, 90.42) 1964-2015 672
Srimangal (24.3, 91.73) 1964-2015 672
Sylhet (24.9, 91.88) 1964-2015 672
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Figure 3. Box-and-whisker plot for the atmospheric parameters (a) temperature (b) dew point temperature (c) wind speed (d) humidity (e) sea level pressure and (f) rainfall of the Grid

(90°E — 92°E, 23° N — 25° N) in Bangladesh considered in this study.

The box-and-whisker plots for the atmospheric parameters
are presented in Figure 3. Most of the distribution of the
atmospheric parameters is skewed (Figure 3, Table 2). The
atmospheric variables temperature, dew point temperature,
humidity, and sea level pressure are negatively skewed with
skewness -0.85,-0.52, -0.61, -0.10 respectively (Table 2).

Besides, the parameter wind speed is positively skewed with
skewness 0.81 (Figure 3 and Table 2). The correlations
between atmospheric parameters are highly positive and highly
negative (Table 3). The sea level pressure and temperature are
negatively related with the correlation -0.849 (Table 3).
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Table 2. Summary Statistics for the atmospheric parameters temperature (TEM), dew
point temperature (DPT), wind speed (WIS), humidity (HUM), and sea level pressure
(SLP) of the Grid (90° E — 92° E,23° N — 25° N) in Bangladesh considered in this
study.

Statistics TEM DPT WIS HUM SLP RAN
Mean 25.19 19.89 291 78.94 1008.14  6.40
Median 27.00 21.10 2.79 79.72 1008.30  5.04
Mode 28.40 24.40 2.34 84.51 1014.10  0.00
Std Dev. 3.77 5.03 0.93 6.56 5.18 6.11
Kurtosis -0.74 -1.01 0.81 -0.26 -1.24 -0.63
Skewness -0.85 -0.52 0.83 -0.61 -0.10 0.68
Range 13.60 22.90 5.73 37.03 23.10 23.55
Minimum 16.20 3.20 0.93 53.11 993.90 0.00
Maximum  29.80 26.10 6.66 90.14 1017.00  23.55
Count 672.00 672.00 672.00 672.00 672.00 672.00

Table 3. Correlation between the atmospheric parameters - temperature, dew point
temperature, wind speed, humidity, sea level pressure, and rainfall of the Grid (90° E —
92°E, 23° N — 25° N) in Bangladesh considered in this study.

Name TEM DPT WIS HUM  SLP RAN
TEM 1.000 0.895 0.502 0.484 0.849  0.697
DPT 0.895 1.000 0376 0.728 0.821 0783
WIS 0.502 0376 1.000 0.119 0.563  0.468
HUM 0.484 0.728 0.119 1.000 0617 0728
SLP -0.849 0821  -0563 0617  1.000 -0.832
RAN 0.697 0.783 0.468 0.728 -0.832  1.000
The table presents summary statistics for various

atmospheric parameters collected from the grid area in
Bangladesh defined by the coordinates 90°FE to 92°FE and
23°N to 25° N (Table 2). The parameters include temperature
(TEM), dew point temperature (DPT), wind speed (WIS),
humidity (HUM), sea level pressure (SLP), and rainfall
(RAN). The statistics cover measures such as mean, standard
error, median, mode, standard deviation, sample variance,
kurtosis, skewness, range, minimum, maximum, and count
for each parameter. For instance, the mean temperature is
25.19A°C with a standard deviation of 3.77°C, while the
dew point temperature averages 19.89°C' with a standard
deviation of 5.03°C". The wind speed has a mean of 2.91 Knots
and a maximum recorded speed of 6.66 Knots. Humidity
averages 78.94% with a range of 37.03%, and sea level
pressure averages 1008.14 hPa (Table 2). Each parameter
has a consistent count of 672 data points, indicating a robust
dataset for analysis. The rainfall is categorized as (i) No rain
(dry day) and Trace (NRT), (ii) Light rain (1-10 mm) (LTR),
(iii) moderate rain (11-22 mm), moderately heavy rain (23-
43 mm), heavy rain (44-88 mm), and very heavy rain with
greater than 88 mm (MHR) in this study and the percentage of
these three categories are presented in Figure 4. The different
rainfall categories in percentage are 31 percent, 41 percent, and
28 percent for no rain and trace (NRT), light rain, moderate
rain (LTR), and moderately heavy rain and more (MHR),
respectively (Figure 4). The table displays the correlation
coefficients among various atmospheric parameters, including

temperature (TEM), dew point temperature (DPT), wind speed
(WIS), humidity (HUM), sea level pressure (SLP), and rainfall
(RAN) for the specified grid area in Bangladesh.

Chart for Rainfall Category

30 40
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Figure 4. Schematic plot for the portion of the different rainfall categories of the Grid
(90°E — 92° E,23° N — 25° N) in Bangladesh considered in this study.

Each parameter is correlated with the others, providing
insights into their interrelationships. For instance, there is
a strong positive correlation between temperature and dew
point temperature (0.895), indicating that as the temperature
rises, the dew point also tends to increase (Table 3).
Conversely, there is a significant negative correlation between
sea level pressure and both temperature (-0.849) and dew point
temperature (-0.821), suggesting that higher temperatures
are associated with lower sea level pressures. Wind speed
shows moderate positive correlations with temperature (0.502)
and rainfall (0.468), while humidity has a strong positive
correlation with dew point temperature (0.728) and rainfall
(0.728). The correlation matrix thus highlights the complex
interactions between these atmospheric parameters within the
studied region (Table 3).

4. Results and Discussions

Rainfall prediction plays a vital role in climate modeling
and resource management, especially in areas susceptible to
extreme weather. Accurate precipitation forecasts can greatly
impact agricultural strategies, water resource allocation, and
disaster preparedness. This section evaluates various machine
learning models utilized for predicting rainfall. The study
employs advanced machine learning techniques, including
Classification and Regression Trees (CART), C5.0, Random
Forest (RF), and Gradient Boosting Machine (GBM). By
assessing the performance of these models through metrics
such as accuracy, precision, recall, and Fi-score, the research
aims to determine the most effective method for rainfall
prediction in the specified regions. Additionally, incorporating
relevant atmospheric features such as temperature, humidity,
wind speed, and pressure into the models enhances their
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predictive accuracy. The results of this study are anticipated
to improve rainfall forecasting techniques, thereby facilitating
better decision-making for water management and agricultural
practices in Bangladesh.

4.1. ANN Model

Table 4 provides a detailed confusion matrix for an
Artificial Neural Network (ANN) model designed to predict
precipitation levels in the specified grid area of Bangladesh. It
includes data from both training and test datasets, categorized
into three rainfall levels: Low Rain (LTR), Medium Rain
(MHR), and No Rain (NRT). The confusion matrix indicates
the number of correct and incorrect predictions for each
category, showing that the model correctly classified 181
instances of LTR and 115 instances of MHR during training,

TEM

DPT

WIS

HUM

SLP

while the test data revealed 43 correct classifications for
LTR and 44 for MHR (Table 4). Additionally, the table
presents various performance metrics for the model, including
Recall (RCL), Specificity (SPE), Precision (PRN), Negative
Predictive value (NPV), Detection Rate (DER), Detection
Prevalence (DEP), Balanced Accuracy (BAC) for both training
and test datasets. For instance, the training recall for
LTR is 0.883, indicating a high sensitivity in predicting
low rainfall events, while the test recall is lower at 0.662,
suggesting some challenges in generalization. The results are
presented for various values of &, ranging from 2 to 19 folds,
highlighting metrics such as accuracy, Kappa statistic, F}
score, recall, specificity, precision, negative predictive value
(NPV), detection rate (DER), and balanced accuracy (BAC)
(Table 5).

NRT

LTR

Figure 5. The ANN Model to predict the rainfall level of the Grid (90° E — 92° E, 23° N — 25° N) in Bangladesh.

Overall, the training accuracy is notably high at 88.89%,
while the test accuracy is lower at 74.4%, reflecting the
model’s performance across different datasets (Table 4). The

fitted ANN model with estimated parameters to predict the
rainfall level of the study grid is presented in Figure 5.
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Table 4. The Confusion matrix found for the ANN model for training and test data to predict the rainfall category of the Grid (90° E — 92° E,23° N — 25° N) in Bangladesh

considered in this study.

Confusion Matrix and performance metrics for ANN

Training Test

Category LTR MHR NRT LTR MHR NRT

LTR 181 15 17 43 12 9
Predicted MHR 16 115 0 12 44 0

NRT 8 0 152 10 0 38
RCL 0.883 0.885 0.899 0.662 0.786 0.809
SPE 0.893 0.957 0.976 0.796 0.893 0.917
PRN 0.850 0.878 0.950 0.672 0.786 0.792
NPV 0.918 0.960 0.951 0.789 0.893 0.925
PRE 0.407 0.258 0.335 0.387 0.333 0.280
DER 0.359 0.228 0.302 0.256 0.262 0.226
DEP 0.423 0.260 0.318 0.381 0.333 0.286
BAC 0.888 0.921 0.938 0.729 0.839 0.863

Overall Statistics Train Accuracy: 0.8889

Train Kappa : 0.8303

Test Accuracy: 0.744
Test Kappa : 0.6131

The k-fold cross-validation results for an Artificial Neural Network (ANN) model aimed at predicting rainfall categories in the
grid area of Bangladesh defined by the coordinates 90° E to 92° E/ and 23° N to 25° N are presented in Table 5.

Table 5. The k-fold cross-validation results Accuracy (ACY), Kappa (KPA), F1 Score, Recall (RCL), Specificity (SPE), Precision (PRN), Negative Predictive value (NPV), Detection
Rate (DER), Balanced Accuracy (BAC) of ANN model considering various numbers of the fold to predict the rainfall category of the Grid (90°E — 92°E,23° N — 25°N) in

Bangladesh considered in this study.

k-Fold cross-validation results for ANN model

Kk ACY KPA 3 RCL SPE PRN NPV BAC
2 0.781 0.669 0.787 0.792 0.888 0.784 0.888 0.840
3 0.798 0.694 0.802 0.809 0.897 0.802 0.897 0.853
5 0.804 0.702 0.806 0.810 0.899 0.808 0.900 0.854
7 0.805 0.704 0.809 0.812 0.899 0.815 0.901 0.856
10 0.802 0.701 0.806 0.813 0.899 0.808 0.901 0.856
11 0.811 0.714 0.816 0.820 0.903 0.817 0.904 0.861
13 0.804 0.702 0.806 0.811 0.899 0.812 0.901 0.855
17 0.805 0.704 0.807 0.813 0.900 0.812 0.901 0.856
19 0.805 0.704 0.809 0.815 0.900 0.810 0.901 0.858
As the number of folds increases, the accuracy of the categorizing the rainfall into three classes: Low Rain

model shows a general upward trend, peaking at 0.811 with
11 folds. The Kappa statistic, which measures agreement
between predicted and observed classifications, also improves
with higher k, reaching a maximum of 0.714 at 11 folds.
The F; score, which balances precision and recall, exhibits
a similar pattern, indicating the model’s effectiveness in
predicting rainfall categories. Notably, recall and specificity
values remain high across all folds, suggesting that the model
consistently identifies both positive and negative instances of
rainfall. Overall, the table demonstrates the robustness of the
ANN model across different k-fold configurations, with the
best performance metrics observed at 11 folds (Table 5).

4.2. CART Model

Table 6 presents the confusion matrix results for a
Classification and Regression Tree (CART) model used to
predict precipitation levels in the specified grid area of
Bangladesh. It includes both training and test datasets,

(LTR), Medium Rain (MHR), and No Rain (NRT). The
confusion matrix indicates the number of correct and incorrect
predictions for each category, with the training data showing
that the model accurately classified 167 instances of LTR and
116 instances of MHR while incorrectly classifying 32 and 15
instances, respectively. For the test data, the model achieved
41 correct classifications for LTR and 44 for MHR, with
some misclassifications noted. Key performance metrics are
also provided, such as recall, specificity, precision, negative
predictive value (NPV), detection rate (DER), and balanced
accuracy (BAC) (Table 6). The recall for LTR in the training
set is 0.861, indicating a high sensitivity to low rainfall
events, while the test recall drops to 0.631, reflecting some
challenges in generalization. Overall, the training accuracy is
recorded at 85.52%, while the test accuracy is lower at 72.02%,
suggesting that while the model performs well on training data,
it faces difficulties in accurately predicting rainfall categories
in unseen data.
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CART Model
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Figure 6. The CART model to predict the rainfall level of the Grid (90° E — 92° E,23° N — 25° N) in Bangladesh.
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Figure 7. Schematic Chart for the importance in the percentage of atmospheric variables Dew Point Temperature (DPT), Sea Level Pressure (SLP), Temperature (TEM), Humidity

(HUM), and Wind Speed (WIN) to predict the rainfall level for CART model.

The Kappa statistic, which assesses agreement between
predicted and actual classifications, is also reported, with
values of 0.7802 for training and 0.5766 for testing, further
illustrating the model’s performance (Table 6). The CART
model obtained for the data set is presented in Figure 6. The

significance of atmospheric variables Dew Point Temperature
(DPT), Sea Level Pressure (SLP), Temperature (TEM),
Humidity (HUM), and Wind Speed (WIS) for predicting
rainfall levels using the CART model is illustrated in the figure
7.
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Table 6. The Confusion matrix found for the CART model for training and test data to predict the rainfall category of the Grid(90°E — 92° E,23° N — 25° N) in Bangladesh

considered in this study.

Confusion Matrix and performance metrics for CART

Training Test

Category LTR MHR NRT LTR MHR NRT

LTR 167 32 14 41 15 8
Predicted MHR 15 116 0 12 44 0

NRT 12 0 148 12 0 36
RCL 0.861 0.784 0914 0.631 0.746 0.818
SPE 0.852 0.958 0.965 0.777 0.890 0.903
PRN 0.784 0.886 0.925 0.641 0.786 0.750
NPV 0.907 0914 0.959 0.769 0.866 0.933
PRE 0.385 0.294 0.321 0.387 0.351 0.262
DER 0.331 0.230 0.294 0.244 0.262 0.214
DEP 0.423 0.260 0.318 0.381 0.333 0.286
BAC 0.856 0.871 0.939 0.704 0.818 0.861

Overall Statistics Train Accuracy: 0.8552

Train Kappa : 0.7802

Test Accuracy: 0.7202
Test Kappa : 0.5766

Table 7. The k-fold cross-validation results-Accuracy, Kappa, F1 Score, Recall, Specificity, Precision, Negative Predictive value (NPV), Detection Rate (DER), Balanced Accuracy
(BAC) of CART model considering various numbers of the fold considering various numbers of the fold to predict the rainfall category of the Grid(90° E — 92° E, 23° N — 25° N)

in Bangladesh considered in this study.

k-Fold cross-validation results for CART model

k ACY KPA Fy RCL SPE PRN NPV BAC
2 0.771 0.652 0.776 0.779 0.882 0.777 0.883 0.831
3 0.798 0.692 0.801 0.802 0.895 0.805 0.896 0.849
5 0.786 0.673 0.790 0.788 0.888 0.794 0.889 0.838

0.784 0.672 0.788 0.791 0.889 0.797 0.891 0.840
10 0.779 0.665 0.783 0.787 0.886 0.787 0.887 0.837
11 0.774 0.655 0.779 0.778 0.882 0.785 0.884 0.830
13 0.774 0.657 0.776 0.783 0.884 0.783 0.887 0.833
17 0.778 0.664 0.779 0.786 0.886 0.802 0.893 0.836
19 0.789 0.678 0.792 0.793 0.890 0.805 0.894 0.842

The table provides the k-fold cross-validation results for
a Classification and Regression Tree (CART) model used
to predict rainfall categories in the grid area of Bangladesh
defined by the coordinates 90° E to 92°E and 23° N to 25° N
(Table 7). The results are organized by varying the number
of folds, denoted as k, ranging from 2 to 19. For each k,
several performance metrics are presented, including accuracy,
Kappa statistic, F; score, recall, specificity, precision, negative
predictive value (NPV), detection rate (DER), and balanced
accuracy (BAC). The accuracy of the model ranges from 0.771
with 2 folds to a peak of 0.798 with 3 folds, indicating that the
model’s performance improves slightly with more folds (Table
7). The Kappa values, which assess the agreement between
predicted and actual classifications, also show a positive trend,
reaching a maximum of 0.692 at 3 folds. The F} score,
which balances precision and recall, is highest at 0.801 for 3
folds, while recall values hover around 0.779 to 0.793 across
different k values, indicating consistent sensitivity in detecting
rainfall categories. Specificity remains high, particularly
for 3 folds (0.895) and 5 folds (0.888), suggesting that the
model effectively identifies non-rainfall instances. Overall, the
table illustrates the CART model’s robust performance across
various configurations of k-fold cross-validation, with the best
results generally observed at lower fold counts (Table 7).

4.3. C5.0 Model

The table presents the confusion matrix results for a C5.0
decision tree model used to predict rainfall categories in the
specified grid area of Bangladesh (Table 8). The model
classifies precipitation into three levels: Low Rain (LTR),
Medium Rain (MHR), and No Rain (NRT).

The confusion matrix shows the number of correct and
incorrect predictions for each category in both the training
and test datasets. For the training data, the model accurately
classified 180 instances of LTR and 107 instances of MHR
while incorrectly classifying 28 and 24 instances, respectively.
In the test data, the model achieved 46 correct classifications
for LTR and 38 for MHR, with some misclassifications.
Various performance metrics are also reported, such as
recall, specificity, precision, negative predictive value (NPV),
detection rate (DER), and balanced accuracy (BAC) (Table 8).
The recall for LTR in the training set is 0.769, indicating a
high sensitivity to low rainfall events, while the test recall
drops to 0.541, suggesting some challenges in generalizing
the model to unseen data (Table 8). The overall training
accuracy is 82.74%, while the test accuracy is lower at 66.07%,
indicating that the model performs better on the training data
compared to the test data. The Kappa statistic, which measures
the agreement between predicted and actual classifications, is
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0.7341 for training and 0.4791 for testing, further highlighting
the model’s performance differences between the two datasets
(Table 8). The fitted C5.0 model is presented in the figure
8. The table presents the k-fold cross-validation results for
a C5.0 decision tree model used to predict rainfall categories
in the grid area of Bangladesh defined by the coordinates

90°E to 92°F and 23° N to 25°N. The results are organized
by varying the number of folds, denoted as k, ranging
from 2 to 19. For each k, several performance metrics
are reported, including accuracy, Kappa statistic, F} score,
recall, specificity, precision, negative predictive value (NPV),
detection rate (DER), and balanced accuracy (BAC) (Table 9).

C5.0 Model
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Figure 8. The C5.0 Model to predict the rainfall level of the Grid (90° E — 92° E, 23° N — 25° N) in Bangladesh.

Table 8. The Confusion matrix found for the C5.0 model for training and test data to predict the rainfall category of the Grid(90°E — 92° E,23° N — 25° N) in Bangladesh

considered in this study.

Confusion Matrix and performance metrics for C5.0

Training Test

Category LTR MHR NRT LTR MHR NRT

LTR 180 28 5 46 14 4
Predicted MHR 24 107 0 18 38 0

NRT 30 0 130 21 0 27
RCL 0.769 0.793 0.963 0.541 0.731 0.871
SPE 0.878 0.935 0.919 0.783 0.845 0.847
PRN 0.845 0.817 0.813 0.719 0.679 0.563
NPV 0.814 0.925 0.986 0.625 0.875 0.967
PRE 0.464 0.268 0.268 0.506 0.310 0.185
DER 0.357 0.212 0.258 0.274 0.226 0.161
DEP 0.423 0.260 0.318 0.381 0.333 0.286
BAC 0.824 0.864 0.941 0.662 0.788 0.859

Overall Statistics Train Accuracy: 0.8274

Train Kappa : 0.7341

Test Accuracy: 0.6607
Test Kappa : 0.4791
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Table 9. The k-fold cross-validation results-Accuracy, Kappa, F1 Score, Recall, Specificity, Precision, Negative Predictive value (NPV), Detection Rate (DER), Balanced Accuracy
(BAC) of C5.0 model considering various numbers of the fold to predict the rainfall category of the Grid(90° E — 92° E,23° N — 25° N) in Bangladesh considered in this study.

k-Fold cross-validation results for C5.0 model

k ACY KPA Fy RCL SPE PRN NPV BAC
2 0.799 0.694 0.803 0.804 0.896 0.805 0.897 0.850
3 0.808 0.710 0.810 0.816 0.902 0.812 0.904 0.859
5 0.816 0.719 0.819 0.818 0.904 0.823 0.905 0.861
7 0.804 0.701 0.806 0.808 0.898 0.810 0.900 0.853
10 0.797 0.693 0.800 0.805 0.896 0.804 0.898 0.850
11 0.809 0.711 0.812 0.817 0.902 0.816 0.904 0.860
13 0.803 0.701 0.806 0.808 0.898 0.812 0.901 0.853
17 0.807 0.707 0.810 0.815 0.901 0.818 0.903 0.858
19 0.817 0.720 0.819 0.818 0.904 0.836 0.908 0.861

The accuracy of the model peaks at 0.817 with 19 folds,
indicating that the model’s performance improves with more
folds. The Kappa values, which assess the agreement between
predicted and actual classifications, also show a positive trend,
reaching a maximum of 0.720 at 19 folds. The F} score, which
balances precision and recall, is highest at 0.819 for both 5 and
19 folds, while recall values range from 0.804 to 0.818 across
different k values, indicating consistent sensitivity in detecting
rainfall categories. Specificity remains high, particularly for 5
folds (0.904) and 11 folds (0.902), suggesting that the model
effectively identifies non-rainfall instances. Overall, the table
illustrates the C5.0 model’s robust performance across various
configurations of k-fold cross-validation, with the best results
generally observed at higher fold counts, particularly 19 folds
(Table 9).

4.4. Random Forest

The table presents the confusion matrix results for a
Random Forest (RF) model used to predict rainfall categories
in the specified grid area of Bangladesh (Table 10). The model
classifies precipitation into three levels: Low Rain (LTR),
Medium Rain (MHR), and No Rain (NRT).

The confusion matrix shows the number of correct and

incorrect predictions for each category in both the training
and test datasets. For the training data, the model accurately
classified 165 instances of LTR and 108 instances of MHR
while incorrectly classifying 28 and 23 instances, respectively.
In the test data, the model achieved 46 correct classifications
for LTR and 43 for MHR, with some misclassifications noted
(Table 10).

Various performance metrics are also reported, such as
recall, specificity, precision, negative predictive value (NPV),
I score, detection rate (DER), and balanced accuracy (BAC).
The recall for LTR in the training set is 0.793, indicating a
high sensitivity to low rainfall events, while the test recall
drops to 0.667, reflecting some challenges in generalization.
The overall training accuracy is 81.94%, while the test
accuracy is lower at 75.60%, suggesting that while the
model performs well on training data, it faces difficulties
in accurately predicting rainfall categories in unseen data.
The Kappa statistic, which assesses agreement between
predicted and actual classifications, is 0.7242 for training and
0.6302 for testing, further illustrating the model’s performance
differences between the two datasets (Table 10). The error
rate to predict the rainfall levels including out-of-bag (OOB)
against the number of trees of Random forest are presented in
the figure 9.

Error vs Trees for Random forest
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Figure 9. Schematic plot for Error rate to predict the rainfall level and trees of Random Forest.
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Table 10. The Confusion matrix found for the Random Forest model for training and test data to predict the rainfall category of the Grid(90°E — 92°E,23° N — 25°N) in

Bangladesh considered in this study.

Confusion Matrix and performance metrics for Random Forest

Training Test

Category LTR MHR NRT LTR MHR NRT

LTR 165 28 20 46 11 7
Predicted MHR 23 108 0 13 43 0

NRT 20 0 140 10 0 38
RCL 0.793 0.794 0.875 0.667 0.796 0.844
SPE 0.838 0.938 0.942 0.818 0.886 0.919
PRN 0.775 0.824 0.875 0.719 0.768 0.792
NPV 0.852 0.925 0.942 0.779 0.902 0.942
Fy 0.784 0.809 0.875 0.692 0.782 0.817
PRE 0.413 0.270 0.317 0411 0.321 0.268
DER 0.327 0.214 0.278 0.274 0.256 0.226
DEP 0.423 0.260 0.317 0.381 0.333 0.286
BAC 0.816 0.866 0.908 0.742 0.841 0.882

Overall Statistics Train Accuracy: 0.8194

Train Kappa : 0.7242

Test Accuracy: 0.7560
Test Kappa : 0.6302

Table 11. The k-fold cross-validation results-Accuracy, Kappa, F1 Score, Recall, Specificity, Precision, Negative Predictive value (NPV), Detection Rate (DER), Balanced Accuracy
(BAC) of Random Forest model considering various numbers of the fold to predict the rainfall category of the Grid(90° E — 92° E/, 23° N — 25° N) in Bangladesh considered in

this study.

k-Fold cross-validation results for Random forest

k ACY KAP Fy RCL SPE PRN NPV BAC
2 0.793 0.686 0.797 0.799 0.893 0.797 0.894 0.846
3 0.798 0.692 0.802 0.804 0.895 0.804 0.896 0.850
5 0.818 0.724 0.821 0.824 0.906 0.824 0.908 0.865
7 0.820 0.726 0.823 0.824 0.907 0.825 0.907 0.865
10 0.810 0.711 0.813 0.816 0.902 0.817 0.903 0.859
11 0.814 0.717 0.817 0.819 0.904 0.819 0.904 0.862
13 0.809 0.710 0.813 0.814 0.901 0.822 0.903 0.858
17 0.811 0.712 0.814 0.815 0.902 0.817 0.903 0.859
19 0.812 0.714 0.814 0.816 0.903 0.823 0.905 0.859

The table presents the k-fold cross-validation results for a
Random Forest (RF) model used to predict rainfall categories
in the specified grid area of Bangladesh. The results are
organized by varying the number of folds, denoted as k,
ranging from 2 to 19. For each k, several performance metrics
are reported, including accuracy, Kappa statistic, F; score,
recall, specificity, precision, negative predictive value (NPV),
detection rate (DER), and balanced accuracy (BAC). The
accuracy of the model peaks at 0.820 with 7 folds, indicating
that the model’s performance improves with more folds (Table
11). The Kappa values, which assess the agreement between
predicted and actual classifications, also show a positive trend,
reaching a maximum of 0.726 at 7 folds. The F} score, which
balances precision and recall, is highest at 0.823 for 7 folds,
while recall values range from 0.799 to 0.824 across different
k values, indicating consistent sensitivity in detecting rainfall
categories (Table 11). Specificity remains high, particularly for
5 folds (0.906) and 7 folds (0.907), suggesting that the model
effectively identifies non-rainfall instances. Overall, the table

illustrates the Random Forest model’s robust performance
across various configurations of k-fold cross-validation, with
the best results generally observed at higher fold counts,
particularly 7 folds (Table 11).

4.5. Gradient Boosting Machine

The table presents the confusion matrix results for a
Gradient Boosting Machines (GBM) model used to predict
rainfall categories in the specified grid area of Bangladesh.
The model classifies precipitation into three levels: Low
Rain (LTR), Medium Rain (MHR), and No Rain (NRT). The
confusion matrix shows the number of correct and incorrect
predictions for each category in both the training and test
datasets (Table 12).

For the training data, the model accurately classified 166
instances of LTR and 104 instances of MHR while incorrectly
classifying 26 and 27 instances, respectively. In the test data,
the model achieved 42 correct classifications for LTR and 39
for MHR, with some misclassifications noted (Table 12).
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Table 12. The Confusion matrix found for Gradient Boosting Machines for training and test data to predict the rainfall category of the Grid (90°E — 92°E,23° N — 25°N) in
Bangladesh considered in this study.

Confusion Matrix and performance metrics for GBM

Training Test

Category LTR MHR NRT LTR MHR NRT

LTR 166 26 21 42 11 11
Predicted MHR 27 104 0 17 39 0

NRT 12 0 148 11 0 37
RCL 0.810 0.800 0.876 0.600 0.780 0.771
SPE 0.843 0.928 0.964 0.776 0.856 0.908
PRN 0.779 0.794 0.925 0.656 0.696 0.771
NPV 0.866 0.930 0.939 0.731 0.902 0.908
Fy 0.794 0.797 0.900 0.627 0.736 0.771
PRE 0.407 0.258 0.335 0.417 0.298 0.286
DER 0.329 0.206 0.294 0.250 0.232 0.220
DEP 0.423 0.260 0.317 0.381 0.333 0.286
BAC 0.826 0.864 0.920 0.688 0.818 0.840

Opverall Statistics

Train Accuracy: 0.8294

Train Kappa : 0.7393

Test Accuracy: 0.7024

Test Kappa : 0.5494

Table 13. The k-fold cross-validation results-Accuracy, Kappa, Fy Score, Recall, Specificity, Precision, Negative Predictive value (NPV), Detection Rate (DER), Balanced Accuracy
(BAC) of Gradient Boosting Machines (GBM) considering various numbers of the fold to predict the rainfall category of the Grid(90° E. — 92° E,23° N — 25° N) in Bangladesh
considered in this study.

k-Fold cross-validation results for Gradient Boosting Machines (GBM)

k ACY KPA Fy RCL SPE PRN NPV BAC
2 0.784 0.671 0.788 0.787 0.888 0.789 0.889 0.837
3 0.801 0.698 0.805 0.808 0.897 0.803 0.897 0.853
5 0.799 0.695 0.802 0.806 0.897 0.802 0.897 0.851
7 0.807 0.706 0.810 0.810 0.900 0.812 0.901 0.855
10 0.796 0.691 0.800 0.804 0.895 0.801 0.896 0.849
11 0.810 0.710 0.812 0.814 0.901 0.822 0.904 0.857
13 0.802 0.700 0.804 0.810 0.898 0.812 0.901 0.854
17 0.795 0.689 0.797 0.803 0.895 0.806 0.898 0.849
19 0.807 0.706 0.810 0.813 0.900 0.815 0.903 0.857




126 Md. Habibur Rahman: ANN-based and DT-based Classification Approaches to Predict the Rainfall Level of the
Grid (90°FE — 92°F,23° N — 25° N) in Bangladesh

Table 14. The table for the values of accuracy, and Cohen’s Kappa with rank produced from different machine learning models to predict the rainfall category of the Grid(90° E —
92°E, 23° N — 25° N) in Bangladesh considered in this study with the overall rank to determine the best model compared to other models.

Model Accuracy (Rank) Kappa (Rank) Sum of rank
Training Test Training Test (Rank)

ANN 88.89 (1) 74.40 (2) 83.03 (1) 61.31 (2) 6(1)

CART 85.52(2) 72.02 (3) 78.02 (2) 57.66 (3) 10 (2)

C5.0 82.74 (4) 66.07 (5) 73.41 (4) 47.91 (5) 18 (5)

RF 81.94 (5) 75.60 (1) 72.42 (5) 63.02 (1) 12 (3)

GBM 82.94 (3) 70.24 (4) 73.93 (3) 54.94 (4) 14 (4)

Various performance metrics are also reported, such as
recall, specificity, precision, negative predictive value (NPV),
F score, detection rate (DER), and balanced accuracy (BAC).
The recall for LTR in the training set is 0.810, indicating a
high sensitivity to low rainfall events, while the test recall
drops to 0.600, suggesting some challenges in generalizing
the model to unseen data. The overall training accuracy is
82.94%, while the test accuracy is lower at 70.24%, indicating
that the model performs better on the training data compared
to the test data. The Kappa statistic, which measures the
agreement between predicted and actual classifications, is
0.7393 for training and 0.5494 for testing, further highlighting
the model’s performance differences between the two datasets
(Table 12). The highest importance is found for the dew
point temperature to predict the rainfall level using the gradient
boosting machine (Figure 10).

The table presents the k-fold cross-validation results for a
Gradient Boosting Machines (GBM) model used to predict
rainfall categories in the grid area of Bangladesh defined by the
coordinates 90° F/ to 92° F and 23° N to 25° N (Table 13). The
results are organized by varying the number of folds, denoted

as k, ranging from 2 to 19. For each k, several performance
metrics are reported, including accuracy, Kappa statistic,
Fy score, recall, specificity, precision, negative predictive
value (NPV), detection rate (DER), and balanced accuracy
(BAC). The accuracy of the model peaks at 0.810 with 11
folds, indicating that the model’s performance improves with
more folds (Table 13). The Kappa values, which assess
the agreement between predicted and actual classifications,
also show a positive trend, reaching a maximum of 0.710
at 11 folds. The Fj score, which balances precision
and recall, is highest at 0.812 for 11 folds, while recall
values range from 0.787 to 0.814 across different k values,
indicating consistent sensitivity in detecting rainfall categories.
Specificity remains high, particularly for 7 folds (0.900)
and 11 folds (0.901), suggesting that the model effectively
identifies non-rainfall instances. Overall, the table illustrates
the Gradient Boosting Machines model’s robust performance
across various configurations of k-fold cross-validation, with
the best results generally observed at higher fold counts,
particularly 11 folds (Table 13).

Overall Statistics
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Figure 11. Schematic plot for the accuracy and Cohen Kappa of different five machine learning models to predict the rainfall levels.

The table presents a comparison of various machine learning
models in terms of their accuracy and Cohen’s Kappa statistic
for predicting rainfall categories in the grid area of Bangladesh
defined by the coordinates 90°F to 92° F and 23° N to 25° N
(Table 14). The models included are Artificial Neural Network

(ANN), Classification and Regression Tree (CART), C5.0
decision tree, Random Forest (RF), and Gradient Boosting
Machines (GBM) (Table 14). For each model, the training and
test accuracy, as well as the training and test Kappa values, are
provided along with their respective ranks in parentheses. The
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model with the highest value for a particular metric is ranked
1, followed by the next highest, and so on. The ANN model
achieves the highest training accuracy of 88.89% and training
Kappa of 0.8303, ranking 1st in both categories. However, its
test accuracy of 74.40% and test Kappa of 0.6131 rank 2nd.
The CART model ranks 2nd in training accuracy and Kappa
and 3rd in test accuracy and Kappa. The C5.0 model has
the lowest test accuracy of 66.07% and test Kappa of 0.4791,
ranking 5th in both categories. The RF model excels in test
accuracy and Kappa, ranking 1st with 75.60% and 0.6302,
respectively, but lags in training metrics. The GBM model
falls in the middle, ranking 3rd in training accuracy and Kappa
and 4th in test accuracy and Kappa (Table 14). The sum of
ranks for each model is calculated to determine the overall best
performer. The ANN model has the lowest sum of 6, making it
the best overall, followed by CART (10), RF (12), GBM (14),
and C5.0 (18) in descending order (Table 14 and Figure 11).

5. Conclusion

This study explores the efficacy of machine learning
techniques, specifically artificial neural networks (ANN) and
classification and regression trees, as alternatives to traditional
statistical models for predicting atmospheric phenomena. The
findings indicate that conventional models often rely on tacit
assumptions that may not apply to chaotic systems like the
atmosphere. Among the evaluated machine learning models,
the ANN emerged as the most effective for forecasting rainfall
levels in Bangladesh, demonstrating superior predictive
capabilities. This study compares the performance of various
machine learning models Artificial Neural Network (ANN),
Classification and Regression Tree (CART), C5.0 decision
tree, Random Forest (RF), and Gradient Boosting Machines
(GBM) in predicting rainfall categories across a specified
region in Bangladesh. The analysis includes metrics such as
training and test accuracy, Cohen’s Kappa statistic, and overall
rankings based on these metrics. Results indicate that the ANN
model achieves the highest training accuracy and Kappa, while
RF excels in test metrics, with ANN emerging as the best
overall performer based on the sum of ranks.
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