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Abstract: This paper introduces the Modified Kies-Weibull (MKW) distribution, a novel and flexible probability model that
generalizes the Weibull distribution to better accommodate various hazard rate structures. The MKW distribution is derived
by incorporating the Weibull distribution into the Modified Kies Generalized (MKi-G) family, enhancing its adaptability for
reliability analysis and survival modeling. Key statistical properties, including the cumulative distribution function, probability
density function, moments, and order statistics, are derived. Three estimation methods: (i) Maximum Likelihood Estimation
(ML), (ii)) Maximum Product Spacing (MPS), and (iii) Least Squares (LS) are examined and compared through simulation
studies. The results demonstrate that LS estimation outperforms ML and MPS, particularly in small samples, exhibiting lower
bias and greater stability. Furthermore, the empirical application of the MKW distribution to a bladder cancer remission dataset
reveals superior model fit compared to existing Weibull-based models, as confirmed by information criteria and goodness-of-
fit tests. The MKW distribution proves to be an effective tool for modeling lifetime data, offering enhanced flexibility for
applications in medicine, engineering, and reliability studies.

Keywords: Modified Kies-Weibull Distribution, Survival Analysis, Parameter Estimation, Reliability Modeling, Hazard Rate,
Goodness-of-fit

1. Introduction

G(a:;oz,ﬁ)zl—e*‘mﬁ, x>0, a>0,8>0 (1)

Probability distributions play a crucial role in modeling
real-world phenomena, particularly in fields such as reliability
analysis, lifetime data modeling, and survival analysis. Among
the various probability distributions available, the Weibull

Despite its widespread applicability, the Weibull distribution
does have certain limitations, particularly in modeling datasets
with more complex or varying hazard rate structures. To
address these limitations, researchers have sought to introduce

distribution has emerged as one of the most widely used due
to its inherent flexibility in capturing a broad range of failure
rate behaviors. The probability density function (PDF) of the
Weibull distribution is given by:

g(z;a, ) = aﬁxﬁ_le_mﬁ, x>0, a>0,8>0
where o and [ represent the scale and shape parameters,
respectively.  The corresponding cumulative distribution
function (CDF) is:

modifications and generalizations to enhance the flexibility
of the Weibull model. For a comprehensive overview of the
modified Weibull model, interested readers may refer to Lai et
al. (2023) [1].

To further improve upon these limitations, Al-Babtain et
al. [8] introduced a new generalized family of distributions
known as the Modified Kies Generalized (MKi-G) family.
The details about the Kies distribution can be found in
Kumar and Dharmaja (2013, 2017) [2, 3]. Shakhatreh and
Al-Babtain (2021) applies the modified Kies distribution to
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reliability data, which is often used in engineering contexts,
highlighting its flexibility [4]. Kumar, D., & Nassar, M. (2017)
provide a generalized modified Kies distribution and explores
its properties and estimation techniques [5]. The moments
and estimation of the reduced Kies distribution based on

F(w;%w):l_exp{_[

G(x;9)
1—G(x; ¢

progressive type-II right-censored order statistics are discussed
in Dey, Nassar, and Kumar (2019) [6]. Ferreira and Cordeiro
(2024) develop the MKi-G family, derive its properties, and
demonstrate its flexibility in modeling complex data [7]. The
CDF of the MKi-G family is expressed as:

¥
)] }7 z>0,v>0 2)

where G(z; 1) represents the baseline CDF with parameter vector 1. The corresponding probability density function (PDF) and

hazard rate function (HRF) of the MKi-G family are given by:

. _ @GP [ Gy) |7
H@7 ) = TG gyp p{ [1—G<z;w>] }
for £>0,7v>0 3)
h(x"y,@/}) _ 79(1';11))[6'(1'?"/))“71 z>0,v>0

This paper introduces the Modified Kies-Weibull (MKW)
distribution, a new extension within the MKi-G family. By
combining the Weibull model with the MKi-G family, the
MKW distribution offers enhanced flexibility in capturing a
diverse range of hazard rate and probability density behaviors,
making it suitable for various reliability and survival analysis
applications.

The remainder of this paper is organized as follows: Section
2 introduces the MKW distribution and its formulation.
Section 3 presents its key statistical properties, including
moments and order statistics. Section 4 discusses several
parameter estimation methods. In Section 5, a simulation study
compares these estimation methods. Section 6 demonstrates
the application of the MKW distribution to a real dataset,
highlighting its practical utility. Finally, Section 7 concludes
the paper and suggests directions for future research.

azh ~
F(x;a’677):176*(9 -b )

[1—Ga)ptt

2. The Modified Kies-Weibull (MKW)
Distribution

In this section, we introduce the Modified Kies-Weibull
(MKW) distribution, which is derived by incorporating the
Weibull distribution into the Modified Kies Generalized (MKi-
G) family. This formulation enhances the flexibility of the
standard Weibull model, enabling it to capture a wider range of
behaviors in the probability density and hazard rate functions.

2.1. Cumulative and Probability Density Functions

The cumulative distribution function (CDF) of the MKW
distribution is obtained by substituting the CDF of the Weibull
distribution, given by Equation (1), into the general form of
the MKi-G family in Equation (2). This leads to the following
CDE.

z>0,a,8y>0 “4)

Similarly, the probability density function (PDF) of the MKW distribution can be derived by inserting Equations (1) and (1)

into Equation (3), resulting in:

awﬁ
f(l', 05757’)/) = fyaﬂ'rﬁfle’yaa:ﬁ*(e *1)7(1 _eo®

The distribution is characterized by the parameters «, [3,
and . The parameter « controls the scaling or stretching of
the distribution, while § and - determine the shape of the
distribution. Symbolically, we denote the MKW distribution as
X ~ MKW(v, «, ). Notably, by setting 5 = 2 in Equation
(1), the MKW model reduces to the modified Kies Rayleigh

Yl 2>0,a,89>0 5)
distribution.

Figure 1 displays plots of the PDF of the MKW distribution
for various parameter values. From these plots, we observe
that the PDF can exhibit symmetric, unimodal, right-skewed,
and left-skewed behaviors, depending on the selected values of
the parameters.
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Figure 1. Density curves of the MKW distribution for selected values of the parameters.

2.2. Linear Presentation

The CDF of the MKW distribution, as given by Equation (4), can also be expressed as a series expansion:

_ 1)’7" (6)

We can also write

F(z;a,8,7)=1- Z gynaz’ (1—e @ )m
n=
— i n+k 'Yn)k —[a(k yn)z?] (7
B nlkl

where (yn)y = (yn)(yn — 1) -~ (yn =k +1).
Differentiating Equation (7), we obtain the PDF as:

0 n+k
) o 51 (D" (k| fa(k—m)a?]
f(xv OA,B,’}/) - O[(k‘ ’yn),@x Z ﬂ'k' X e K
k,n=0
which can be rewritten as:
f(l' avﬁ ’V Z ¢k nYa(k— 'yn)ﬁ( ) (8)
k,n=0

where g(-) is the Weibull density function with scale parameter «(k — «yn) and shape parameter (.

2.3. Reliability Analysis

In reliability analysis, the survival function (SF) and hazard function (HF) are essential for understanding the behavior of a
system over time. For the MKW distribution, the survival function is given by:

axf 1\
S(m;a7ﬂu7):€_(6 -1 ) $>0, 047677>0

The hazard function (HF) is expressed as:
h(z; 0, B,7) = yafa’ e (1 — e 2 7 550, 0,8, >0

The cumulative hazard function (CHF) of the MKW distribution is given by:

H(z;o,8,7) = —InS(x) =—1In (e(ewﬁl)7> = (e‘mB —1)7.
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Figure 2 presents plots of the hazard function for the MKW distribution with different parameter values. The plot illustrates

how the hazard function can accommodate increasing, decreasing, or constant failure rates, highlighting the remarkable flexibility
of the MKW distribution.

— (@=2,B=2,y=15)
— (a=1,p=05,y=15)
— (a=1,B=1,y=1)

Hazard Rate h{x
3
1

Figure 2. Hazard rate of the MKW distribution with different parameters.

3. Properties

In this section, the mathematical properties of the MKW distribution are derived, including quantiles, moments, and order
statistics.

3.1. Quantiles

The p-th quantile of the MKW distribution, found as the solution of F’ (:cp) =p,is:

PR 1/
o) = | 8l log(la )R | ©

The first, second, and third quartiles of the MKW distribution are obtained by setting p = 0.25, p = 0.5, and p = 0.75,
respectively, in Eq. (9).

3.2. Skewness and Kurtosis

The Bowley skewness (BS) [9] and Moor’s kurtosis (MK) [10] are given as follows:

Q(0.75) — 2Q(0.5) + Q(0.25)

BS = Q(0.75) — Q(0.25)

and

Q(0.875) — Q(0.625) + Q(0.375) — Q(0.125)
Q(0.75) — Q(0.25) ’

where )(p) is the quantile function of the three parameters MKW (7, ., ).

MK =

3.3. Generating Function

The moment generating function is derived as:

M (t) = E[e'¥] = /0 e f () da (10)
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9] (tz)™
m=0 m! °

:/ W;J(tg!mf(x)dx_gg/omx

> n k m S
_ Z i )k a(k - 'yn)ﬂt x / xm«k,ﬁflefoc(kf'yn)wﬂ dr
0

n'k' m!

Using the series representation e = Eq. (10) can be rewritten as:

m=0k,n=0

Using the identity:

> xp—le—)\wq dr = F(p/q)
0 g P/a’

Eq. (11) becomes:

oo 0o —1)ntk n r mib m
Mx(t) = Z Z ( )n!k!(,y k m![a(k<— jn))ﬁ]m/ﬂ

m=0 k,n=0

3.4. Distribution of Order Statistics

(1)

Let X, Xo,..., X, be an i.i.d. random sample of size n from the MKW distribution, with CDF and PDF given by Eqgs. (4)
and (5), respectively. Let { X 1), X@2),--» X (n)} be the corresponding order statistics. The PDF of the r-th order statistic, X,

is given by:

1

B!/ @ P = P

fX('r) (‘T) =

where B(-, ) is the Beta function. Using binomial expansion in Eq. (12), we get:

P @ = s S (M) i

7=0

After applying Eqs. (7) and (8), the PDF of the 7-th order statistic becomes:

=17 (") (=) ()i

= olk - B-1 —a(k—yn)z?
f (2) B(r,n—r+1) Ak " ]ZO anO k! ‘
j+r—1
- (_1)n+k('yn)k —a(k—yn)z?
S R D et
k,n=0

4. Method of Estimation

4.1. Maximum Likelihood Estimation

Let the observation be {z1, x2, ..., %, }. The likelihood function is
n B 1 B uw.ﬁ ~ B y—1
L(OK,B,’V | L1, L2y, xn) = H'yaﬂxz e —(e™ —1) X (]. — e M )
i=1

n
ach y
= (yaB)" Hﬁﬂf_levm”?*(e i =17 (1 — e*azf)
i=1

—1

(12)
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Since products of terms can be cumbersome to compute, the log-likelihood is often used instead:

n

la, B,7 | z1,22,...,2,) = nlog(afy) + (B —1) x Zlog(ﬂci) +7a2xf — Z (e‘“f — 1)7
i=1 i=1

i=1
+(y—-1) Zlog (1 — e_(”'f)
i=1

The maximum likelihood (ML) estimators of parameters («, (3, ) can be obtained by maximizing the above log-likelihood
function. This can be done by solving the following normal equations simultaneously:

n n n B
n 8 -1 B 7 e %
E—f—’ny*f—vZ(e”i—l) xfe‘”i +(W—1)Z’75:O
i=1 i=1

i=1

n n n =1 , n 51 . —ch?
% + ZlOg@Ui) + ’yaZle’-B log(zi) — ’YZ (ewcf — 1) X ew?aa:f log(z;) — (y—1) Z o log(i)e =0
i=1 i=1 i=1

—Qx
im1 1—e i

n

n v n
T rad el =30 (e —1) g (e — 1) + 3tog (1- ) =0
=1 =1

i=1

4.2. Maximum Product of Spacing Estimation

Let (1:n), T(2:n)5 - - - » T(n:m) bE the order statistics of a random sample of size n from the MKW distribution, resulting in

0= F(x(():n)aa) < F(x(ln)ve) <--- < F(x(n+1:n)79) =1

The spacings are defined as follows:

D, = F(x(lzn)ve)a D(nJrl) =1- F(x(nn)ve)v
and
D; = F(:c(i:n),G) —F(x(i,lm)79), 1=2,3,...,n.

The maximum product of spacing (MPS) method is to choose § which maximizes the geometric mean of the spacings, i.e.

n+1 n+1
G = (H Di> or equivalently, S =logG.
i=1

Cheng and Amin [11] examined that maximizing S as a method of parameter estimation is as efficient as ML estimation.

The CDF of the MKW distribution is given by equation (4), and the spacings are defined as:

28
o —(e“F () _1)Y
Dl =1-—e¢ ( ) y

B
— eax(n:n)71 ol
Dpyry=e ( 7,

and in general,

D' _ e_(e (i—1:n) _1)"! _ e_(e (i:m) _1)"!
i = .

Therefore,
1 n+1
S(z;a,B,7) =logG = m ; log(D;)

Under the MPS method, 6 = («, 8,7) is chosen which maximizes the above expression.
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4.3. Least-Squares Estimation

Let Z(1:n), T(2:n), - - - » T(n:n) e the order statistics of a random sample of size n from the MKW distribution. The least-squares
(LS) estimators of the unknown parameters «, /3, and -y can be obtained by minimizing:

n

I 8 )
. ¢ _ — eam(i:n)71 ¥ 1
§ :l:F(x(zn)aavﬁa’y)_n_’_l] = E |:1—€ ( ) —n+1

i=1 =1

Consequently, least-squares estimates of the parameters can be obtained by solving the following equations:

En [ i ] aF(‘x(i:n); a, 5; ’Y)
F(‘r(771)7 a, 5; ’Y) - =0
i=1 L n—+ 1_ oo
[ i ] 8F(x(1n)7 a, Ba 'Y)
S | P _ 0
~ | (x(z.n)7 «, Ba 'Y) "+ 1- 8[3
n r .4
? 6F(.’L’(7;;n);04,ﬁ,’}/)
F(x in)s &, ﬁ; Y)— =0
i=1 - ( ) ) n+ ]._ ary

5. Simulation Study

This section evaluates the performance of three parameter
estimation methods: Maximum Likelihood Estimation (ML), where 8 is an estimator of the parameter § = (v, a, B).
Maximum Product of Spacing (MPS), and Least Squares (LS)
for the Modified Kies-Weibull (MKW) distribution using a 5.2. Results and Discussion
simulation study.

The simulation results are presented in Tables 1 and 2 for
different settings.

1. Effect of Sample Size: Both AB and RMSE decrease

5.1. Simulation Setup
as sample size increases, confirming the asymptotic

1. Data Generation: Random samples of sizes 30, 70, and unbiasedness of all estimators.
100 are generated from the MKW distribution using the 2. Estimator Performance:
acceptance-rejection algorithm, with parameter values: (a) LS consistently achieves the lowest bias and
RMSE, making it the most accurate and stable
v=(1,2), a=(1.5,2.5), B=(1.2,2.0). method.

(b) ML and MPS show higher bias and variability,
particularly in small samples.
. Shape Parameter ~y Estimation:
(a) ML and MPS tend to overestimate -y significantly,
especially for small samples.
(b) LS provides the most stable and reliable estimates
for all parameters.
é\i _ 9’ 4. Overall Ranking: LS > MPS > ML in terms of accuracy
and efficiency.

2. Estimation Methods: The parameters are estimated
using ML, MPS, and LS estimators. 3
3. Evaluation Metrics: The accuracy of estimators is
measured using Absolute Bias (AB) and Root Mean
Squared Error (RMSE) over N = 1000 replications:

. 1 X
=1
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Table 1. Absolute Biases (AB) and Root Mean Squared Errors (RMSEs) (in parentheses) of Modified Kies-Weibull distribution with parameters o =

a=158=12v=2

2,8

13

1,v = 1.5 and

(x=2,8=1,v=1.5)

(ax=1.5,=1.2,v =2)

Sample size () Method = =
& B v a B i
ML 646.7929 3.3455 38.7966 88.0745 3.153 92.6788
(12481.9443) (4.7063) (140.7324) (905.9236) (5.0622) (230.9317)
20 MPS 543.6722 2.7702 25.8403 49.3575 2.1898 72.7211
(8372.2135) (4.3694) (96.7681) (559.6321) (4.0062) (197.7159)
LS 1.9947 1.4261 1.5713 1.4869 1.7376 1.9229
(1.9247) (1.5252) (3.8522) (1.4873) (2.0499) (1.9392)
ML 17.0471 3.1135 12.7246 4.0119 2.2081 54.0954
(299.6278) (4.3128) (57.2553) (9.9915) (3.4934) (141.3113)
- MPS 5.4384 2.803 10.0376 2.415 1.5906 34.6803
(24.4573) (4.2421) (46.7122) (7.9291) (2.7592) (92.3552)
LS 1.9912 1.3493 1.4384 1.4092 1.5764 2.0297
(-1.9914) (-1.4272) (-1.4395) (-1.0946) (-1.6976) (-1.6579)
ML 4.0663 3.2382 11.2188 2.5515 2.1585 42.5672
(13.1316) (4.429) (60.5051) (5.6058) (3.5281) (118.0308)
. MPS 2.7179 2.9046 7.0839 1.6839 1.6026 26.3903
(8.9166) (4.2781) (35.252) (3.8049) (2.823) (75.5805)
LS 1.9902 1.3128 1.4896 1.0914 1.61129 1.9371
(1.0943) (1.0785) (1.1251) (1.0416) (1.6072) (1.6381)
Table 2. Absolute Biases (AB) and Root Mean Squared Errors (RMSEs) (in parentheses) of Modified Kies-Weibull distribution with parameters o« = 2,3 1,y = 1.5 and

a=158=12v=2.

(a=3.5,4=3,v=2)

(ax=2,8=1.5,7 = 2.5)

Sample size (1) Method
& B v & B i
ML 10000 5 91.8813 918813 4.5741 97.8446
(2500) (10) (19.533) (195331) (7.2719) (2.5376)
30 MPS 800 4.5 135.448 135448 3.2134 74.9865
(200) ) (257.47) (257475) (5.6476) (96.33)
LS 3.4858 3.82787 2.06632 1.9923 2.1759 2.5806
(3.4861) (4.2834) (4.9293) (1.9924) (2.6516) (4.4101)
ML 6092.95 47717 105.692 2196.47 2.9759 73.8589
(1573.9) (8.0648) (226.12) (66526) (4.5026) (193.48)
70 MPS 464.278 4.0184 80.0529 453.697 3.0268 42.3047
(100.12) (7.2881) (169.54) (13505) (4.67729) (125.992)
LS 3.4006 3.6694 1.9243 1.9889 2.0513 2.4602
(3.4207) (3.8063) (1.9263) (1.9891) (2.1996) (2.8035)
ML 34.7895 4.3558 103.453 27.211 2.7157 61.5827
(159) (7.4909) (207) (113.76) (4.0786) (168.06)
100 MPS 17.6385 3.7914 72.9889 12.4487 2.9536 35.2496
(95.095) (6.778) (156.702) (51.801) (4.5601) (98.7)
LS 3.0923 3.5696 1.9133 1.9857 1.9769 2.4346
(3.0424) (3.6855) (1.9035) (1.9862) (2.1061) (2.4356)

6. Real Data Application

To evaluate the practical performance of the Modified
Kies-Weibull (MKW) distribution, we apply it to a real-
world clinical dataset that records the remission durations (in

months) of 118 bladder cancer patients, originally published
by Lee and Wang (2003)[12]. The dataset consists of observed
remission times, which exhibit significant variability, making
it an ideal candidate for testing the flexibility of the MKW

distribution.
times:

The dataset includes the following remission
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Table 3. Data of remission times in months for bladder cancer patients.

45 32.15 3.88 13.8 19.13
7.87 7.59 20.28 3.02 46.12
0.2 8.37 3.82 9.47 36.66
4.98 11.98 2.62 4.26 5.06
21.73 10.34 12.07 34.26 10.66
17.12 2.64 1.4 12.63 43.01
7.32 4.18 3.36 8.66 1.26
5.62 3.25 18.1 7.62 7.63
17.36 9.74 3.31 7.28 1.35
6.94 2.54 11.79 2.46 7.26
3.7 0.5 10.75 6.54 3.64
11.64 2.09 223 6.25 7.93

4.87 5.85 14.24 5.71 7.09
4.51 5.17 2.83 9.22 1.05
14.77 26.31 79.05 10.06 8.53
1.76 0.9 11.25 16.62 4.4
6.97 2.07 0.51 12.03 0.08
14.76 2.75 7.66 0.81 1.19
13.29 1.46 14.83 6.76 23.63
17.14 25.74 3.52 2.87 15.96
0.4 2.26 433 9.02 22.69
5.34 3.48 8.26 6.93 423
13.11 8.65 3.57 5.09 7.39
4.34 25.82 12.02

To assess the effectiveness of the MKW model, we compare
it against several well-established probability distributions
used in survival analysis:

1. Weibull (W) distribution (Weibull, 1951)[13]

2. Exponentiated Exponential-Weibull
distribution (Dawlah Al-Sulami, 2020)[14]
Modified Weibull (MW) distribution (Lai et al., 2003)[1]
4. Inverse Weibull (IW) distribution (Akgiil et al.,

(EE-W)

»

6.1. Parameter Estimation and Model Comparison

The parameters of each distribution were estimated using
the Maximum Likelihood Estimation (MLE) method. Table
4 presents the maximum likelihood estimates (MLEs) and
their corresponding standard errors (SEs) for each model.
Notably, the MKW distribution exhibits smaller standard
errors compared to alternative models, indicating greater

2016)[15] precision and reliability in its parameter estimates.
Table 4. Maximum likelihood estimates of fitted distributions for data of remission time in month of bladder cancer patients.

Distributions a X E %
w 10.0192 (0.9315) 1.0462 (0.0709)
EE-W 0.2658 (2.1218) 0.6801 (7.6341) 2.2812 (1.0190) 0.7075 (0.1516)
MW 0.6122 (0.0666) 0.0537 (0.0468) 0.1397 (0.1221)
w 2.4029 (0.2254) 0.7302 (0.0431) -
MKW 0.0717 (0.0177) 1.2142 (0.1037) 0.0109 (0.0041)

To determine the best-fitting model, we evaluate the
distributions using widely recognized model selection criteria:
1. Akaike Information Criterion (AIC)
2. Consistent Akaike Information Criterion (CAIC)
3. Bayesian Information Criterion (BIC)
4. Hannan-Quinn Information Criterion (HQIC)

Additionally, we conduct goodness-of-fit tests, including:
1. Anderson-Darling (AD) test
2. Cramér-von Mises (CVM) test
3. Kolmogorov-Smirnov (KS)
corresponding p-value
Table 5 summarizes the results of these statistical measures.

test, along with its

Table 5. Goodness of fit criteria and tests for fitted distributions.

Distribution AIC CAIC BIC HQIC -log(likelihood) AD CVM KS (p-value)

W 778.747 778.852 784.289 780.997 387.373 0.53170 0.08644 0.0593 (0.7995)
EE-W 778.462 778.816 789.544 782.962 385.231 0.25999 0.04079 0.0428 (0.9818)
MW 781.756 781.966 790.068 785.131 387.878 0.58723 0.09566 0.0618 (0.7575)
w 839.035 839.139 844.576 841.285 417.517 4.61809 0.77540 0.1471 (0.0120)
MKW 776.297 776.507 784.609 779.671 385.148 0.20813 0.03391 0.0392 (0.9934)

6.2. Findings and Interpretation

The results in Table 4 clearly demonstrate that the MKW
distribution outperforms all competing models. Specifically,

the MKW model achieves the lowest AIC, BIC, CAIC, and
HQIC values, indicating the best balance between goodness-
of-fit and model complexity. Furthermore, the smallest AD,
CVM, and KS statistics, along with high p-values, confirm
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that the MKW distribution provides the most suitable fit for
the bladder cancer remission data.

To further validate this conclusion, Figure 3 presents a
graphical comparison of the observed and fitted cumulative
distribution functions (CDFs) for all models. The MKW
distribution exhibits the closest agreement with the empirical
data, reinforcing its superior flexibility in capturing survival
trends.
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Figure 3. Graphical comparison of observed and fitted cumulative distribution functions
of remission time for bladder cancer patients

6.3. Practical Implications

The findings of this study highlight the practical significance
of the MKW distribution in survival analysis. Compared
to traditional Weibull-based models, the MKW distribution
offers:

1. Enhanced flexibility in capturing varying hazard rate

behaviors (increasing, decreasing, constant).

2. Greater accuracy in modeling real-world lifetime data,
as demonstrated by its superior fit to cancer remission
times.

3. Reliable parameter estimation, with lower standard
errors and reduced estimation bias.

Given these advantages, the MKW distribution can be a
valuable tool for medical research, reliability engineering, and
risk assessment. Future studies may explore its application to
other survival datasets, such as disease progression, failure-
time analysis, or reliability modeling in engineering systems.

7. Conclusion

This paper introduced the Modified Kies-Weibull (MKW)
distribution, a new probability model that extends the
flexibility of the traditional Weibull distribution. By
incorporating the Weibull model into the Modified Kies
Generalized (MKi-G) family, the MKW distribution is capable

of capturing a wide range of probability density and hazard rate
functions, making it suitable for various reliability and survival
analysis applications.

Theoretical properties of the MKW distribution, including
moments, quantiles, skewness, kurtosis, and order statistics,
were derived, providing a strong mathematical foundation
for its use. Three estimation methods: (i) Maximum
Likelihood (ML), (ii) Maximum Product Spacing (MPS), and
(iii) Least Squares (LS) were applied and evaluated through
eetxtensive simulation studies. The results demonstrated
that LS estimation consistently outperformed ML and MPS,
particularly for small sample sizes, due to its lower bias and
superior accuracy.

To assess its practical applicability, the MKW distribution
was fitted to a bladder cancer remission dataset and
compared against several established models, including
the Weibull, Exponentiated Exponential Weibull (EE-
W), Modified Weibull (MW), and Inverse Weibull (IW)
distributions. The MKW model provided the best fit, as
indicated by its superior performance in AIC, BIC, CAIC,
HQIC, and goodness-of-fit tests (AD, CVM, KS). These
findings reinforce its potential as a powerful model for lifetime
and survival data analysis.

In conclusion, the MKW distribution is a highly flexible
and robust model, capable of accurately describing diverse
datasets with varying failure rate structures. Future research
could explore Bayesian estimation techniques, extensions of
the MKW model, or its applications in additional fields such
as finance, engineering, and epidemiology.
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