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Abstract 

We propose a relationship between the water surface elevation and the mean water depth for partially wetted rectangular grid 

cells in the numerical simulation of shallow water flow with complex topography, and apply it to the numerical simulation of 

shallow water flow to verify the correctness of the relationship. Many natural terrains have complicated surface topography. It is 

very important to accurately predict the steep-fronted flows that occur after heavy rainfall flash floods or as inundation from dyke 

breaches. When modeling any terrain, rectangular grid cells are used to facilitate grid generation. In order to achieve a numerical 

balance of flux gradient and the source terms and to avoid numerical instability, a relationship between the water surface 

elevation and the mean water depth was derived if wetted and dry parts coexist within a rectangular grid cell. To estimate the 

momentum flux at the grid cell boundaries, we applied the second-order spatial accuracy Godunov finite volume algorithm with 

Roe approximation solver using the MUSCL method. Next, these relationships are applied to numerical simulations of 

three-dimensional shallow water flows with three humps and the validity of the proposed relationship is discussed. The 

relationship presented in this paper accurately reflects time-varying water regimes and boundaries in flow problems with moving 

wetting and drying zone interfaces and can be used for numerical simulations of three dimensional shallow water flows with 

arbitrary topography. 
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1. Introduction 

Nowadays, numerical simulation studies of shallow water 

flows have been widely used to predict global flows such as 

tidal currents, tsunami phenomena and surge waves, and riv-

er flooding due to dam breakage, and their practical value 

has been confirmed [1-3, 6, 8]. 

One difficulty in numerical simulation of shallow water 

equations is the problem of achieving a numerical balance 

between the source term and flux term. Due to disagreement 

arising from the discretization method between the numerical 

calculation of the bottom gradient term, one of the source 
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terms, and the numerical calculation of the pressure gradient 

component of the flux term, is not well balanced between 

these two terms. The error due to this imbalance is present 

with the time derivative term, causing pseudo-numerical flow, 

and the accumulation of them during the numerical simula-

tion results in instability during the simulation [4, 11-16, 19, 

20]. 

Studies have been conducted to achieve the numerical 

balance of the bottom gradient source term and the flux gra-

dient term. Bermudez proposed a new scheme based on the 

upwind method for unsteady shallow water flow problems to 

deal with the bottom gradient terms. This method greatly 

improves the accuracy of the numerical solution, but the 

main drawback is its complexity, which makes it difficult to 

use for large-scale flow calculations [9, 17]. Leveque pro-

posed a treatment of bottom gradient terms to balance the 

source and flux gradient terms, which is suitable for slow 

steady flow but not sufficient for steady supercritical flows 

with shock waves [18]. 

One method that is widely used for balancing the bottom 

gradient source term and the flux gradient term is to replace 

the water depth variable h with the water level variable η in 

the shallow water equation system and to achieve a numeri-

cal balance using the formula h=η-zb between the water ele-

vation variable and the bed elevation variable zb. In this 

method, η becomes constant if water is still at rest even on 

the slope bottom, so that the slope of η is zero regardless of 

the bottom topography, and thus does not cause false flow. 

However, because this method uses the relationship between 

water surface elevation and bottom elevation, η=h+zb, it is 

difficult to apply in cases of water inflow or runoff in par-

tially wet areas where wet and dry areas coexist, and once 

applied, a negative water depth and water elevation are ob-

tained, causing the instability of the simulation. 

Begnudelli and Sanders [10] proposed a finite volume al-

gorithm for unstructured grids using a relationship of water 

surface elevation and average water depth near the wet/dry 

interface. This method can greatly reduce the computational 

time because, unlike in dynamic or adaptive quad tree mod-

els, the mesh can be fixed without adding more mesh ele-

ments during the computation. Also, in the partially wetting 

region where wet and dry regions coexist, it does not cause 

pseudo-flow in almost all shallow water flows, as it can pro-

vide a numerical balance between source and flux terms. 

However, if we use unstructured mesh, the convergence of 

the solution is worse compared to structured mesh, which 

requires more simulation time. 

Other methods use moving computational mesh with 

wet/dry area interface [5, 7]. These methods are relatively 

precise and accurate, but computationally expensive and do 

not suffice to simulate flow in any terrain. The reason is that 

each time the boundary moves, the mesh must be regenerated, 

and often the computational nodes must be added during the 

flooding and drained during the flooding, thus reducing the 

error of the mesh distortion. 

In this paper, we propose a new relationship between wa-

ter surface elevation and average water depth in partially 

wetted rectangular cells in a finite volume scheme for a 

structural mesh, and apply it to simulation of shallow water 

flow with complex topography to verify its accuracy. This 

paper is composed of the following 4 sections. In Section 2, 

basic equations of shallow water flow are presented. In Sec-

tion 3, relationships between water surface elevation and 

mean water depth for partially wetted rectangular cells are 

derived. In Section 4, the simulation results are discussed. 

2. Basic Equations of Shallow Water 

Flow 

For shallow water flow, the vertical velocity and accelera-

tion components of the fluid particle are negligible compared 

to the corresponding components in the horizontal direction. 

Thus, the assumption that the influence of internal viscous 

forces on the flow with hydrostatic pressure distribution is 

negligible is applied to the three-dimensional incompressible 

N-S equation, and that the integration along the depth (vertical) 

is carried out, and then the governing equations for shallow 

water flow are obtained considering the influence of external 

factors such as the experimentally determined bed friction 

stress, the wind friction stress acting on the free surface, and 

the Coriolis force. The integral form of the two-dimensional 

conservative shallow water equation is described as follows. 
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Where, h is depth, (u, v) are x and y direction components 

of the depth-averaged horizontal velocity, ‘g’ is gravitational 

acceleration, z is bed elevation, τb is friction force of bed and 

‘m’ is a constant with respect to the bed state. 

Applying Green's formula to the system of equations (1), 

we obtain Eq. (2) 

nU F SdV d dV
t
  


  

               (3) 

nF F Gx yn n     

Where Γ is the boundary of the volume Ω and Fn is the flow 

rate across the boundary Γ. Applying the integral expression 

to a rectangular finite volume, we obtain the following finite 

volume equation. 

    n n n

1 ˆˆF F U F U R Λ ΔV
2

n n n n
L R RL       (4) 

Where, R and Λ̂  are diagonal matrices consisting of the 

eigenvector matrix of the Roe mean matrix and the absolute 

values of the eigenvalues, and Vn
RL are characteristic varia-

ble difference matrices. 

 nF Un
L  and  nF Un

R  are fluxes calculated using 

MUSCL reconstructed data on the left and right sides of the 

cell boundary, respectively, and the label ‘^’ indicates the 

quantities obtained from the Roe averages by reconstructed 

data. 

3. Relationship Between Water Surface 

Elevation and Mean Water Depth for 

Partially Wetted Rectangular Cells 

In finite volume schemes of shallow water equations, the 

water depth is defined as the value at the cell centroid, in 

terms of the cell mean value of water depth. However, in 

partially wetted cells, i.e., cells with enough fluid to submerge 

at least one vertex but not all, the average depth is badly 

represented by the depth at the centroid. For example, a cell 

may contain water while the free surface elevation is below 

the bed elevation of the centroid, zc. The flow depth h of each 

cell is defined to be the ratio of the fluid volume V contained 

in the cell to the cell area A. In fully wet cells η=h+zc, but this 

equality is not true in partially wetted cells. 

In case of partially wetted rectangular cells, the relationship 

between water surface elevation η and mean value of water 

depth h is considered. 

Vertex coordinates of the ith cell is labeled as 

  , , 1,2,3,4i i ix y z i   and assume that 1 2 3 4z z z z   . 

 
Figure 1. Configuration of partially wetted rectangular cell. 

As illustrated in Figure 1. If 1z  , fluid is in the cell, so 

h=0. If 1 2z z  , the the relationship between η and h is 

given by 

 
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given by 
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If 4z  , the the relationship between η and h is given by 

ch z  ,  1 2 3 4 / 4cz z z z z    . 

Using these relations, we can calculate h for a given η, 

whereas we can calculate η for a given h. 

4. Numerical Example 

Numerical examples are conducted on rectangular regions 

with 75 m length and 36 m width surrounded by vertical wall 

boundaries. The bottom topography in the region has three 

humps and is expressed as follows. 

   , max 0, 1, 2, 3z x y a a a  

   
2 21

1 1 30 6
8

a x y      

   
2 21

2 1 30 24
8

a x y      

   
2 23

3 3 47.5 15
10

a x y      

At time t= 0, dam is located at x =16m that initially retains 

still water with surface elevation 1.875 m, Figure 2 shows the 

computational domain and initial water elevation. In partially 

wetted cells, the bed friction is neglected to consider only the 

effect of the relationship between the free surface and depth 

on the flow. At time t= 0, the vertical water column of 1.87 m 

water elevation is stopped up to 16 m in the region length, and 

all other areas are dry. After the initial moment, the flow 

process was considered as the process of passing through the 

hump as the water column collapsed and reaching the final 

steady state. 

 
Figure 2. Computational domain and initial water surface. 

Figure 3-Figure 7 shows the development of the water 

column with time. After the dam has been destroyed, the large 

wave starts to inundate the dry zone. By time t =2s, the front 

has reached the pair of small humps and begins to rise over 

them. At time t =6s, the small humps are entirely submerged, 

and the wet/dry front has reached the large hump, while water 

cascades around the side of the hill. At time t = 12 s, the flood 

water that is passing either side of the large hill starts to flood 

the lee of the hill. At time t= 55 s, the large wave motion is 

almost eliminated, the ripple remains, almost steady state is 

reached until time t=150~200 s, and the humps of the small 

hills are no longer submerged. 

 
Figure 3. The development of water column change at time t = 2s. 

 
Figure 4. The development of water column change at time t = 6s. 

 
Figure 5. The development of water column change at time t = 12s. 
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Figure 6. The development of water column change at time t = 50s. 

Table 1. The cpu calculation time required for numerical simulations 

up to the physical time t = 150 s. 

Method Cpu computation time (s) 

Moving grid method 3075 

Method of Sanders (2006) 1724 

Present method 1258 

 
Figure 7. The development of water column change at time t = 150 s. 

In Figure 8 and Figure 9, the contours of the calculated 

water depth at different times are plotted, and the reflection 

and interaction of the waves are clearly visible, and no vibra-

tion or disturbance is observed at the wet/dry boundary. 

 
Figure 8. Concentration changes at time t = 8 s. 

 
Figure 9. Concentration changes at time t=12 s. 

Numerical simulation results for complex bottom topog-

raphy show that our method adequately simulates the flow to 

dry areas and the complicated processes of drainage and dry 

area formation, and does not generate pseudo flow. Also, the 

numerical simulation results are very similar to those reported 

in literature [2, 3, 7]. Table 1 shows the computational time of 

using our method, the moving grid method and the adaptive 

quadtree mesh method for the simulation of shallow water 

flow with three humps. 

5. Conclusions 

In the paper, we derived the relationships between the 

water surface elevation parameter and the mean water depth 

parameter in a partially wet cell if a rectangular grid is used 

in numerical simulations by the Godnov-type finite volume 

method of the two-dimensional shallow water flow equation 

system. Using these relationships, the dam-break flow sim-

ulation over three hills accurately predicts the transport 

processes of wet/dry fronts and provides stable simulation 

results for complex bottom topography. This shows the ap-

plicability of our method to realistic dam break flow simu-

lation. 

Abbreviations 

MUSCL Monotone Upwind Scheme for Conservation 

Laws 

Acknowledgments 

It is also the result of collaborative research with State 

Academy of Sciences. 

Disclosure Statement 

No potential conflict of interest was reported by the au-

thor(s). 

Funding 

This work was partially supported by State Academy of 

http://www.sciencepg.com/journal/ijfmts


International Journal of Fluid Mechanics & Thermal Sciences http://www.sciencepg.com/journal/ijfmts 

 

19 

Sciences. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 

[1] S. Bryson, Y. Epshteyn, A. Kurganov, and G. Petrova, “Well 

balanced positivity preserving central-upwind scheme on tri-

angular grids for the Saint-Venant system”, ESAIM Mathe-

matical Modelling and Numerical Analysis, vol. 45, no. 3, pp. 

423-446, 2011. 

[2] Qiuhua Liang and Alistair G. L. Borthwick, “Adaptive quad-

tree simulation of shallow flows with wet-dry fronts over 

complex topography”, Computers & Fluids, 2008, vol38, 

221-234. https://doi.org/10.1016/j.compfluid.2008.02.008 

[3] Qiuhua Liang; Guozhi Du and Jim W. Hall, “Flood Inundation 

Modeling with an Adaptive Quadtree Grid”, Journal of hy-

draulic engineering, 2008, Vol. 134, No. 11.  

https://doi.org/10.1061/(ASCE)0733-9429(2008)134:11(1603) 

[4] R. Hu, F. Fang and P. Salinas, “Numerical simulation of floods 

from multiple sources using an adaptive anisotropic unstruc-

tured mesh method”, Advances in Water Resources 123(2019) 

173-188. https://doi.org/10.1016/j.advwatres.2018.11.011 

[5] Z. D. SKOULA. and A. G. L. BORTHWICK., “Godunov-type 

solution of the shallow water equations on adaptive unstruc-

tured triangular grids”, International Journal of Computational 

Fluid Dynamics, Vol. 20, 621-636, 2006. 

[6] Hibberd S. and peregrine D. H, “Surf and run-up on a beach”, 

Journal of Fluid Mechanics, Vol 95, pp. 323-345, 1979. 

[7] Feng Zhou, Guoxian Chen, Yuefei Huang, “An adaptive 

moving finite volume scheme for modeling flood inundation 

over dry and complex topography”, WATER RESOURCES 

RESEARCH, VOL. 49, 1914-1928, 2013. 

[8] Sheng Bi, Jianzhong Zhou and Yi Liu, “A Finite Volume 

Method for Modelling Shallow Flows with Wet-Dry Fronts on 

Adaptive Cartesian Grids”, Mathematical Problems in Engi-

neering, 2014, https://doi.org/10.1155/2014/209562 

[9] Zhou J. G., “The surface gradient method for the treatment of 

source terms in the shallow water equation”, Journal of Com-

putational Physics, 168, 2001. 

[10] Lorenzo Begnudelli and Brett F. Sanders, “Unstructured Grid 

Finite-Volume Algorithm for Shallow-Water Flow and Scalar 

Transport with Wetting and Drying”, JOURNAL OF HY-

DRAULIC ENGINEERING, Vol. 132, No. 4, April 1, 2006. 

https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371) 

[11] Gangfeng Wu, Zhiguo He and Guohua Liu, “Development of a 

Cell-Centered Godunov-Type Finite Volume Model for Shal-

low Water Flow Based on Unstructured Mesh”, Mathematical 

Problems in Engineering, 2014.  

https://doi.org/10.1155/2014/257915 

[12] Xin Liu, Jason Albright and Yekaterina Epshteyn, 

“Well-balanced positivity preserving central-upwind scheme 

with a novel wet-dry reconstruction on triangular grids for the 

Saint-Venant system”, Journal of Computational Physics 374 

(2018). 213-236. https://doi.org/10.1016/j.jcp.2018.07.038 

[13] Shintaro Bunya and Ethan J. Kubatko, “A wetting and drying 

treatment for the Runge-Kutta discontinuous Galerkin solution 

to the shallow water equations”, Computer Methods in Applied 

Mechanics and Engineering. 198 (2009) 1548-1562.  

https://doi.org/10.1016/j.cma.2009.01.008 

[14] Jean-Marie Zokagoa and Azzeddine Soulaïmani, “Modeling of 

wetting-drying transitions in free surface flows over complex 

topographies”, Computer Methods in Applied Mechanics and 

Engineering 199 (2010) 2281-2304.  

https://doi.org/10.1016/j.cma.2010.03.023 

[15] Vazque M. E, “Improved treatment of source terms in upwind 

schemes for the shallow water equations in channels with ir-

regular geometry”, Journal of Computational Physics 148 

(1999) 497-506. 

[16] Niklas Wintermeyer, Andrew R. Winters and Gregor J. 

Gassner, “An entropy stable discontinuous Galerkin method 

for the shallow water equations on curvilinear meshes with 

wet-dry fronts accelerated by GPUs”, Journal of Computa-

tional Physics 375 (2018) 447-480.  

https://doi.org/10.1016/j.jcp.2018.08.038 

[17] Bermudez A. V and Vazque M. E, “Upwind methods for hy-

perbolic conservation laws with source terms”, Computers & 

Fluids, vol23(8), 1049-1071, 1994. 

[18] Leveque R. j, “Balancing source terms and flux gradients in 

high resolution Godunov methods”, Journal of Computational 

Physics 146 (1), 346-365, 1998. 

[19] Hamid Reza Vosoughifar and Azam Dolatshah, “Discretization 

of Multidimensional Mathematical Equations of Dam Break 

Phenomena Using a Novel Approach of Finite Volume Meth-

od”, Journal of Applied Mathematics, 2013. 

[20] Yuxin Huang, Ningchuan Zhang and Yuguo Pei, 

“Well-Balanced Finite Volume Scheme for Shallow Water 

1914-1928. 

 

 

http://www.sciencepg.com/journal/ijfmts

