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Abstract 

Short-term load forecasting plays an important and indispensable role in the daily operation planning of power grid because it 

allows grid operators to predict electricity demand a few hours to one week in advance. Although statistics-based methods and 

machine learning-based methods have been widely used in short-term load forecasting, a single model may have difficulty 

capturing all underlying dynamics, causing reduced prediction accuracy. Therefore, a stacking-based ensemble model that 

improves prediction accuracy by integrating multiple base prediction models is proposed in this study for short-term load 

forecasting. Firstly, for data preprocessing, data normalization is used to scale the raw load data to a range of 0 to 1. Data 

imputation is used to ensure data integrity. Secondly, base prediction models including logistic regression, decision tree, random 

forest, multilayer perceptron, convolutional neural network, and long short-term memory are utilized to train the prediction 

models. Thirdly, the stacking-based ensemble learning method is utilized to integrate these base prediction models to further 

predict electric load. The results of comparative experiments and error analysis show that the stacking-based ensemble learning 

model outperforms the base prediction models for the majority of the evaluation metrics. Additionally, the analysis of curve 

fitting results demonstrates the high level of agreement between the actual values and the predicted values for the stacking-based 

ensemble learning model. 
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1. Introduction

Short-term load forecasting (STLF) is of great importance 

for the daily operation planning of power gird, as it enables grid 

operators to accurately predict electricity demand over periods 

ranging from a few hours to one week. By providing reliable 

estimates of future load variations, STLF supports critical de-

cision-making processes such as economic dispatch, unit 

commitment, contingency analysis, and reserve allocation. 

STLF ensures the balance between electricity demand and 

supply, minimizes operational costs, improves the reliability of 

the power grid, and facilitates the integration of renewable 

energy sources by anticipating their intermittent nature [1]. 

The majority of existing STLF models leverage two pri-

mary methods: statistics-based methods and machine learn-

ing-based methods [2]. Statistics-based methods, such as 
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autoregressive integrated moving average (ARIMA) [3], 

exponential smoothing (ES) [4], and multiple linear regres-

sion (MLR) [5], rely on historical load data and mathematical 

formulations to capture temporal patterns, seasonality, and 

trends. These models are widely adopted due to their inter-

pretability, computational efficiency, and well-established 

theoretical foundations. However, they often struggle with 

nonlinear relationships and complex load patterns influenced 

by external factors like weather and holidays [6]. 

On the other hand, machine learning-based methods, in-

cluding artificial neural network (ANN) [7], support vector 

machine (SVM) [8], random forest (RF) [9], and more re-

cently deep learning models, excel at handling nonlinear 

relationships and learning complex load patterns from large 

datasets, which alleviates the shortcomings of the statis-

tics-based methods [10]. However, STLF is influenced by 

multiple complex and interdependent factors which introduce 

high nonlinearity and uncertainty into load patterns. Therefore, 

a single model may struggle to fully capture all underlying 

dynamics, leading to reduced prediction accuracy. 

To overcome the limitations mentioned above, a stack-

ing-based ensemble learning model (SBEM) which enhances 

prediction accuracy by combining multiple base prediction 

models is proposed in this study for STLF. Firstly, electric 

load data is preprocessed via normalization and imputation. 

Secondly, the base prediction models including logistic re-

gression (LR) [11], decision tree (DT) [12], random forest 

(RF) [9], multilayer perceptron (MLP) [13], convolutional 

neural network (CNN) [14], and long short-term memory 

(LSTM) [15] are used to train an ensemble learning model and 

predict future electric load. Thirdly, these single base predic-

tion models are integrated to predict electric load with a 

stacking-based ensemble learning method. The comparative 

experiments and error analysis between these single base 

prediction models and the proposed model validate the effec-

tiveness of the SBEM. 

The remainder of the study is organized as follows. Section 

2 reviews existing research on statistics-based methods and 

machine learning-based methods. Section 3 explores the 

proposed SBEM. Experimental comparisons and results 

analysis are shown in Section 4. Finally, Section 5 concludes 

the study and discusses future research. 

2. Related Work 

This section conducts a review of the existing research 

works regarding statistics-based methods and machine 

learning-based methods to offer a more in-depth comprehen-

sion of the previous research. 

2.1. Statistics-Based Methods 

ARIMA is a widely used statistics-based method, which 

can capture trends, seasonality, and random fluctuations in the 

load data. Lee and Ko [3] proposed a model combining lifting 

scheme and ARIMA for STLF. Specifically, the lifting 

scheme breaks down the initial load series into sub-series, 

which are then forecasted using ARIMA models. In order to 

fairly compare direct and indirect ARIMA-based approaches, 

Shi et al. [16] conducted a comparative experiment on wind 

speed and power generation data from an offshore wind tur-

bine. The results show that the direct approach outperforms 

the indirect approach in terms of root mean square error and 

mean absolute error. Although ARIMA can effectively ana-

lyze stationary time series, it has strict requirements for data 

stationarity and a complex parameter determination process. 

In contrast, ES has lower requirements for stationarity, 

which is based on weighted averages with exponentially de-

caying weights. Göb et al. [4] explored the use of meteoro-

logical covariates in STLF via the ES with covariates. The 

empirical study on Italian electricity consumption data shows 

that the proposed model has an excellent forecasting preci-

sion, especially for prediction horizons of 1 day and more. 

MLR is a statistics-based method that establishes a model to 

depict the relationship between a dependent variable and 

several independent variables. Compared with ARIMA and 

ES, MLR is able to incorporate various influencing factors 

easily. Fang and Lahdelma [5] evaluated MLR and seasonal 

ARIMA for heat demand forecasting in a district heating 

system. MLR considers weather and social factors with pa-

rameters optimized by least squares. The results show that 

MLR has the highest accuracy, outperforming the seasonal 

ARIMA-combined model and other regression models. 

Although statistics-based methods have wide applications 

in STLF due to their interpretability, computational efficien-

cy, and well-established theoretical foundations, they still 

struggle with nonlinear relationships and complex load pat-

terns. 

2.2. Machine Learning-Based Methods 

Machine learning-based methods have emerged as power-

ful and indispensable tools in STLF, which are good at han-

dling nonlinear relationships and learning complex load pat-

terns from large datasets, addressing the deficiencies of sta-

tistics-based methods. 

ANN is a powerful and commonly used machine learn-

ing-based method, which has a strong nonlinear mapping 

ability. Hsu and Chen [7] utilized ANN for regional load 

forecasting in Taiwan. They divided Taiwan into four re-

gions and constructed ANN models with regional gross do-

mestic product (GDP), population, and highest temperature 

as inputs. The results demonstrate that ANN is more accurate 

than the traditional regression-based model. SVM is also a 

popular and effective machine learning-based method, which 

seeks an optimal hyperplane in the feature space. Dai et al. [8] 

used SVM with ship speed, wind speed, and water flow ve-

locity as features. The improved particle swarm optimization 

algorithm was applied to optimize the parameters of SVM. 

The case simulation shows that the proposed model achieves 
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a good prediction accuracy with a reduced average relative 

error. 

With the continuous expansion of the scale and increase in 

the complexity of the power system, traditional machine 

learning-based methods gradually show limitations when 

dealing with nonlinear, uncertain, and complex dynamic load 

data. Deep learning-based methods, a subfield of machine 

learning-based methods, have shown their powerful capabili-

ties in STLF [17]. Kong et al. [15] proposed an LSTM-based 

framework for STLF. Compared with multiple benchmarks 

like empirical methods and other machine learning ap-

proaches, the LSTM-based framework generally achieves the 

best performance in individual and aggregated load forecast-

ing. In addition, Kim and Cho [14] proposed a CNN-LSTM 

neural network for predicting residential electric load con-

sumption. It uses CNN to capture spatial features from mul-

tiple variables, and LSTM to model temporal information. 

Experiments show that it outperforms conventional methods, 

achieving the lowest error metrics. 

Although the machine learning-based methods have been 

widely used in STLF, they still face the problem that a single 

model may struggle to fully capture all underlying dynamics, 

leading to reduced prediction accuracy. 

3. Methodology 

As shown in Figure 1, in order to address the deficiencies 

of a single model, a stacking-based ensemble learning model 

is proposed in this study. 

3.1. Data Preprocessing 

Load data from different time periods or different systems 

may vary greatly in terms of value range and time scale, 

which will bring inconvenience when performing mathemat-

ical operations or comprehensive analysis. Therefore, in this 

study, min-max normalization is employed, which scales the 

raw load data to the range from 0 to 1. The process of 

min-max normalization can be described as Eq. (1) [18]. 

min

norm

max min

x x
x

x x





               (1) 

where x  is the raw load data; minx
 is the minimum of x ; 

maxx
 is the maximum of x ; normx

 is the normalized load 

data. 

Besides, in the actual operation process of the power sys-

tem, due to various reasons such as equipment failure, com-

munication interruption, and measurement errors, load data 

may be missing, which will affect the performance of the 

proposed model. Therefore, zero is used for imputation to 

ensure the integrity of data in this study. 

3.2. Training of Base Prediction Models 

In this stage, six base prediction models with superior pre-

dictive capabilities are chosen. These models encompass 

three traditional machine learning models, namely LR, DT, 

and RF, along with three deep learning models, specifically 

MLP, CNN, and LSTM. The training set undergoes random 

sampling six times, generating six independent training sub-

sets. Each of these subsets is utilized to train a base predic-

tion model separately. Subsequently, the validation set is 

employed to validate the training outcomes, enabling the 

acquisition of the optimal parameters for the trained base 

prediction model. Finally, the trained and optimized base 

prediction models are obtained. 

3.3. Training of Stacking-Based Ensemble 

Learning Model 

In this stage, the optimized base prediction models that 

have been trained in the preceding stage utilize the validation 

dataset to derive the predictor variables of the validation da-

taset. These variables are then combined to form a matrix. 

Subsequently, the ensemble learning model employs these 

predictor variables as training inputs, resulting in the devel-

opment of a trained ensemble learning model. Lastly, the test 

dataset is fed into the trained optimized base prediction 

models to obtain the predictor variables of the test dataset. 

These variables are further processed by the trained ensem-

ble learning model to generate the final prediction outcomes. 

4. Experiment 

Comparative experiments and error analysis are carried 

out between the single base prediction models and the pro-

posed SBEM in this section. Additionally, the performance 

of the SBEM is thoroughly analyzed. 

4.1. Experimental Settings 

All the experiments were executed using Python on a per-

sonal computer. The specifications of this computer include 

an Intel Core i5 CPU running at 1.60GHz, 16GB of Random 

Access Memory (RAM), and an Intel(R) UHD Graphics 

GPU. 

4.2. Evaluation Metrics 

To evaluate the performance of the prediction models, five 

evaluation metrics are chosen as follows: mean absolute er-

ror (MAE), root mean square error (RMSE), mean absolute 

percentage error (MAPE), the coefficient of determination 

(R2), and running time (RT). 

MAE: MAE is employed to evaluate the difference be-

tween the true value and the predicted value, which can be 

calculated according to Eq. (2). 
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1

1
ˆ

N
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n

MAE y y
N 

                (2) 

where N  indicates the total number of samples; n  indi-

cates the timestep; iy  indicates the true value; ŷ  indicates 

the predicted value. 

RMSE: RMSE is utilized to measure the extent of deviation 

between the actual value and the predicted value. RMSE 

exhibits a higher sensitivity to the outliers present within the 

dataset and can be computed using Eq. (3). 
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                  (3) 

 
Figure 1. The structure of the SBEM. 

MAPE: MAPE indicates the average proportion of the rel-

ative error existing between the actual value and the predicted 

value, and MAPE can be determined by using Eq. (4). 

1

ˆ100% N
i i

n i

y y
MAPE

N y


             (4) 

R2: R2 is employed to assess how well the predictive model 

fits the data. Contrary to what one might expect, the closer the 

value of R2 is to 1, the better the model fits the data, signi-

fying a stronger predictive ability. R2 can be computed using 

Eq. (5). 
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where iy
 is the average of the true values. 

RT: RT indicates the run time of a model. 

The closer the values of MAE, RMSE, MAPE and RT are 

to zero, the better the model is. Conversely, the closer the 

value of R2 is to 1, the more superior the model is. 

 

4.3. Comparative Experiments 

To evaluate how effectively the proposed SBEM can pre-

dict electric load, comparative experiments are carried out. 

These experiments compare six individual base prediction 

models with the ensemble learning models. Then, the five 

previously mentioned evaluation metrics are utilized to 

characterize the prediction capabilities of these models. The 

outcomes of comparative experiments are shown in Table 1. 

As depicted in Table 1, for the majority of the evaluation 

metrics, the prediction outcomes of the SBEM surpass those 

of the individual base prediction models. The results show 

that when it comes to prediction accuracy and stability, the 

SBEM demonstrates superiority over the single base predic-

tion models. The SBEM exhibits more excellent performance 

in the prediction of electric load. 

Table 1. Results of comparative experiments for all models. 

Models MAE↓ RMSE↓ MAPE (%)↓ R2↑ RT↓ 

DT 4549 6604 0.055 0.94 10.13 

RF 5331 7005 0.066 0.94 20.90 

LR 3779 5626 0.046 0.92 68.14 

CNN 3460 5273 0.042 0.91 103.36 
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Models MAE↓ RMSE↓ MAPE (%)↓ R2↑ RT↓ 

LSTM 4848 6355 0.061 0.90 133.09 

MLP 3393 5156 0.042 0.91 115.47 

SBEM 3381 5071 0.041 0.95 53.53 

*Note: The values of significance are presented in bold font; “↓” 

signifies that a lower value is more favorable; “↑” indicates that a 

higher value is preferable. 

4.4. Error Analysis 

To visually contrast the average performance and stability 

of the six individual base prediction models and the proposed 

model, error analysis based on MAE and RMSE was con-

ducted. The outcomes of each model, obtained from 10 sep-

arate runs, are depicted through box plots. The corresponding 

box plots are illustrated in Figure 2, which displays the dis-

tribution of these results. 

As depicted in Figure 2, the interquartile range of the 

SBEM is narrower than that of the six individual base pre-

diction models, which reveals its better stability. In addition, 

the average values of MAE and RMSE for the SBEM are 

lower than those of the base prediction models, demonstrat-

ing its superior average performance. 

4.5. Analysis of Curve Fitting Results 

To present the performance of each model in STLF in a more 

intuitive manner, Figure 3 illustrates the level of agreement 

between the actual values and the predicted values for each 

model. 

 
Figure 2. The structure of the SBEM. 

As depicted in Figure 3, the predicted values derived from 

the SBEM are much nearer to the actual values. This sug-

gests that when it comes to predicting electric load, the 

SBEM outperforms individual base prediction models. It is 

more precise and stable in grasping the variation trend of 

electric load. 

5. Conclusion 

In this study, a stacking-based ensemble learning model is 

proposed for STLF. Firstly, min-max normalization and zero 

imputation are used for data preprocessing. Secondly, six 

base prediction models including LR, DT, RF, MLP, CNN, 

and LSTM are utilized to train optimized base prediction 

models. Thirdly, the optimized base prediction models are 

integrated to predict electric load with a stacking-based en-

semble learning method. Experiments are extensively con-

ducted to show the effectiveness of the SBEM. 

Besides the application in electric load forecasting, the 

proposed model has the potential for expansion into other 

prediction scenarios, such as wind prediction and electricity 

price prediction. In future studies, other relevant factors such 

as calendar indicators, natural disasters, and meteorological 

information will be incorporated. Besides, to enhance the 

interpretability of the proposed model, explainable machine 

learning will be investigated. 
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Figure 3. Curve fitting results. 

Abbreviations 

STLF Short-Term Load Forecasting 

ARIMA Autoregressive Integrated Moving Average 

ES Exponential Smoothing 

MLR Multiple Linear Regression 

ANN Artificial Neural Network 

SVM Support Vector Machine 

RF Random Forest 

SBEM Stacking-Based Ensemble Learning Model 

LR Logistic Regression 

DT Decision Tree 

MLP Multilayer Perceptron 

CNN Convolutional Neural Network 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

RMSE Root Mean Square Error 

MAPE Mean Absolute Percentage Error 
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