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Abstract 

This work aims to develop a logarithmic barrier based interior point method capable of reconstructing CT images using 

under-sampled sinogram data. Unlike other compressed sensing methods, the proposed method obviates the need of the 

regularization parameter in the objective function. Feasibility of the algorithm and quality of the reconstructed images were 

examined. Methods: The sinogram data were simulated through Radon-transforming clinical CT images. The noise was added 

based on the Poisson and Gaussian models. The basic elements of the proposed method, logarithmic barrier (LB) method, were 

introduced. The relative Root-Mean-Squared Error (rRMSE) was used to evaluate the image reconstruction accuracy. The noise 

of the images was assessed using the Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE). Results: The PSNR, 

rRMSE, MSE were compared among fvFBP (full-view Filtered-Backprojection), svFBP (sparse-view Filtered-Backprojection), 

BB (Barzilai-Borwein), and LB methods for brain, head and neck, lung, prostate, and leg sites. The reconstructed images from 

svFBP suffered severe streak artifacts. The LB method was capable of reconstructing images of quality comparable to quality of 

those images obtained from other compressed sensing-based methods such as the BB method. Conclusion: It has been 

demonstrated that the compressed sensing technique based on the logatirhmic barrier method is capable of recovering 

satisfactory images from under-sampled projection data. This method obviates the need of the regularization parameter that 

specifies the relative weight between the data fidelity and total variation terms in the objective function. Insights have been 

gained as to implementing the proposed method for clinical imaging applications. 
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1. Introduction 

Computed Tomography (CT) has witnessed wide 

applications in modern medicine, ranging from diagnostic 

radiology to therapeutic radiation oncology [1]. Every year, a 

total of approximately 300 million CT scans are conducted 

globally and the number of CT examinations increase by 4% 

annually and globally [2]. In addition, millions of cancer 

patients who have been treated using modern IGRT (Image 

Guided Radiotherapy) undergo CBCT (Cone Beam CT) in 

order to achieve high accuracy in treatment positions [3]. 

While modern CT imaging dose per scan and associated 

health risk is low, patients and medical staff gain additional 

benefit when CT imaging dose is further reduced while 

maintaining the image quality that provides required clinical 

information [4]. The most widely used commercial 
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reconstruction algorithm is the filtered backprojection method 

(FBP), which can be applied to both 2D and 3D image 

reconstruction [5, 6]. Other recently commercially available 

algorithms are statistically based formulations using iterative 

methods to reconstruct images [7-9]. While the FBP is simple 

and fast, an issue associated with the FBP is that the number of 

projections needed is larger than that is minimally required in 

order to obtain accpetable noise suppresion and spatial 

resolution. A larger number of projections translates to 

additional imaging dose to healthy organs/tissue in patients, 

which may be a clinical concern especially in the era of 

increased use of CT in diagnostic radiology and cone beam 

CT (CBCT) in the image guided radiotherapy in radiation 

oncology. 

Much research effort has been channeled into methods 

dedicated to decreasing imaging dose in CT scans. Dose 

management and reduction are achieved through optimizing 

CT imaging parameters in clinical protocols guided by the 

ALARA (As Low As Reasonably Achievable) principle. This 

includes optimized mAs/kV combination, employment of 

Automatic Exposure Control [10]. An alternative apporach is 

to use reduced mAs or reduced number of projection data to 

perform image reconstruction [10]. While FBP is widely used 

to perform reconstruction with sufficient data (in terms of the 

number of detected photons and the number of projection 

data), it is incapable of achieving satisfactory image quality 

with reduced mAs and reduced number of projection data due 

to excessive noise and severe streak artifacts. Model based 

iterative method [11, 12] and penalized weighted least squares 

method [13-15] were explored to mitigate high noise level and 

to reduce streak artifacts [16]. 

Recently, there has been a growing interest in applying the 

compressed sensing technique to CT reconstruction from 

under-sampled projection data. The compressed sensing 

technique draws on the theory that the image can be 

reconstructed at a sampling rate less than the Nyquist criteria 

provided the original image is sparse in some transformed 

domain [17-20]. Extensive research exists that addresses CT 

reconstruction, 4D CBCT [21], temporal cardiac CT [22], 

perfusion CT [23, 24], based on the compressed sensing 

technique. It has been demonstrated that this technique has 

clinical potential to reduce imaging dose [25]. The image 

quality can be further improved in some situations if prior 

images are available and included in the optimization 

objectives [26, 27]. 

In the compressed sensing technique, image reconstruction 

is formulated as a mathematical optimization problem [17, 18, 

28, 29]. The reconstructed image is the sparsest possible 

solution under some transformed domain, subject to the 

constraints that the image is consistent with the measurements. 

The sparsifying operation is typically the gradient 

computation on the image. The objective function, which is 

the 𝐿1 norm of the gradient of the image, is equal to the total 

variation of the image. Choice of 𝐿1  norm instead of 𝐿0 

norm renders the mathematical optimization computationally 

tractable. The optimization problem is formulated as follows: 

𝑚𝑖𝑛
𝑥
𝑇𝑉(𝑥) subject to 𝐴𝑥 = 𝑏  and 𝑥 ≥ 0 . The 

reconstructed image is the one that minimizes the total 

variation and is not inconsistent with the measurements. 

Under this basic formalism, a number of CT reconstruction 

algorithms have been proposed to further improve on the 

reconstructed image quality. Total variation was replaced with 

a non-local one that allows for non-uniform weight 

penalization in reconstruction [30]. The adaptively 

re-weighted total variation was proposed to further reduce the 

required number of projections as it is a closer approximation 

to the 𝐿0 norm [31]. Various algorithms to find the minimum 

of the cost function were developed. A few examples are 

provided here: accelerated fast iterative shrinkage threshold-

ing algorithms [32]; first order method [33]; second order 

method using Hessian penalty [34]; Barzilai-Borwein method 

[35]; accelerated barrier optimiation compressed sensing 

method [36, 37]. More advanced teniques invoke the use of 

curvelet, wavelet, and dictionary learning methods [38-40]. 

Tight frame was used to take advantage of parallel computing 

of GPUs [41]. Colony based optimization was also 

successfully implemented [42]. Data-driven regularization 

methods combined with deep neural networks have recently 

been explored and shown potential to succeed [43-45]. 

Many existing optimization solvers convert the constrained 

problem to an unconstrained problem by combining the 

objective function and the data fidelity term through a 

regularization parameter that determines the relative 

importance between them [30, 32, 35, 36, 46, 47]. Those 

methods demonstrate that satisfactory reconstruction can be 

achieved with a carefully chosen regularization parameter that 

balances the relative importance of the total variation and the 

data fidelity term. However, the regularization parameter 

(weighting factor) is one of the most influential parameters 

affecting the image quality [35, 36]. Some researchers have 

conducted investigation on optimizing values of the 

weighting factor [35, 48, 49]. It is likely that the factor 

depends on the number of projections, individual patients, and 

specific sites. This presents significant practical limitations to 

its application in clinics as those values are not known a priori. 

This challenge leads us to explore a new direction of methods 

that obviate the use of the regularization parameter. We 

propose that the interior point method can be used to achieve 

this. Instead of using the gradient descent method to minimize 

the functions, the Newton's method will be used to find the 

minimum for the sub-problem optimizations in the interior 

point method. Our previous preliminary results indicate that 

this is a feasible approach [50]. This method is 

computationally intensive. 

In this article, a brief description of the proposed 

logarithmic barrier method is given. The posposed method is 

evaluated using the digital Shepp-Logan phantom, and CT 

images acquired from the anatomical sites of lung, brain, head 

and neck, prostate, and leg, followed by disccusion and 

conclusion. 
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2. Materials and Methods 

2.1. Generation of Sinograms by Simulation 

The 2D Shepp-Logan digital phantom (MATLAB®) 

composed of several ellipses radiologically resembling bones, 

soft tissues and air was used for the phantom study. Five 

clinically relevant images were chosen to represent common 

treatment sites: brain, head and neck (HN), lung, prostate and 

leg. They were acquired from the GE light-speed 16 CT 

scanner following the in-house protocols. As the purpose of 

this study is to explore the fan-beam based CT image recon-

struction algorithms, one CT slice for each site was selected to 

generate sinograms. All images were properly anonymized in 

accordance with the data management guidelines within the 

author’s institution. The image resolution was 512 × 512 

pixels. The projection data were simulated using 

mono-energetic fan beam geometry on the CT scanner with a 

circular orbit. The source-to-axis distance was 100.0 cm and 

the source-to-detector distance was 150.0 cm. The projection 

data were generated by the Radon-transform of the 2D CT 

images. The X-ray detection system was modeled as an array 

of 370 detectors. The reconstructed 2D image resolution was 

of 512 × 512 pixel resolution. Subsets of 47, 67, 97, 137 

number of the equally and angularly spaced projections were 

selected for reconstruction. 

2.2. Noise Model 

The sinograms were generated under noise-free condition. 

To characterize the algorithm’s performance under the noisy 

sonograms, a well-known X-ray noise model for CT was used 

[24, 51]. For the 𝑖𝑡ℎ  detector bin, the line integral is 𝑦𝑖 =

− ln
𝐼𝑖

𝐼𝑖0
, where 𝐼𝑖0 and 𝐼𝑖  are the number of incident pho-

tons and the number of detected photons at the 𝑖𝑡ℎ detector 

bin, respectively. The noisy measurement 𝑏𝑖 at the 𝑖𝑡ℎ bin 

was obtained through ∆𝑦𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐼𝑖0 exp(−𝑦𝑖)) +

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑒
2), where the first term accounts for the noise 

from photon counting characterized by the Poisson statistics, 

and the second term allows for background electronic noise 

variance characterized by the Gaussian distribution with var-

iance 𝜎𝑒
2. The Gaussian noise can be incorporated in the 

Poisson term as follows: ∆𝑦𝑖 = 𝜆 ∙ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐼𝑖0 exp(−𝑦𝑖)) 

through a factor 𝜆 > 1. In this study a uniform number of 

incident photons was used for all detectors. The number of 

incident photons typically ranges from 104 to 106. 

2.3. Logarithmic Barrier Formulation [52] 

Consider the equality constrained TV minimization prob-

lem: 

min
𝑥
𝑇𝑉(𝑥) subject to 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0       (1) 

where 𝑥 is the image vector obtained by flattening the im-

age of dimension 𝑛 × 𝑛 via the column-major order, 𝐴 is 

the system operator (i.e., the Radon transform for CT image 

reconstruction), 𝑏 is the measured sinogram data. 

Define the operator 𝐷𝑖  such that 𝐷𝑖𝑥 = (𝐷ℎ,𝑖𝑥 𝐷𝑣,𝑖𝑥)𝑇, 

𝐷ℎ,𝑖𝑥 = 𝑥𝑖+1 − 𝑥𝑖  and 𝐷𝑣,𝑖𝑥 = 𝑥𝑖+𝑛 − 𝑥𝑖  where 𝑖 =

1, 2, 3, … , 𝑛. 

𝐷𝑣 can be reformatted as a diagonal matrix: 𝐷𝑣 =

𝑑𝑖𝑎𝑔(𝑑𝑣 … 𝑑𝑣) consisting of 𝑛 copies of 𝑑𝑣 

where  𝑑𝑣 =

(

 
 
 

−1 1
−1 1

⋱ ⋱
−1 1

−1 1
0)

 
 
 

 is of size 

𝑛 × 𝑛. 

𝐷ℎ can be represented as follows: 

𝐷ℎ =

(

 
 
 

−𝐼𝑛 𝐼𝑛
−𝐼𝑛 𝐼𝑛

⋱ ⋱
−𝐼𝑛 𝐼𝑛

−𝐼𝑛 𝐼𝑛
0)

 
 
 

 where 𝐼𝑛  is 

an identity matrix of size 𝑛 × 𝑛. 

The gradient at pixel 𝑥𝑖 is the Euclidean norm of 𝐷𝑖𝑥. 

The isotropic total variation is 𝑇𝑉(𝑥) = ∑ ‖ 𝐷𝑖𝑥‖2
𝑁
𝑖=1  

Using slack variables 𝑡𝑖, Problem (1) can be transformed 

to a second-order cone problem: 

min
𝑥,𝑡
∑ 𝑡𝑖
𝑁
𝑖=1  s.t. ||𝐷𝑖𝑥||2 − 𝑡𝑖 ≤ 0 and 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0                  (2) 

where 𝑁 is the total number of image pixels. 

The inequality constraints ||𝐷𝑖𝑥||2 − 𝑡𝑖 ≤ 0  can be in-

corporated in the objective function as follows. Define 𝑓𝑖 =
1

2
(||𝐷𝑖𝑥||2

2
− 𝑡𝑖

2), where 𝑖 = 1, 2, … , 𝑁 . Using −𝑓𝑖  as the 

argument of the log function −ln (𝑓𝑖), problem (2) can be 

transformed into a series of linearly constrained 

sub-problems indexed by the log-barrier iteration integer 𝑘: 

min
𝑥,𝑡
𝑓 = ∑ 𝑡𝑖

𝑁
𝑖=1 +

1

𝜏𝑘
∑ (− ln(−𝑓𝑖))
𝑁
𝑖=1  s.t. 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0                          (3) 

 

where 𝜏𝑘 is the log-barrier parameter indexed by 𝑘. It is shown [52] that the inequality constraints are in the 
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domain of the log functions and are incorporated into the 

objective function weighted by 𝜏𝑘 which are a set of mono-

tonically increasing parameters as the function of 𝑘. This is 

known as the log-barrier method. Larger 𝜏𝑘 indicates that 

Problem (1) is more accurately represented by this approxi-

mation. During optimization, 𝑥 is chosen such that it is not 

outside the feasible region. This condition ensures that the 

argument in the log function is always positive. The 

sub-problems are solved via the Newton’s method. 

Pseudocode for  min
x,t
f = ∑ ti

N
i=1 +

1

τk
∑ (− ln(−fi))
N
i=1  s.t. Ax = b and x ≥ 0: 

Since the pseudocode is illustrated for a sub-problem, the 

sub-problem indexing 𝑘 is omitted. 

Parameter setup: 

𝐿𝐵𝑡𝑜𝑙 = 1.0 × 10
−7 is the duality gap that determines tolerance for log-barrier method; 

𝜇 = 10 determines decrease rate for 𝜏; 

𝑁 = total number of pixels in an image; 

Initialization: 𝑥, 𝑡 are obtained from FBP reconstruction, 𝜏=initial total variation; 

𝐿𝐵𝑖𝑡𝑒𝑟 = ⌈((ln(𝑁) − ln(𝐿𝐵𝑡𝑜𝑙) − ln(𝜏))/ln (𝜇)⌉ 

Pseudocode: 

for 𝑖 = 1 to 𝐿𝐵𝑖𝑡𝑒𝑟  

𝑁𝑖𝑡𝑒𝑟 = 0 

𝑑𝑜𝑛𝑒 = 𝐹𝐴𝐿𝑆𝐸 

𝑁𝑒𝑤𝑡𝑜𝑛𝑡𝑜𝑙= 𝐿𝐵𝑡𝑜𝑙  (Set tolerance of Newton’s method) 

𝑁𝑒𝑤𝑡𝑜𝑛𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 80 (Set maximum number of iterations for Newton’s method) 

while NOT 𝑑𝑜𝑛𝑒 

Evaluate Hessian and gradient of the sub-problem 

Using the generalized minimal residual (GMRES) method to solve the linear equation to find 𝑑𝑥 and 𝑑𝑡 

Determine the minimum step-sizes for 𝑥 and 𝑡 such that they lie in the interior region 

Backtracking line search to find next 𝑥 and 𝑡 in the feasible region 

𝑁𝑖𝑡𝑒𝑟 = 𝑁𝑖𝑡𝑒𝑟 + 1 

𝑑𝑜𝑛𝑒 = (𝑙𝑎𝑚𝑏𝑑𝑎 < 𝑁𝑒𝑤𝑡𝑜𝑛𝑡𝑜𝑙) 𝑂𝑅 (𝑁𝑖𝑡𝑒𝑟 > 𝑁𝑒𝑤𝑡𝑜𝑛𝑀𝑎𝑥𝐼𝑡𝑒𝑟) 

end 

𝜏 = 𝜏𝜇 (Increasing 𝜏 by a factor of 𝜇) 

end 

2.4. Methods to Compare with the Log-barrier 

Method 

2.4.1. Barzilai-Borwein Formulation [35, 36, 53] 

The reconstruction problem is formulated as the minimi-

zation of the following objective function subject to the posi-

tivity constraint of each pixel: 

𝑓(𝑥) = 𝑇𝑉(𝑥) +
𝜆

2
||A𝑥 − 𝑏||

2

2
           (4) 

Similar to the conventional steepest descent method, the 

descent direction 𝑝 was determined by the gradient of the 

objective function. An adaptive choice of the step size was 

made between 𝛼1  and 𝛼2  determined by an adaptation 

constant 𝜅 between 0 and 1. 𝛼1 and 𝛼2 are calculated as: 

𝛼𝑛
1 =

(𝑓𝑛−𝑓𝑛−1)
𝑇(𝑓𝑛−𝑓𝑛−1)

(𝑓𝑛−𝑓𝑛−1)
𝑇(𝑝𝑛−𝑝𝑛−1)

 and 𝛼𝑛
2 =

(𝑓𝑛−𝑓𝑛−1)
𝑇(𝑝𝑛−𝑝𝑛−1)

(𝑝𝑛−𝑝𝑛−1)
𝑇(𝑝𝑛−𝑝𝑛−1)

 

respectively. The step size is chosen as: 𝛼𝑛 =

{
𝛼𝑛
2 𝑖𝑓 𝛼𝑛

1𝛼𝑛
2 < 𝜅

𝛼𝑛
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This choice of step size improves the convergence speed 

of the conventional BB (Barzilai-Borwein) method in which 

either 𝛼1 or 𝛼2 is used throughout the optimization. The 

optimization terminates when either the maximum number of 

iterations is reached or the change in successive reconstruct-

ed image vectors is less than the pre-set tolerance. 

2.4.2. Full-view Filtered-BackProjection (fvFBP) 

and Sparse-view Filtered-BackProjection 

(svFBP) 

The full-view Filtered-BackProjection method employs 

standard FBP to reconstruct the image using 937 number of 

projections. The sparse-view Filtered-BackProjection method 

uses 47, 67, 97, and 137 numbers of projections. Comparison 

of various reconstruction methods is made against results 

obtained from fvFBP instead of ground truth images. 

2.5. Evaluation Metrics 

2.5.1. Reconstruction Accuracy 

The relative Root-Mean-Square Error (𝑟𝑅𝑀𝑆𝐸) is defined 

as the mean squared percent error of the reconstructed pixel 

values against the ground truth pixel values: 

𝑟𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑗−𝑥𝑗,𝑔𝑡)

2𝐽
𝑗=1

∑ (𝑥𝑗,𝑔𝑡)
2𝐽

𝑗=1

, 
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where 𝑥𝑗  represents the 𝑗𝑡ℎ  pixel value, the subscript 𝑔𝑡 

represents the associated pixel values are from the ground 

truth image, 𝐽 represents the total number of pixels in the 

image. 

2.5.2. Noise Metrics 

Two metrics were used to evaluate the image quality related 

to the presence of noise. The Peak Signalto-Noise Ratio 

(𝑃𝑆𝑁𝑅) is defined as: 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2(𝑥𝑔𝑡)

(∑ (𝑥𝑗−𝑥𝑗,𝑔𝑡)
2𝐽

𝑗=1 )/(𝐽−1)
)  

where 𝑀𝐴𝑋(𝑥𝑔𝑡) represents the maximum pixel values in 

the ground truth image. The Mean Squared Error (𝑀𝑆𝐸) is 

defined as: 

𝑀𝑆𝐸 =
1

𝑥̅𝑔𝑡
√(∑ (𝑥𝑗 − 𝑥𝑗,𝑔𝑡)

2𝐽
𝑗=1 )/(𝐽 − 1)  

where 𝑥̅𝑔𝑡 represents the average pixel value of the ground 

truth image, 𝐽 represents the total number of pixels in the 

image. 

3. Results 

Figure 1 and Figure 2 show the reconstructed 2D images 

from the 67 noiseless projections. The Shepp-Logan phantom 

and five anatomical sites were employed: brain, head and 

neck, lung, prostate, and leg. Figure 3 and Figure 4. show the 

reconstructed 2D images from the 67 noisy projections for 

more realistic clinical applications. Figures 5 and 6 (Figures 7 

and 8) show the reconstructed 2D images from 137 (47) noisy 

projections for the Shepp-Logan phantom and five anatomical 

sites. In this article, the noise is simulated using 1 × 105 

photons. 

 
Figure 1. The image reconstruction results from noiseless projection data for Shepp-Logan phantom (1st row), brain image (2nd row), 

head-and-neck image (3rd row), lung image (4th row), prostate image (5th row), and leg image (6th row). The first column shows the ground truth 

images. The second column shows the result from the full-view FBP (937 projections). The third column shows the result from the sparse-view 

FBP (67 projections). The fourth column shows the result from the Barzilai-Borwein method (67 projections). The fifth row shows the result 

from the log-barrier based interior point method (67 projections). 
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Figure 2. Horizontal profiles through the center of the images (same images in Figure 1). The ground truth and the results from four methods 

are represented by different colors. (Images are reconstructed from noiseless data of 67 projections except those reconstructed from fvFBP 

which uses 937 projections). 

 
Figure 3. The image reconstruction results from noisy projection data for Shepp-Logan phantom (1st row), brain image (2nd row), 

head-and-neck image (3rd row), prostate image (4th row), prostate image (5th row), and leg image (6th row). The first column shows the ground 

truth images. The second column shows the result from the full-view FBP (937 projections). The third column shows the result from the 

sparse-view FBP (67 projections). The fourth column shows the result from the Barzilai-Borwein method (67 projections). The fifth row shows 

the result from the log-barrier based interior point method (67 projections). 
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Figure 4. Horizontal profiles through the center of the images (same images in Figure 3). The ground truth and the results from four methods 

are represented by different colors. (Images are reconstructed from noisy data of 67 projections except those reconstructed from fvFBP which 

uses 937 projections). 

 
Figure 5. The image reconstruction results from noisy projection data for Shepp-Logan phantom (1st row), brain image (2nd row), 

head-and-neck image (3rd row), prostate image (4th row), prostate image (5th row), and leg image (6th row). The first column shows the ground 

truth images. The second column shows the result from the full-view FBP (937 projections). The third column shows the result from the 

sparse-view FBP (137 projections). The fourth column shows the result from the Barzilai-Borwein method (137 projections). The fifth row 

shows the result from the log-barrier based interior point method (137 projections). 
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Figure 6. Horizontal profiles through the center of the images (same images in Figure 5). The ground truth and the results from four methods 

are represented by different colors. (Images are reconstructed from noisy data of 137 projections except those reconstructed from fvFBP which 

uses 937 projections). 

 
Figure 7. The image reconstruction results from noisy projection data for Shepp-Logan phantom (1st row), brain image (2nd row), 

head-and-neck image (3rd row), prostate image (4th row), prostate image (5th row), and leg image (6th row). The first column shows the ground 

truth images. The second column shows the result from the full-view FBP (937 views). The third column shows the result from the sparse-view 

FBP (47 projections). The fourth column shows the result from the Barzilai-Borwein method (47 projections). The fifth row shows the result 

from the log-barrier based interior point method (47 projections). 
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Figure 8. Horizontal profiles through the middle of the images (same images in Figure 7). The ground truth and the results from four methods 

are represented by different colors. (Images are reconstructed from noisy data of 47 projections except those reconstructed from fvFBP which 

uses 937 projections). 

Table 1. The reconstruction accuracy metric (rRMSE) and image quality metrics (PSNR and MSE) for images reconstructed from algorithms: 

fvFBP, svFBP, BB, and LB for the Shepp-Logan phantom and five anatomical sites. The number of the noisy data projections used for image 

reconstruction is 67. 

Metrics Sites 

Algorithms 

fvFBP svFBP BB LB 

PSNR 

Shepp-Logan 

42.73 24.69 39.12 40.24 

MSE (× 10−3) 0.5056 0.9229 0.2841 0.1540 

rRMSE 0.1293 0.2360 0.0726 0.0394 

PSNR 

Brain 

41.699 29.57 38.377 37.553 

MSE (× 10−3) 0.4076 1.7387 0.6429 0.7372 

rRMSE 0.0688 0.2778 0.1008 0.1109 

PSNR 

Neck 

41.5294 29.5787 38.0411 36.3425 

MSE (× 10−3) 0.3846 1.6631 0.6295 0.8429 

rRMSE 0.0681 0.2698 0.1018 0.1238 

PSNR 

Lung 

42.1023 29.6927 36.2358 36.1369 

MSE (× 10−3) 0.1165 0.4862 0.2289 0.2315 

rRMSE 0.0353 0.1473 0.0693 0.0701 

PSNR 

Prostate 

44.2461 31.2153 37.8093 37.012 

MSE (× 10−3) 0.1199 0.5376 0.2516 0.2758 

rRMSE 0.0377 0.1690 0.0791 0.0867 

PSNR 

Leg 

42.8442 30.4144 37.7135 35.551 

MSE (× 10−3) 0.2157 0.9022 0.3894 0.4995 

rRMSE 0.0480 0.2009 0.0867 0.1112 
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Figure 9. Comparison of PSNR of the images reconstructed from 

svFBP, BB, and LB against that of the images reconstructed from 

fvFBP as a function of the number of noisy data projections for head 

and neck site. 

 
Figure 10. Comparison of PSNR of the images reconstructed from 

svFBP, BB, and LB against that of the images reconstructed from 

fvFBP as a function of the number of noisy data projections for lung 

site. 

As can be seen, the proposed algorithm performs well and 

displays robustness with respect to the typical noise level 

encountered in clinical applications. Reconstructed images 

from 47 projections display significant streak artifacts using 

svFBP. The BB and LB methods were not able to reduce this 

type of artifacts to a visually unnoticeable level, which is also 

supported by the PSNR values indicated in Figure 9 (for head 

and neck site) and Figure 10 (for lung site). The PSNR values 

are illustrated against the Shepp-Logan phantom and five sites 

for algorithms of fvFBP, svFBP, BB, and LB in Figure 11. 

 
Figure 11. Comparison of PSNR of the images reconstructed from 

svFBP, BB, and LB against that of the images reconstructed from 

fvFBP as a function of various sites. The number of the noisy data 

projections used for image reconstruction is 67. 

Table 1 shows the reconstruction accuracy metric (rRMSE) 

and image quality metrics (PSNR and MSE) calculated for 

images reconstructed from algorithms: fvFBP, svFBP, BB, 

and LB methods using 67 noisy projections. The svFBP is 

incapable of producing images with sufficient quality. The LB 

method demonstrates superior image reconstruction accuracy 

compared to the BB method for all five anatomical sites. With 

regard to image quality, the MSE metric indiates that the LB 

method fares better than the BB method while the opposite 

trend is the case when the PSNR metric is used to evaluate the 

methods, for all five anatomical sites. 

4. Discussion 

One advantage of the sparse view CT reconstruction is the 

low dose delivered to patients. Significant imaging dose 

reduction can be achieved for patients who undergo multiple 

CT scans in diagnostic procedures and CBCT scans from 

image-guided radiation therapy. The proposed method 

indicates that the imaging dose can potenitally be reduced to 

1 7⁄  of the dose resulting from CT scans using the standard 

FBP. 

The regularization parameter, lambda (𝜆), determines the 

relative importance of the data fidelity term in relation to the 

total variation in the objective function. Lower values putting 

more weight on TV terms that may result in over-smoothing 

while higher values putting more weight on data fidelity term 

that may result in stair-case artifacts and noisy images 

(Equation 4). Experience from other research indicates that 

lambda is one of the most influential parameters that affect the 

image quality and it is likely that no standard lambda value 

exsits for all image reconstruction scenarios [35]. In practice, 

since the prior knowldege is usually not available as to what 
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values are suitable for particular applications, a manual 

adjustment via trial and error is needed in order to determine 

optimal lambda values for a particular application. This 

presents limitations to clinical applications since optimal 

lambda values are likely dependent on various factors 

including imaging sites, imaging protocols, the number of 

projections, etc. since manual adjustment is not clinically 

feasible. Selection of an optimal regularization parameter 

value that balances the data fidelity term and the total 

variation presents challenges for clinicians to achieve 

improved image quality [35]. Efforts have been expended to 

optimize the lambda. Alternatively, machine learning 

methods are applied to find optimal regularization and 

hyper-parameter values [48, 49]. 

Our method eliminates the use of the regularization 

parameter. Instead of constructing an objective function that 

sums TV and data fidelity term with lambda specifying the 

relative importance between them, we formulate the problem 

as a series of sub-problems indexed by iteration 𝑘  which 

asymptotically approach the original problem. Only one set of 

hyper-parameters is used for all image reconstruction cases. 

The results show that this one set of parameters can 

adequately reconstrcut the images for most common sites. 

This is considered a boon for practical application as any 

efforts to adjust the lambda values are difficult to implement 

in clinical settings. 

The reconstruction computation time is considerably longer. 

It takes approximately 2 hours (Intel® i7-9700 CPU 3.00 

GHz) to complete reconstruction for a 2D image. The 

computational bottle neck resides in solving the linear 

equations using the GMRES procedure in which the Newton’s 

method is employed as a subroutine. Although seeking fast 

implementation of the algorithm is not within the scope of this 

article, it points to one of future directions as to how we can 

accelerate this methods. 

Our results indicate that the algorithm demonstrates 

robustness against the noise level typically encountered in the 

clinical applications. The simulated noise levels are typically 

from photon number between 104 and 106. We should be 

cautioned that the noise study is conducted using the 

simulated data. The actual noise profile may deviate from 

Poisson statistics. However, the simluated study gives a clue 

that the algorithms are robust for several common sites. 

Some future directions may be worthwhile to pursue. 1) 

The parallel GMRES solver may be investigated to solve the 

linear equations via the Newton’s method and may be 

implemented on GPU platforms [54]. 2) While the lambda 

parameter is not needed in the logarithmic barrier method, a 

set of hyper-parameters is used to implement the optimization 

algorithm. The choice of the hyper-parameters can potentially 

affect the computing speed and the reconstructed image 

quality. An optimal set of hyper-parameters that can be used 

for many clinical sites is desirable. It is likely that noise level, 

number of projections, acquisition modes and other factors 

play roles in determining the optimal set. 

5. Conclusions 

In this article, it has been demonstrated that the compressed 

sensing technique based on the logatirhmic barrier method is 

capable of recovering satisfactory images from under-sampled 

projection data for five common sites: brain, head and neck, lung, 

prostate, and leg. This method obviates the need of the 

regularization parameter that specifies the relative weight 

between the data fidelity and total variation terms in the objective 

function. Insights have been gained as to implementing the 

proposed method for clinical imaging applications. 

Abbreviations 

CT Computed Tomography 

LB Logarithmic Barrier 

rRMSR Relative Root-Mean Square Error 

PSNR Peak Signal-to-Noise Ratio 

MSE Mean Squared Error 

fvFBP Full-view Filtered Backprojection 

svFBP Sparse-view Filtered Backprojection 

BB Barzilai-Borwein 

CBCT Cone-Beam Computed Tomography 

IGRT Image Guided Radiation Therapy 

FBP Filtered Backprojection 

TV Total Variation 

GPU Graphics Processing Unit 

GMRES Generalized Minimal Residual 
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