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Abstract 

Fault diagnosis is an essential task in ensuring the smooth operation of complex dynamic systems. The consequences of faults 

can be serious, leading to loss of life, harmful emissions to the environment, high repair costs and economic losses caused by 

unplanned production line stoppages. The work developed in this paper concerns the modeling and diagnosis of faults (sensor 

faults, system faults, actuator faults) in hybrid dynamic systems using our multi-model approach (which combines two 

sub-models, one continuous and the other discrete). The aim is to integrate three well-known tools in the literature: the Bond 

Graph, the Observer and the Timed Automata, to design a global diagnostic model. The hybrid dynamic system is modeled by 

connecting the tools for the continuous part, i.e. the bond graph and the observer, to the timed automata for the discrete part. The 

resulting model is used for fault diagnosis in two stages: The first is fault detection by analyzing the residuals generated by the 

system output and that of the observer. The second step involves fault localization, which results from analysis of the signature 

matrix and temporal identification of the system. The proposed method combines the advantages of these tools to obtain the best 

performance, particularly in the fault location phase. The simulation results prove the effectiveness of the proposed model for the 

hybrid dynamic system. Moreover, these results also evaluate the performance of the proposed diagnostic approach while 

reducing non-detections, detection delays and false alarms. 
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1. Introduction 

Industrial systems have become more and more complex 

due to an increasing automation of the production tools 

augmenting thus the risks of malfunctioning which can en-

danger the system itself and also its environment. The most 

important goal of automation today is to increase the opera-

tional safety of physical systems. It is for this reason that a 

monitoring system is implemented which is able to provide, at 

any time, the operating status of the various constituent parts 

of the system (sensor, actuator,...). 

The objective of the diagnostic function is to increase 

safety in order to limit the consequences of faults that can be 

catastrophic for equipment and human lives, thus improving 

productivity and system performance. For the detection and 

localization of faults, several approaches have been developed 

by various research communities ‎[1-4]. 

The work developed in this article focuses on modelling 
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and diagnosis by a multi-model approach (which combines 

two sub-models, one continuous and the other discrete). The 

objective concerns the integration of three tools known in 

the literature: the Bond Graph, the Observer and the Timed 

Automata for the design of a global diagnostic model. The 

latter allows to detect and localize defects in order to mini-

mize repair times, and thus, provide a reliable and easily 

interpretable diagnosis despite the complexity of the 

equipment. All these developments contribute to minimize 

the harmful consequences that can be catastrophic for the 

equipment and human safety. Thus, in order to properly 

study and diagnose Hybrid Dynamic Systems (HDS), our 

proposed approach will be illustrated with didactic exam-

ples. 

2. Model of the Proposed Approach: 

Multi-Model Approach 

The HDS are systems composed essentially of discrete 

and continuous dynamics interacting with each other. The 

modeling approach we are interested in for our work con-

siders the HDS model, which is based on the combination of 

two submodels, one for the continuous aspects, formalized 

by state equations (often by differential equations), and the 

other, based on finite-state automata for the event-based 

aspects. 

Generally, obtaining the model is a difficult and complex 

task, especially for processes due to their diversity and the 

coupling of energies that characterize them. Indeed, dynamic 

systems are composed of elements belonging to multi-energy 

domains (thermal, hydraulic, mechanical, electrical, etc.). The 

research themes, in the continuous domain of automation, are 

centered around the Bond Graph methodology. The choice of 

this methodology is explained by its ability to model with a 

unified and energetic approach the systems implementing 

several domains of physics, by its graphical aspects, and by its 

causal and structural properties for the analysis and the dy-

namic control of complex systems. The causal properties of 

the Bond graph methodology allow to deduce the model of the 

system in the form of state space. In this way, through the 

Bond Graph model, it becomes possible to obtain the 

knowledge of the system behavior. 

Equation of state from the bond graph model 

The Bond Graph methodology [5, 6] was chosen for its 

ability to model systems involving several fields of physics 

(thermal, hydraulic, mechanical, electrical, etc.) with a unified, 

energetic approach, for its graphical aspects, and for its causal 

and structural properties for the analysis and dynamic control 

of complex systems. Structurally, a bond graph model is 

state-observable if and only if there is a causal path between a 

detector Df or De and all dynamic elements C and I, as illus-

trated in Figure 1. 

 
Figure 1. Structure of a bond graph model. 

The equation of state from the bond graph model has the 

following form: 

x Ax Bu

y Cx Du

 


 
                (1) 

In the bond graph model, the inputs ―u‖ are the sources of 

flow (Sf, MSf) and effort (Se, MSe), the state variables ―x‖ are 

the energy variables: the impulse (p) and the generalized 

displacement (q) associated with the C and I elements, and the 

measurements ―y‖ are the effort (De) and flow (Df) detectors. 

A dynamic system is in normal operation if it is capable of 

performing functions that are designed. A fault that occurs on 

one of the components of the system, can lead to a malfunction 

on the component and consequently on the global system. 

3. Multi-Model Diagnosis 

The industrial systems are generally of a hybrid nature, in 

other words, their behavior is based on the evolution and the 

interaction of discrete and continuous variables. For this type 

of system, few works have been devoted to the detection and 

diagnosis of faults. Moreover, the general principle of mod-

el-based fault detection methods is to compare the actual 

behavior of the system as it is known from measurements, 

with the behavior it should have under the assumption of 

proper operation given by a model. 

The multi-model approach proposed in the present work is 

based on the interaction of two sub-models (discrete and 

continuous). The diagnostic method combines the advantages 

of the Observer and the Timed Automata to obtain the best 

performances, in particular in the fault location phase. Each 

step is described in a classical form. Figure 2 illustrates the 

multi-model structure of a hybrid dynamic system where the 

discrete part is described by a timed automata and the con-

tinuous part is given by a bond graph and an observer. 

The principle of our diagnosis approach is based on the 

comparison between the actual behavior of the system and its 

expected behavior given by our multi-model approach pro-

posed in the present work. Fault diagnosis is performed in two 

main stages: 

The first is fault detection: if the residuals, generated by the 
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observer model, are non-zero, and if an event does not occur 

at the desired time, then a fault is detected. 

Once a fault has been detected, it needs to be localized. 

The second step, therefore, concerns fault localization: 

based on the system's temporal identification and analysis of 

the signature matrix, a fault is then localized. 

 
Figure 2. Multi-model approach of hybrid dynamic system. 

3.1. Diagnosis of the Continuous Part 

Residual fault sensitivity problems deserve further study. In 

the continuous part of the hybrid dynamic system, the first 

step is to generate fault sensitive residuals. The algorithm 

used to obtain the residuals is called residual generator. Three 

approaches (Parametric Estimation Approach ‎[7-9], Analytic 

Redundancy Relations or Parity Space Approach ‎[10, 11] and 

Observer Based Approach ‎[12, 13]) are mainly used to con-

struct this residue generator. A good comparison of these 

three approaches can be found in ‎[14]. 

3.1.1. Diagnosis Based on State Observer 

The residual is an indicator of the occurrence of a mal-

function that affects a system and is often modeled by un-

known additive signals. 

In fact, the appearance of a significantly non-zero residual 

indicates an abnormal operation of the system, we speak of 

the detection of a fault. It is then interesting to identify the 

faulty component, it is the localization. 

The diagnostic technique based on observers mainly allows 

the design of an observer structure that generates residuals 

allowing the detection and localization of the considered 

defects. Typically, observers produce estimates that can be 

subtracted from the available measurements to obtain the 

residuals. There are different approaches to observers for 

linear systems and for different classes of nonlinear systems. 

The main references can be found in ‎[14-19]. 

3.1.2. The Observer Principle 

It is assumed that the system is represented as a continuous 

linear dynamic model with p inputs, noted u(t) and m meas-

ured outputs, noted y(t). The set of n quantities describing the 

state of the system, noted x(t), obeys the following differential 

system: 

0

( ) ( ) ( )

( ) ( )

(0)

x t Ax t Bu t

y t Cx t

x x

 



 

             (2) 

Where the matrices 
n nA R  , 

n pB R  , m nC R  . 

To diagnose a fault, the following observer is constructed: 
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0

( ) ( ) ( ) ( ( ) ( )) 

( ) ( )

(0)

x t Ax t Bu t K y t y t

y t Cx t

x x

    



 


    (3) 

The observer has as input u(t) and y(t), and it is constructed 

to provide an estimate of the state, denoted ( )x t . Since it has 

been assumed that the pair (A, C) is observable, the observer 

gain matrix K can be chosen such that (A - KC) is a stable 

matrix. 

3.1.3. Residual Generator by Observer 

Our goal is to directly construct residual generators r(t) 

from the observers: 

 

( ) . ( ) . ( )

( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ( ) ( ))

x t A x t B u t

x t Ax t Bu t K y t y t

r t y t y t C x t x t

 


   


   

      (4) 

Indeed, the residuals r(t), in the case of observers, represent 

the difference between the real output and the estimated 

output. In other words, it is the estimation error. 

The detection step is very important in diagnostic systems. 

It is used to determine whether or not a fault is present. If this 

step is not properly performed, faults may be detected incor-

rectly or not at all, or false alarms may appear. An alarm Ai(t) 

assigned to the i
th

 fault is obtained following the comparison 

of ri(t) to a threshold εi established during a measurement 

campaign made during the operation of the system in the 

absence of a fault. 

0,       if   ( )
( )

1,       if   ( )

i i

i

i i

r t
A t

r t





 
 



              (5) 

When a fault is detected, it is necessary to locate it. Unlike 

detection, where only one residue is needed, the localization 

procedure requires a set (or vector) of residues. Consequently, 

this localization is performed from the signature matrix. 

Indeed, the residues are designed to be each affected by a 

subset of defects and insensitive to other defects. Thus, only 

one subset of residues reacts when a defect appears. Then, the 

signature matrix gathers the sensitivity information for the 

residues. It is defined as follows: 

 

 if and onl

           

y if  

             : 0?;1

           

 

 if and only if   insens

                 ( , ) ( , )

1  is sensitive to fault 
( , ) 

0   to iti fault  ve

R

R

j i

R
j i

M D R

d r M i j

r d
M i j

r d






 


 (6) 

The dimensions of the signature matrix MR are defined by 

the number of actuators and sensors, and the number of re-

siduals obtained from the observer model. It is a binary matrix, 

with row i corresponding to the fault di and column j to the 

residual rj. 

1 0 0

0 1

0

0 0 1

RM

 
 
 
 
 
 

            (7) 

3.2. Diagnosis of the Discrete Part 

In some applications, temporal information is essential and 

must be taken into account explicitly by the model. The 

models that have this characteristic are called temporalized. In 

the description of discrete event systems, these are models 

where time is deterministic (temporal Petri nets, timed au-

tomata ‎[20]) and models where time is random (Markov chain, 

queuing networks). We present, in the following, only one 

tool among the modelling possibilities in the discrete domain, 

the timed automata. In the context of our work on the discrete 

part of the hybrid system, our objective is to design a diag-

nostic system, called a diagnoser, which allows to analyze, 

detect and localize a fault in a system. 

3.2.1. Timed Automata 

A timed automata is a tool for modeling and diagnosing 

systems in real time ‎[21, 22]. This tool allows to generate a 

model to be used for the analysis of a system and in particular 

for the verification of the system operation, the detection and 

the localization of faults. The main objective of the timed 

automata is to integrate time in the model. The integration of 

time is justified by the growing interest in real-time systems in 

recent years. 

3.2.2. Temporal Analysis: Search for Characteristic 

Times 

The diagnostic method detailed in our work of the discrete 

part of the hybrid system is based essentially on the charac-

teristic times of the system. They often correspond to the 

beginning of the system operation, Figure 3. If these times are 

not respected, a fault is detected. This subsection explains 

how to collect these particular instants. The first step is to 

establish the dynamics of the system. The objective is to know 

how the system behaves over time. The simulation allows to 

collect the characteristic times. 
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Figure 3. Example of characteristic times (T1 to T6). 

3.2.3. Principle of Fault Detection 

The temporal evolution of the system leads to a succession 

of states. A discrete transition Ti from a state qi to another 

state qi+1 occurs when two conditions are satisfied. The first is 

related to some logical conditions that can be caused by 

discrete events generated by discrete actuators or discrete 

sensors. The second is related to the given time t that must 

elapse. 

In fact, the detection principle in the discrete part of the 

hybrid system and as we have seen previously is based on the 

comparison, at each instant, between the real state of the 

system, given by the set of sensor states, and the one given by 

the normal behavior model of the system. Thus, if an event 

does not come at the desired time, a fault is detected, Figure 4. 

 
Figure 4. Two operating modes used. 

3.2.4. Fault Location Principle 

The second step of the diagnosis concerns the location of a 

fault. Following the detection of a fault, and the different fault 

modes identified in the Failure Mode and Effects Analysis 

(FMEA), we need to know how the fault will propagate in the 

system and how it will modify the occurrence of future events. 

The dynamic model contains all possible states (normal and 

faulty states) of the system, which allows us to follow its 

temporal evolution. From there, thanks to the trajectory fol-

lowed to go from an initial state to a fault state, we are able to 

locate a fault by quantifying the times taken in the transitions. 

To better understand the different phases of the diagnosis of 

the hybrid dynamic system by our multi-model approach 

(construction of the hybrid dynamic model, detection phase, 

localization phase), we will describe these ideas in more detail 

through a two-tank system. 

4. Application to a Two-Tank System 

4.1. Description of the System 

 
Figure 5. Example of a two-tank system. 

The system, figure 5, consists of two cylindrical tanks: the 

first tank T1 of section S1 (S1 = 0.0154 m
2
) and height h1 and 

the second tank T2, of section S2 (S2 = 0.0154 m
2
) and height h2. 

The tanks communicate through a valve V1 (of hydraulic 

resistance RV1) with a flow rate QS1, always open. The system 

has a single inlet: volume flow qi (qi = 10
-4

 m
3
/s) through a 

pump P. The output flow of the second tank QS2 is allowed by 

a valve V2 of hydraulic resistance RV2. We put four sensors of 

Boolean nature: two level sensors L1and L2 and two overflow 

sensors L3 and L4. 

The controls of the valves V1, V2 and the pump P are of 

AON (All Or Nothing) nature. When the pump P is stopped its 

flow qi is null, when it is in operation its flow qi is equal to 

10
-4

 m
3
/s. The variables V1, V2, P are of Boolean nature. This 

allows us to see two combinations for this example among the 

8 possible combinations, grouped in Table 1. 

Table 1. Construction of the two modes. 

Modes P V1 V2 

Mode 1: Filling 1 1 0 

Mode 2: Draining 0 1 1 
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The overall objective of the system is to maintain the liquid 

in the two tanks at a defined level: 

1 1 1

2 2 2

0.8  0.8   1

0.5  0.5   1

h m if h m then L

h m if h m then L

   


   
      (8) 

4.2. Modelling of Hybrid Dynamic Systems 

The bond graph model representing the system is shown in 

Figure 6. 

 
Figure 6. Bond Graph model of the two-tank system. 

1: Flow source Sf models volume flow qi; 2: Element C 

models storage tank T1; 3: Effort detector De models level 

sensor L1; 4: Element R models valve V1; 5: Element C 

models storage tank T2; 6: Effort detector De models level 

sensor L2; 7: Element R models valve V2. 

Where g is the gravity constant and  the density. 

As explained earlier, the equations of state of the system 

can be deduced directly from the bond graph model (Figure 

6). 

Let's choose as first equation the one corresponding to the 

junction 01, so we have: 

 1

1 1 2 1  2  i c

dh
S q P a S g h h V

dt
        (9) 

Where P is the control of a pump P of the On/Off type, a the 

flux coefficient between 0 and 1, Sc is the section of the 

conduit in m
2 
and V1 is the control of a valve V1 of the On/Off 

type. 

A second one can be generated from the junction equation 

03. Thus, we can write: 

 2
2 1 2 1 2 2 2   2  c c

dh
S a S g h h V a S g h V

dt
    (10) 

Where V2 the control of the valve V2 of the On/Off type. 

After linearization around the stationary operating regime, 

the continuous part of the system, equation (9) and equation 

(10), can be modeled as follows: 

 
   11

22

1

2

1
1 10 20

1 10 20

1 2
2 20 2 20

1

2

 0
2

2

 0
2 2

1 0

0 1

c

c
SS

i
SS c c

S

S

aS g
V aS g

QS h hQ P
S h h q

QQ aS aSg g
V V

S h S h

Qy

y Q

  
   

        
          

          
 


                

     (11) 

 

Where 

a = 0.095 and Sc = 3.7895 10
-4 

m
2
 and g = 9.81 m/s

2
 the 

gravity constant. 

h10 is the level in tank T1 in stationary operation. 

h20 is the level in tank T2 in stationary operation. 

 
1 1 22  S caS g hQ h   (Where QS1 is the flow through 

valve V1) 

2 22  cS SQ a gh  (Where QS2 is the flow through valve 

V2) 

Therefore, according to V1, V2 and P and from Table 1, two 

state representations from the bond graph model of the 

two-tank system are obtained as follows: 

Mode 1: P = 1; V1 = 1; V2 = 0 
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 
   11

22

1

2

1 10 20

1 10 20

2 20

1

2

0
2

2

0 0
2

1 0

0 1

 

 

c

c
SS

i

SS c

S

S

aS g
aS g

QS h hQ
S h h q

QQ aS g

S h

Qy

y Q

  
    

        
          

      
   

 
                 

 (12) 

Mode 2: P = 0; V1 = 1; V2 = 1 

 
11

22

1

2

1 10 20

2 20 2 20

1

2

 0
2

 
2 2

1 0

0 1

c

SS

SS c c

S

S

aS g

QS h hQ

QQ aS aSg g

S h S h

Qy

y Q

  
  

      
        
       

 


                

  (13) 

The Timed Automata representing the system in normal 

operation is given in Figure 7. 

 
Figure 7. Timed Automata of the two-tank system («  » = The logical function AND). 

4.3. Simulation of the Evolution of the System 

The simulation is realized during a total simulation time 

equal to 700s, with the following initial conditions: h1(0) = 

h2(0) = 0. 

The evolution of the liquid levels h1 and h2 are given in 

Figure 8. 

 
Figure 8. The liquid levels in the two tanks (continuous evolution). 

The state of the valves and the state of the pump are given 

in Figure 9. 

 
Figure 9. The state of the valves and the pump (the discrete evolu-

tion). 

4.4. Diagnosis of Hybrid Dynamic Systems 

4.4.1. Analysis of the Observer 

As it has been assumed that the couple (A, C) is observable 

and the matrix (A - KC) is stable, the observer is constructed 

by assuming that there are no uncertainties: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
System :           Observer :

( ) ( ) ( ) ( )

x t Ax t Bu t x t Ax t Bu t K y y

y t Cx t y t Cx t

     
 

  
             (14) 

With 

Mode 1: P = 1; V1 = 1; V2 = 0 

 
 

1 10 20

1 10 20

2 20

 0
2 1 0 0.0717 0

2;     ;    ;    
0 1 0.0083 0.0800

 0 0
2

c

c

c

aS g
aS g

S h h
S h hA B C K

aS g

S h

 
   

       
        

     
  

 

 

Mode 2: P = 0; V1 = 1; V2 = 1 
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4.4.2. Defects Considered 

Sensor faults 

We consider two faults d1, d2 respectively for the two 

sensors L1, L2. That is to say that the two flows QS1 and QS2 

change according to d1, d2. As a result, the measurement 

equations become: 

 

 

1 1 1 2 2

2

1

2 2 2

2 ( )

2  

S c

cS

y aS g h d h d

y a

Q

S g hQ d

     


  

 (15) 

In fact, these defects d1, d2 consist in simulating a different 

operation than the one expected. 

System faults 

These faults are presented as leaks in the two tanks T1 and 

T2. The effect of these leaks on the differential equations is 

similar to the effect of the different flows, but these leaks are 

considered as outflows, and this leads us to implement these 

flows with minus signs (-): (d6 and d7 respectively for the first 

and second tank). 

     1 1

2 1 2

1 6
1 10 20 1 10 20 1 10 20

1 2 7
2 20 2 20 2 20

+  
2 2 2

2 2 2

c c c
S S i

c c c
S S S

aS aS aSg g g
Q V Q Pq d
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
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


  


   (16) 

Actuator faults 

We consider two faults d3, d4 respectively for the two valves V1, V2 and a fault d5 for the pump P. Therefore, the differential 

equations become: 

   1 1

2 1 2

1 3 5
1 10 20 1 10 20

1 3 2 4
2 20 2 20

+  
2 2

2 2

c c
S S i

c c
S S S

aS aSg g
Q V d Q Pd q

S h h S h h

aS aSg g
Q V d Q V d Q

S h S h


 

 



 


                   (17) 

 

These faults d3, d4, d5 thus consist in simulating a different 

operation than the one expected.  
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4.4.3. Generation of Residuals 

As we explained in the previous sections, the deviation 

signal or residual between the measurements and the estima-

tion of the outputs (estimation error on the outputs) is given by 

this equation: 

( ) ( ) ( ) ( ( ) ( ))r t y t y t C x t x t               (18) 

We associate the relation (18) and the system (15), (16), (17) 

and (14), we obtain the following systems: 
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And 
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The system (19) shows that the residue rl is sensitive to 

faults d1, d2, d3, d5 and d6. Thus, system (20) shows that resi-

due r2 is sensitive to faults d1, d2, d3, d4 and d7. Therefore, 

when a fault occurs in the system, the residual rl and/or the 

residual r2 becomes different from zero. 

We notice the presence of the Boolean variables V1, V2 and 

P in the residuals rl and r2, equation (19) and (20), therefore, 

we design two residuals for the two modes mentioned in the 

previous section, by substituting the values of V1, V2 and P 

according to Table 1. The different fault signatures are 

grouped in Table 2. 

Table 2. Signature matrix MR. 

Faults 
Possible 

faults 
Fault mode Components r1 r2 

d1 
d11 L1 Stuck_Up 

Level sensor L1 1 1 
d12 L1 Stuck_Down 

d2 
d21 L2 Stuck_Up 

Level sensor L2 1 1 
d22 L2 Stuck_Down 

d3 d3 V1 Stuck_Close Valve V1 1 1 

d4 
d41 V2 Stuck_Close 

Valve V2 0 1 
d42 V2 Stuck_Open 

d5 
d51 P Stuck_Off 

Pump P 1 0 
d52 P Stuck_On 

d6 d6 Leak in the tank 1 Tank T1 1 0 

d7 d7 Leak in the tank 2 Tank T2 0 1 

Li Stuck_ Down means that the sensor Li always remains in state 0 

(the sensor does not detect high level); Li Stuck_Up means that the 

sensor Li always remains in state 1 (the sensor does not detect low 

level); Vi Stuck_Close means that the valve Vi remains closed on 

an open request; Vi Stuck_Open means that the valve Vi remains 

open on a close request; Pi Stuck_Off means that the pump Pi 

remains OFF on an ON request;; Pi Stuck_On means that the 

pump Pi remains ON on a OFF request; 

All faults are detectable because no line is completely null, 

but are not locatable because the lines are not all different. 

Indeed, the three signatures of L1, L2 and V1 are identical and 

equal to [1 1]. Similarly for the signatures of V2 and T2 equal 

to [0 1] and the signatures of P and T1 equal to [1 0]. 

4.4.4. Temporal Identification of the System 

The construction of the diagnoser by the Timed Automata 

being based on the temporal knowledge of the system, we 

need to know the times of the system as for example the time 

of opening or closing of the valves or the time of change of 

state of the sensors. From Figure 8 and Figure 9, the transition 

times determined for each phase of the system in normal 
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operation are given in Table 3. 

Table 3. Temporal identification of the system. 

Actions Time in seconds Time interval 

Pump P ON 0 
[0, 242.12] 

Pump P OFF 242.12 

Opening of the valve V2 242.12 
[242.12, 247] 

Closing of the valve V2 247 

Activation of sensor L1 242.12 
[242.12, 242.12] 

Deactivation of sensor L1 242.12 

Actions Time in seconds Time interval 

Activation of sensor L2 242 

[242, 246] 
Deactivation of sensor L2 246 

4.4.5. Simulation Results 

The simulation was realized on Matlab - Simulink - State-

flow: Simulink for the evaluation of the residuals of the 

continuous part and Stateflow for the modeling of the discrete 

model. The normal evolution of the residuals are presented in 

Figure 10. The simulation time is fixed at 700s. There are 

perturbations in the residuals that lead us to choose a detection 

threshold ± 10
-7

 (ε1 = ε2 = 10
-7

). 

 
Figure 10. Residuals in normal operation (without faults). 

A fault is simulated at pump P (P Stuck_On) in the time 

interval [350s, 500s]. Figure 11 shows that rl is sensitive to the 

introduced fault. This is confirmed by the matrix MR presented 

in Table 2. 

The instant when the residual rl exceeds its threshold ε1 (ε1 

= 10
-7

) represents the instant of defect detection. This instant, 

called Tdetection, is equal to 367.9s. 

 
Figure 11. Residuals in fault mode (Pump fault P Stuck_On). 

The liquid levels, h1 in pink and h2 in blue, in the presence of a P Stuck_On fault are given in Figure 12. 
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Figure 12. The states of the sensors and the pump in fault mode (Pump fault P Stuck_On). 

Thus, the black and green signals, Figure 12, show the state 

of the L1 and L2 sensors and their sensitivity to this fault (P 

Stuck_On). The states of the pump P and the valve V2 are 

given by the red and brown signals. 

In fact, in Figure 12, we can see that the sensor L2 (green 

signal) remains in state 1; 4.88 sec after the opening of the 

valve V2 and thus the residual r1 at this instant is non-zero. So 

this instant, called Tlocalization, corresponds to the location of the 

fault on the pump P Stuck_On (Tlocalization = 402s). 

5. Conclusion 

In this article, we have opted for a multi-model diagnosis 

method based on Bond Graph, Observer and Timed Automata. 

The choice of this method is justified by its ability to model 

and diagnose faults (sensors, actuator or system) and thus by 

its efficiency in the fault location phase. 

The performances of the proposed multi-model diagnosis 

method have been validated on the hydraulic system with two 

tanks. The simulation of some faults (component faults, 

sensor faults and actuator faults) to provide a validity to our 

proposed approach has been realized. 
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