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Abstract 

The matrix calculation by the Stiffness Matrix Method for structures composed of straight bars is normally performed 

considering the bars with constant section and inertia, and when the bars are of variable section, intermediate nodes are 

introduced, significantly increasing the size of the Stiffness Matrix. In this work, a generalization of the Stiffness Matrix 

Method for structures with bars of variable section and/or inertia is proposed, introducing adequate matrix coefficients for the 

calculation with bars with variable section and/or inertia, maintaining the number of nodes of the structure and therefore 

without increasing the size of the Stiffness Matrix. In practice, many structural systems are made up of bars of variable section 

or inertia, such as cartelized bars, cracked reinforced concrete bars, steel bars with semi-rigid joints or mixed concrete and steel 

bars. In all these cases, the result of the calculation when considering the constant section is, in general, approximate and must 

be interpreted taking into account the simplification introduced by the calculation, for example, in the calculation of deflections 

or deformations for concrete bars in a cracked state, which is the normal state in which they are found. In this case, the 

consideration of bars with a constant section yields results that are far from reality. And in other cases, something similar 

happens. Therefore, the generalization of the Stiffness Matrix Method for structures with variable section and/or inertia bars is 

really a refinement of the Stiffness Matrix calculation method that can be useful in many cases, and also provide results more 

in line with reality 
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1. Introduction 

1.1. Object of the Study 

In summary, this study aims to develop a calculation 

method using the Stiffness Matrix for structures with bars of 

variable section and/or inertia, without increasing the num-

ber of nodes of the structure. 

In the structural models commonly used to design building 

or civil works structures, it is common to use bars with a 

non-constant section, for example, cartelized bars or those 

that have reinforcements in some area of the bar and that 

modify its section. 

The Stiffness Method for variable section bars has been 

little developed, except in specific cases as in [5]. 

And there are also bars, as in the case of reinforced con-

crete where cracking makes them behave like variable Area 

and Inertia bars. This has been analyzed in various studies 

such as in [6]. 

Matrix calculation programs by the stiffness method gen-

erally consider only bars of constant section, except in some 
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cases, when there are bar-marked, for which they introduce 

numerous knots inside each bar-guzzle. 

And in the case of cracked concrete, they simply do not 

consider the variation of Area and Inertia in the bars and 

assimilate them to bars of constant section. 

If we analyze the particular case of the cartelized bars 

modeled by the introduction of intermediate nodes inside the 

gussets, the size of the resulting stiffness matrix is signifi-

cantly larger than that generated without such gussets. And 

the same happens with methods that introduce intermediate 

nodes in any structure to take into account the variation of its 

section and inertia. 

For example, a simple gantry with bars of constant section 

composed of two supports and an upper lintel and with its 

recessed bases has 6 possible knot movements in the plane 

and 12 in space (which is what is called DOF or degrees of 

freedom) and these DOF generate 6 equations in the plane 

and 12 in space, that is, a linear system of 6 or 12 equations. 

If gussets are introduced in the 3 bars of that gantry and 

each gusset introduces 10 knots, then the DOF are 6 + 60 = 

66, which generate 66 equations in the plane and 132 in 

space, that is, the linear system has a range 11 times greater 

than the initial one without gussets. 

And this is just for a 3-bar gantry. 

In this study, a calculation method is proposed that does 

not generate intermediate nodes in the bars of variable sec-

tion and therefore does not increase the DOF of the model. In 

the case of the previous example, it would generate a system 

of 6 equations. 

1.2. Calculation Model 

To determine how variable section bars behave in a struc-

ture, it is necessary to take into account the variation of the 

mechanical constants of such bars, that is, the laws of varia-

tion of the Area of their section, of their Torsion Modulus 

and of the Moments of Inertia referred to the axes normal to 

their guideline. 

When the bars are of constant section these values are eas-

ily determined with sufficiently known formulas, but when 

the section or stiffness is variable, the calculation of these 

mechanical constants is more complicated. 

However, the structure of the matrix calculation using the 

Stiffness Matrix is the same in both cases, and differs only in 

these two issues: 

1. In the calculation of the coefficients of the Elemental 

Stiffness Matrix of each bar, and therefore of the Glob-

al Stiffness Matrix. 

2. In calculating the equivalent actions of the end of each 

bar that are used to substitute for the actions on the bars. 

The first issue is because they are coefficients that must 

take into account the variation of the mechanical constants 

along the bar, and therefore their calculation is different from 

that of bars with a constant section. 

The second issue is because the embedding actions of a 

variable section bar are not the same as those of a constant 

section bar and therefore have to be calculated differently. 

Having clarified this, and as a summary, we list the (com-

monly accepted) phases that consist of the complete calcula-

tion of a structure by means of the stiffness matrix, where the 

phases marked in red are those that are different when the 

section or inertia is variable with respect to structures with 

bars of constant section. 

Phases of the Stiffness Method with variable section bars: 

1. Pre-processing. 

1) Modelling: A model of the structure is created, repre-

senting the bars and knots and defining their geometry. 

2) Numbering: A number is assigned to each knot, each 

bar and each degree of freedom (displacement in each 

direction). 

3) Properties: The properties of the materials (modulus of 

elasticity or other values that influence stiffness, such 

as cracking in concrete bars, etc.), the reference cross-

sections of the bars and their laws of variation, or fail-

ing that, the Area, the Torsion Modulus and the refer-

ence Moments of Inertia of the bars and their laws of 

variation. 

4) Boundary conditions: Restrictions are established on 

displacements (supports) and the loads applied. 

2. Formation of the Elemental Rigidity Matrix: 

1) Each element: For each bar, its elemental stiffness ma-

trix is calculated, which relates nodal displacements to 

internal forces. The calculation of these coefficients is 

different than in the calculation of constant-section 

bars. 

2) Force-displacement relationship: This matrix express-

es the rigidity of the element and depends on its geo-

metric properties and the material. 

3. Global Stiffness Matrix Assembly: 

1) Overlay: Elemental stiffness matrices are assembled 

into a single overall stiffness matrix for the entire 

structure. 

2) Compatibility: This process ensures continuity of dis-

placements across nodes common to multiple elements. 

4. Application of Boundary Conditions: 

1) Matrix Modification: The rows and columns of the 

global stiffness matrix are modified to incorporate the 

boundary conditions (supports). 

2) Elimination of degrees of freedom: Restricted degrees 

of freedom are removed from the system of equations. 

5. Application of Charges: 

Charge Vector: A vector is created that contains the 

charges applied in each degree of freedom. These loads are 

different from those calculated for constant section bars. 

6. Solving the System of Equations: 

1) Linear system: A system of linear equations of the 

form K*D = F is obtained, where: 

2) K: Global Stiffness Matrix 

3) D: Unknown Displacement Vector 

4) F: Applied Load Vector 
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5) Solution: This system is solved to obtain nodal dis-

placements. 

7. Calculation of Internal Forces: 

Force-displacement relationship: Using nodal displace-

ments and elementary stiffness matrices, the internal forces 

in each element (axial forces, bending moments, etc.) are 

calculated. 

8. Calculation of Reactions: 

Balance: From the internal forces and the applied loads, 

the reactions in the supports are calculated to verify the bal-

ance of the structure. 

9. Post processing: 

1) Results: The results obtained (displacements, internal 

forces, reactions) are presented in a way that is under-

standable to the user. 

2) Verification: Verification that the results are reasonable 

and meet the design criteria. 

As can be seen, the development of the calculation follows 

the same phases as in the case of constant section bars and 

differs from this only in the calculation of the matrix coeffi-

cients and the equivalent actions of the end of the bar that 

replace the loads applied to them. 

1.3. Focus of the Study 

Throughout this work, a minimal reference is made to the 

theoretical basis that supports it, but the theoretical basis that 

can be found in many studies that analyse it in detail, and 

that are mentioned in the bibliography [7-10], is not devel-

oped. 

It is an eminently practical approach where, based on 

some basic examples, it focuses on how to develop pro-

gramming algorithms, also very basic, but which allow fur-

ther research in this field and the development of the method. 

The purpose of this entire study is that, as mentioned be-

fore, anyone interested in this subject can develop their own 

structural analyses and the algorithms to develop them and 

improve what is presented here. 

Because the subject is complex and covers a wide field of 

applications, it is developed gradually and partially and in a 

way that can be revised, since it will not be free of errors, 

and in any case, it can always be improved. 

The study has been presented in several Titles (or Vol-

umes) that cover these specific cases: 

1) Approach to the method. Variable Section and/or Iner-

tia Bars (concrete, steel, wood or other material). 

2) Case of Concrete Bars of Variable Section, and with 

variable stiffness due to cracking. 

3) Case of steel bars with semi-rigid joints. 

4) Case of Mixed Concrete and Steel Bars... Etc. 

This first Title (Volume I) refers to "Bars of variable sec-

tion and/or inertia, which is the simplest. From its study, the 

other Degrees can be developed. 

To develop this part of the study, the following simplified 

calculation phases are proposed, since it is a research work 

and not an "in extenso" development of the topic. It must be 

understood as a tool that facilitates the work of other devel-

opments. 

1) Preprocessing: 

a) Numbering and geometric definition of knots and bars 

and local coordinate system of each bar and global. 

b) Definition of the connections of the bars at the nodes 

and the boundary conditions. 

2) Properties of the material and the bars with their ap-

plied forces: 

a) Modulus of elasticity or other values that influence 

stiffness, such as cracking in concrete bars, etc. 

b) Forces applied to the bars. 

c) Reference cross-sections of the bars (Area, Torsion 

Modulus and Reference Moments of Inertia) and their 

laws of variation. 

3) Calculation of the coefficients of the Elemental Stiff-

ness Matrices of the bars and of the equivalent actions 

of the end of the bars in their local coordinates: 

a) Elemental Stiffness Arrays of Bars 

b) Equivalent end force vectors of the bars 

c) Transformation matrices from local to global axes of 

each bar. 

4) Assembly of the Global Stiffness Matrix and the equiv-

alent end actions of the bars and application of the 

boundary conditions. 

a) Transfer of bar stiffness matrices and bar end forces to 

global coordinates using transform matrices. 

b) Assembly of the Global Rigidity Matrix and the global 

vector of actions. 

c) Application of boundary conditions to eliminate re-

stricted degrees of freedom. 

5) Solving the system of equations, expressing the bar 

displacements on local axes of the bar using the axis 

transformation matrices and calculating the extreme 

bar actions. 

a) Solving the system of equations and obtaining the 

global displacements. 

b) Values of the bar offsets on the local axes of each bar 

using the axis transformation matrices. 

c) Calculation of internal actions in each bar by means of 

its elemental stiffness matrix and the displacements on 

local axes that affect it. 

d) Extreme actions resulting from the initial and internal 

actions calculated on each bar. 

The tools used in this work have been spreadsheets for 

some examples and a Python program to study flat gantries. 

2. Stiffness Coefficients for Straight Bars 

with Variable Cross-Section 

2.1. Stiffness Matrix Approach 

To propose the equation of global stiffness of a structure, 
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it is hypothesized that the movements of its nodes are initial-

ly zero, and that the initial support of the bars that compose it 

is equivalent to an embedment at its ends. 

The equation of stiffness of the structure only admits loads 

that are applied at the nodes, so all the actions acting on the 

bars must be replaced on each bar by the vector Ab of equiva-

lent actions at the end of the bar. 

Coefficient of stiffness is defined as the action that would 

cause a unit deformation at the ends of the bar. 

When these coefficients are referred to the ends of the re-

cessed bar, the set of all of them constitutes the stiffness 

matrix Rb of the ends of the recessed bar, of size 12x12 in 

space and 6 x 6 in the plane, which interrelates the vector Ab 

of equivalent actions of the end with the vector Db of move-

ments of the end of the bar by means of the equation of stiff-

ness of the bar: 

Rb Db = Ab               (1) 

In order to determine the various stiffness coefficients that 

make up Rb, which is the subject of this Section, unit value 

movements will be applied to the ends of the bar, thus result-

ing in a series of reactions that are the stiffness coefficients. 

The equations used in this section for the study of the varia-

ble section bar are deduced directly, indirectly or by similari-

ty from those formulated by J. Lahuerta [1-3]. 

2.2. Bar Reference Axes and Movement 

Numbering 

To express the stiffness coefficients, the translation and 

rotation movements are numbered according to the axes of 

the bar as follows: 

 
Figure 1. Axes and movements of the bar: a) in the plane, b) in 

space. 

2.3. Variable Section and Inertia Along the Bar 

The elastic constants of a straight bar of variable section, 

of length L, are defined from the values of the area of its 

section along the bar and the moments of inertia and modu-

lus of torsion, also along the bar. 

To do this, the variation of these values is defined: 

Variable Section Area A(x)=A01(x)        (2) 

Variable Torque Module It(x)=It02(x)       (3) 

Variable moment of inertia on the z-axis Iz(x)=Iz0z3(x)(4) 

Variable moment of inertia on the y-axis Iy(x)=Iy0y3(x)(5) 

A0, It0, Iz0, Iy0 being the reference values for the Section 

Area, the Torsion Modulus and the Moments of Inertia on 

the z or y axes respectively, (they are defined in a similar 

way to that established in Table 2.05-1 and Table 2.05-2 of 

[1]). 

2.4. Longitudinal Stiffness of a Bar of Variable 

Section 

The stiffness coefficients associated with a longitudinal 

deformation of a straight bar with the area of its variable 

section A(x) = A01(x), are the actions produced at its ends 

by a unit longitudinal displacement applied to one of them 

(deduced from [2] (Form. 22.1)). 

D = ∫
𝑁

𝐸𝐴(𝑥)

𝐿

0  dx =∫
𝑁

𝐸𝐴₀ 𝜉₁(𝑥)

𝐿

0  dx =1        (6) 

To produce this displacement, it is necessary to apply a 

force N at the displaced end, and at the opposite end, a force 

      –N, of value: 

N = 
𝐴₀𝐸

∫
𝑑𝑥

𝜉1(𝑥)

𝐿
0

=  
𝐴₀𝐸

𝐿
=A, being:  = 

𝐿

∫
𝑑𝑥

𝜉1(𝑥)

𝐿
0

     (7) 

These stiffness coefficients are part of the general expres-

sion of the Bar Stiffness Matrix in space established below 

(see Figure 1b), and correspond to unit movements numbers 

1 and 7. And on the plane with unitary movements 1 and 4. 

Therefore, the coefficients of stiffness due to displacement 

1, in space, are worth: 

R1.1 = 
𝐴₀𝐸

𝐿
 = A R7.1 = -

𝐴₀𝐸

𝐿
 = -A     (8) 

And the stiffness coefficients due to displacement 7 are 

worth: 

R1.7 = -
𝐴₀𝐸

𝐿
 = -A R7.7 = 

𝐴₀𝐸

𝐿
 = A    (9) 

http://www.sciencepg.com/journal/ijmsa


International Journal of Materials Science and Applications http://www.sciencepg.com/journal/ijmsa 

 

17 

On the plane: R1.1 = R4.4 = A R1.4 = R4.1 = - A 

 
Figure 2. Stiffness coefficients for unitary longitudinal displace-

ment at one end. 

2.5. Torsional Rigidity in a Bar of Variable 

Section 

The stiffness coefficients associated with an angular de-

formation along a straight bar with variable torsion modulus 

(Eq. 3) are the actions produced at its ends by a unit angular 

displacement applied to one of them. 

D =∫
𝑇𝑟

𝐺𝐼𝑡(𝑥)

𝐿

0
 dx = ∫

𝑇𝑟

𝐺𝐼𝑡₀𝜉₂(𝑥)

𝐿

0
 dx =1      (10) 

To produce this angular displacement, it is necessary to 

apply a torsional moment Tr to the rotated end, and to the 

opposite end a torsion moment       –Tr, of value: 

Tr =
𝐼𝑡₀𝐺

∫
𝑑𝑥

𝜉₂(𝑥)

𝐿
0

 =  
𝐼𝑡₀𝐺

𝐿
, being: 

𝐿

∫
𝑑𝑥

𝜉₂(𝑥)

𝐿
0

      (11) 

These stiffness coefficients are also part of the general ex-

pression of the Bar Stiffness Matrix in space (Figure 1b), and 

correspond to unit turns numbers 4 and 10. 

The stiffness coefficients due to such turns 4 and 10 are 

respectively valid: 

R4.4 =
𝐼𝑡₀𝐺

𝐿
 = T R10.4 = -

𝐼𝑡₀𝐺

𝐿
 = -T     (12) 

R4.10 = -
𝐼𝑡₀𝐺

𝐿
 = -T R10.10 = 

𝐼𝑡₀𝐺

𝐿
 = T     (13) 

 
Figure 3. Stiffness coefficients per unit longitudinal rotation at one 

end. 

2.6. Deformation of a Bar of Variable Section 

In order to determine the stiffness coefficients of the bar in 

the event of a rotation or translation at one of its ends, we 

first proceed to study the deformation of the bar. 

In a simply supported isostatic bar of variable section the 

angles rotated in the extreme sections with respect to the y-

axis, under the effect of the loads acting on the bar are: [1] 

2.05-7 

́z = 
𝐿

𝐸𝐼𝑧
G ́z, being: G ́z =∫

𝑀𝑖𝑠,𝑧(𝑥) (𝐿−𝑥)𝑑𝑥

𝐿23𝑧(𝑥)

𝐿

0
     (14) 

́ ́z = 
𝐿

𝐸𝐼𝑧
G´́z, being: G´́z =∫

𝑀𝑖𝑠,𝑧(𝑥) 𝑥 𝑑𝑥

𝐿23𝑧(𝑥)

𝐿

0
    (15) 

   z           z are the load terms, which will be used to cal-

culate the action values of equivalent ends of the variable 

section bar. 

 
Figure 4. Bar with end twists and translations. 

In the bar in Figure 4, with end turns ', '' and end trans-

lations         , the value of the turns ’ and ’’ is: [1] 2.05-

7 

  ́ = L/EIz( źM ź-zM´́z+G ź) + /𝐿     (16) 

´́ = L/EIz(- źM ź + ´́z M´́z – G´́z) + /𝐿   (17) 

Where  ź, ´́z, z, are the "formal" or constants of the bar 

with respect to the z-axis, of value: 

 ź = ∫
(𝐿−𝑥)2 𝑑𝑥

𝐿3𝜉3𝑧(𝑥)

𝐿

0
 ´́z = ∫

𝑥2 𝑑𝑥

𝐿3𝜉3𝑧(𝑥)

𝐿

0
 z = ∫

𝑥(𝐿−𝑥) 𝑑𝑥

𝐿3𝜉3𝑧(𝑥)

𝐿

0
 (18) 

And to express the stiffness of the bar are defined: [1] 

2.05-8 

 ź = 
𝜆𝑧
′′

𝜆𝑧 
′ 𝜆𝑧

′′−𝜇𝑧
2  ź = 

𝜆𝑧
′

𝜆𝑧 
′ 𝜆𝑧

′′−𝜇𝑧
2 z = 

𝜇𝑧

𝜆𝑧 
′ 𝜆𝑧

′′−𝜇𝑧
2    (19) 

The calculation of the stiffness coefficients of a bar that is 

produced, either by a unit rotation at its ends, or by linear 

displacement at its ends, can be obtained from the previous 

expressions where the Load Terms are null, since such coef-

ficients are the value of the actions that produce a unit dis-

placement and therefore there are no loads along the bar. 

To calculate the stiffness coefficients, we will analyse two 

cases, those produced by a normal extreme unit rotation to 

the axis of the bar and those produced by a normal extreme 

unit displacement to the axis of the bar. 

2.7. Unit rotational Stiffness at the End of the 

Bar with Variable Section in Space 

In this case, represented in Figure 1b, the unit turns in 

space correspond to movements 6 and 12 in the XY plane (z-
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axis rotation) and 5 and 11 in the XZ plane (y-axis rotation). 

See Figure 1b. 

In the XY plane (z-axis rotation), for turns 6 and 12 the 

values of the moments and normal forces at the ends of the 

bar as a consequence of a unit rotation at its end I, can be 

obtained from (16 and 17) by doing: 

' = 1, " = 0,  = 0           (20) 

 
Figure 5. Coefficients of stiffness per unit rotation at one end. 

The values for the moment and force at the end I are: 

MzI = E Iz0 
´
z / L = C1 VzI = - E Iz0 (z

´
z) / L

2 = D1 (21) 

The values for the moment and force at the end II are: 

MzII = E Iz0 z / L = C3 VzII = E Iz0 (z
´
z) / L

2 = - D1 (22) 

For the XZ plane you can proceed in a similar way. 

The coefficients of stiffness due to such turns and move-

ments are worth: 

XY plane (z-axis turns): 

R2.6 = -R8.6= EIz0 (z
´
z) /L

2= Dz1 R6.6 = EIz0 
´
z /L= Cz1 

R12.6 = EIz0 z /L= Cz3           (23) 

R2.12 = -R8.12= EIZ0 (Z
´́

Z) /L2 =Dz2 R6.12 = EIz0 z /L =Cz3 

R12.12 =EIz0 
´́

z /L= Cz2           (24) 

XZ plane (y-axis turns): 

R3.5 = -R9.5=EIy0 (y
´
y) /L

2= Dy1 R5.5 = EIy0 
´
y /L= Cy1 

R11.5 = EIy0 y /L= Cy3            (25) 

R3.11 = -R9.11= - EIy0 (y
´́

y) /L
2= Dy2 R5.11 = EIy0 y /L=Cy3 

R11.11 = EIy0 
´́

y /L= Cy2           (26) 

2.8. Transverse Displacement Stiffness at the 

Ends of a Bar of Variable Section in Space 

To determine the stiffness coefficients associated with a 

displacement at the end of the bar normal to its axis, we start 

from the study of the bending deformation of the bar in sec-

tion 2.6 above. 

In this case, shown in Figure 6, the unit displacements cor-

respond to movements 3 and 9 in the XZ plane (z-axis dis-

placement and y-axis rotation) and 2 and 8 in the XY plane 

(y-axis displacements, and z-axis rotations). See Figure 1b. 

In the XY plane (z-axis rotation), for movements 2 and 8 

the values of the moments and normal forces at the ends of 

the bar as a result of a unit displacement at its end I, can be 

obtained from (16 and 17) by doing: 

' = 0, " = 0  = 1             (27) 

 
Figure 6. Coefficients of stiffness per unit displacement at one end. 

The values for the moment and force at the end I are: 

MzI = E Iz0 (
´
z+z) / L2 = Dz1          (28) 

VzI = E Iz0 (
´
z +

´́
zz) / L3 = Bz           (29) 

The values for the moment and force at the end II are: 

MzII = E Iz0 (
´́

z+z) / L2 = Dz2         (30) 

VzII = - E Iz0 (
´
z +

´́
zz) / L3 = - Bz     (31) 

In the XZ plane you can proceed in a similar way. 

The coefficients of stiffness due to such movements are 

worth: 

XY plane (z-axis turns): 

R2.2 = - R8.2 = E Iz0 (
´
z +

´́
zz) / L

3 = Bz R6.2 = E Iz0 (
´
z+z) / L

2 = Dz1 R12.2 = E Iz0 (
´́

z+z) / L
2 = Dz2  (32) 

R8.8 = -R2.8 = EIy0 (
´
z +

´́
zz) /L

3 = Bz R6.8 = -E Iz0 (
´
z+z) / L

2 = - Dz1 R12.8 = - E Iz0 (
´́

z+z) / L
2 = - Dz2 (33) 

XZ plane (y-axis turns): 

R3.3 = -R9.3 = EIy0 (
´
y +

´́
yy) /L3 = By R5.3 = -Dy1 R11.3 = -Dy2                (34) 

II

D=1

I

C1 = E Iz0  ' z / L C3 = E Iz0 z / L

D1 = E Iz0 ( ' z+z) / L
2 - D1 = - E Iz0 ( ' z+z) / L

2

II

D=1

I

D1 = E Iz0 ( ' z+z) / L
2 D2 = E Iz0 ( '' z+z) / L

2

B = E Iz0 ( ' z '' z+2z) / L
3 - B = - E Iz0 ( ' z '' z+2z) / L

3
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R9.9 = -R3.9 = EIy0 (
´
y +

´́
yy) /L3 = By R5.9 = - Dy1 R11.9 = - Dy2               (35) 

3. The Stiffness Matrix of the Variable 

Section Bar 

3.1. Stiffness Matrix of a Bar of Variable 

Section in the Plane 

As stated in Section 2.1, the Matrix Rb of Stiffness of the 

ends of a bar in the plane has a size of 6x6 and expresses the 

interrelation between the vector Ab of equivalent actions of 

the end with the vector Db of movements of the end of the 

bar (Eq. 1) 

This equation refers to the proper axes of the bar, with 

three possible movements (two linear and one rotation) for 

each end of the bar (Figure 1a), and 3 possible movements (2 

linear and 1 rotation). 

 
Figure 7. Stiffness matrix of a bar of variable section in the plane. 
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Adopting the agreement of signs expressed in Figure 1a, 

the stiffness matrix Rb of the bar in the plane according to the 

parameters defined above will be that expressed in Figure 7 

for the four cases of bars: recessed – recessed, recessed – 

articulated, articulated – recessed and articulated – articulat-

ed: 

(The subscript “y” has been removed for convenience for 

Iz0, z', z" y z) 

The Stiffness Matrix R is square and symmetrical and its 

coefficients are indicated in the table, being: 

A is the area with A0 reference value and 1(x) the law of 

variation, (Eq. 2), 

I the moment of inertia with I0 reference value (Eq. 4), and 

3(x) its law of variation, ,  ,́ ´́ and , the formal ones 

(Eqs. 7, 18) and  ,́ ´́ and rigidities (Ec. 19). 

3.2. Stiffness Matrix of a Bar of Variable 

Section in Space 

Adopting the convention of signs expressed in Figure 1b, 

the Stiffness Matrix of a bar in space will be a square and 

symmetrical matrix of size 12 x 12, which corresponds to six 

movements for each knot of the same, three linear according 

to the axes and three rotations around these axes. 

The elemental stiffness matrix for the bar in space accord-

ing to the axis system in Figure 1b) is as follows: 

 
Figure 8. Stiffness matrix of a bar of variable section in space. 

3.3. Actions at the Ends of the Variable Section 

Bar 

To determine the vector Ab of equivalent actions of the 

ends of the bar, it is necessary to calculate the reactions pro-

duced by the charges or moments acting on the bar. 

The equivalent system of loads applied at the ends of the 

bars can then be calculated from the values of the reactions, 

with the opposite sign. 

Therefore, the problem of determining the system of ac-

tions at the end of the bar is reduced to the calculation of the 

reactions of the real load system in the bar supposed to be 

embedded or articulated at one of its ends. 

These section bar end actions or variable stiffness are dif-

ferent from those obtained for a section bar and constant 

stiffness. 

Recessed – recessed bars. 

Reactions can be determined from the Equations (16 and 

17), doing: 'y ="y = =0: 

M'y = - 'yG’y + yG’'y M"y = - yG'y + "yG"y (36) 

Recessed – articulated bars. 

M'y = - (1/'y) G’y M"y = 0        (37) 

Articulated – recessed bars. 

M'y = 0 M"y = (1/”y) G”y        (38) 

In this expression G'y, G"y are the terms of load defined in 

Section 2.6 (Ec. 14, 15) 

Shear stresses are deduced from isostatic moments from 

extremes. 
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4. Example 1 for Application of the 

Method 

To illustrate, step by step, the development of the de-

scribed method, the following calculation example is pro-

posed 

It is a flat portico, represented in Figure 9, composed of a 

poster lintel and two supports that are supposed to be em-

bedded in its base. 

The portico is designed with H-25 reinforced concrete 

with AEH-500 and its geometric data and the loads that act 

are represented in Figure 9. The units used are Kp and cm. 

 
Figure 9. The case of a simple portico. Structural System and 

Structural Model. 

4.1. Structural Model 

Numbering of bars and knots. 

The structural model that represents this idealized and dis-

cretized structure, (Figure 9b), is composed of 4 nodes 

(numbered from 0 to 3), three bars (numbered from 0 to 2) 

whose initial and final nodes are (1,0), (1,3) and (3,2) respec-

tively. The bars are connected to each other at their ends, 

which are the nodes of the structural model, the only points 

considered in the relationship between actions and move-

ments or stiffness equation. 

Support of the bars. 

The support system of the bars is formed by the movement 

restrictions of their ends, and is as follows: Knots 0 and 2 are 

knots restricted in all their movements and knots 1 and 3 are 

free with rigid connections between their bars. 

Numbering of knot movements. 

The movements of the knots are numbered in the order 

shown in Figure 9b. Those corresponding to nodes 0 and 2 (0, 

1, 2, 6, 7 and 8) are null (restricted). Those corresponding to 

nodes 1 and 3 (3, 4, 5, 9, 10, 11) are degrees of freedom 

(DOF). 

Section of the bars and terms of area variation and inertia 

along the bars. 

The terms of variation of the section and inertia of bars 

A(x) and Iy(x), defined in Section 2.3 (Eqs. 2, 4) are as fol-

lows: 

Reference values: 

A0 = 30 x 40 = 1200cm2 

Iy0 = 30 x 403 /12 = 160.000cm4 

E = 310.000 Kp/cm2 

1-0 and 3-2 bars: 

They are of constant cross-section equal to the reference 

value: 

A =A0 = 1200cm2 

Iy = I0 = 160.000cm4 

The variation terms are: 

1(x) =3y(x) = 1, con lo cual las formales (7, 18 y 19) 

son: 

z = 1 'y ="y = 1/3 y = 1/6 'y = "y =4 y = 2 

Barra 1-3: 

It has a variable section due to the gussets and is divided 

into three sections, 1/3 of the length of the span. 

The variation terms are: 

Tramo (0,300): 1(x) = 1,5 -x/600 3(x) = (1/40^3) * (60 - 20x/300)3 

Tramo (300,600): 1(x) = 1 3(x) = 1 

Tramo (600,900): 1(x) = 1 + (x-600) / 600 3(x) = (1/40^3) * (40 + 20(x-600) /300)3 

3

5 4

9

11 10

1 3

0 2

30/60 30/40 30/60

30/40 30/40

300 cm 300 cm 300 cm

q = - 40 Kp cm

900 cm

600 cm

a) Structural System

Nodes, bars and loads

b) Structural Model

Movements: 0 to 11

Degrees of freedom: 3, 4, 5, 9, 10, 11

Restrictions: 0, 1, 2, 6, 7, 8

x

z

y

x

z

y

0(1,0) 2(3,2)

1(1,3)

1 3

0 2

0(1,0) 2(3,2)

1(1,3)

0

2 1

6

8 7

x0

z0

y0

x1

z1

y1

x2

z2

y2

Global Axes

x1

z1

y1

Global Axes

Local bar axes1
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 = 
900

∫
𝑑𝑥

1,5−
𝑥

600

 +∫ 𝑑𝑥+∫
 𝑑𝑥

1+
𝑥−600
600

900
600

600
300

300
0

 = 1.14422 


´ = (403/9003) * (∫

(900−𝑥)2𝑑𝑥

(60−
20𝑥

300
)
3

300

0
+ ∫

(900−𝑥)2𝑑𝑥

40^3

600

300
+ ∫

(900−𝑥)2𝑑𝑥

(40+
20(𝑥−600)

300
)
3

900

600  ) = 0,2156 


´́ = (403/9003) * (∫

𝑥2𝑑𝑥

(60−
20𝑥

300
)
3

300

0
+ ∫

𝑥2𝑑𝑥

40^3

600

300
+ ∫

𝑥2𝑑𝑥

(40+
20(𝑥−600)

300
)
3

900

600  ) = 0,2156 

 = (403/9003) * (∫
𝑥(900−𝑥)𝑑𝑥

(60−
20𝑥

300
)
3

300

0
+ ∫

𝑥(900−𝑥)𝑑𝑥

40^3

600

300
+ ∫

𝑥(900−𝑥)𝑑𝑥

(40+
20(𝑥−6)

300
)
3

900

600  ) = 0,1363 


´
y = 

𝜆′′

𝜆′𝜆′′−𝜇2
 =0,2156/0,0279 = 7,7249 


´́

y = 
𝜆′

𝜆′𝜆′′−𝜇2
 =0,2156/0,0279 = 7,7249 

y = 
𝜇

𝜆′𝜆′′−𝜇2 =0,1363/0,0279 = 4,8828 

4.2. Equivalent System of Actions Acting on the 

Ends of the Bars 

The system of actions acting in the structural system is 

formed by the distributed load q, which must be replaced by 

an equivalent system of loads acting at the ends of the bars to 

maintain the discrete character of these structural elements. 

The equivalent system is composed of the reactions: M', M", 

V', V", only of bar 1 (nodes 1 to 3) produced by the charge q 

= - 40 (negative for in the opposite direction to the y-axis) 

acting at nodes 1 and 3. The values of M'y, M"y are deter-

mined as follows (Ec. 36 and 37): 

Bar1-3, with: Mis, y(x) = q x (L-x)/2, the charge terms G' 

and G" are: 

G´
y =∫

𝑀𝑖𝑠,𝑦(𝑥)(𝐿−𝑥)𝑑𝑥

𝐿23𝑦(𝑥)

𝐿

0
 = - 40 /(2*9002)*(403 (∫

𝑥(900−𝑥)2𝑑𝑥

(60−
20𝑥

300
)
3

300

0
+ ∫

𝑥(900−𝑥)2𝑑𝑥

40^3

600

300
+ ∫

𝑥(900−𝑥)2𝑑𝑥

(40+
20

300
(𝑥−600))

3

900

600  )) = - 1.103.772 

G´́
y =∫

𝑀𝑖𝑠,𝑦(𝑥) 𝑥 𝑑𝑥

𝐿23𝑦(𝑥)

𝐿

0
 = - 40 / (2*9002) * (403 (∫

𝑥2(900−𝑥)𝑑𝑥

(60−
20𝑥

300
)
3

300

0
+ ∫

𝑥2(900−𝑥)𝑑𝑥

40^3

600

300
+ ∫

𝑥2(900−𝑥)𝑑𝑥

(40+
20

300
(𝑥−600))

3

900

600  )) = - 1.103.772 

The reactions M', M', V', V", taking into account the direction of the charge in and worth: 

M'y = -( -'y ’y + y ’'y)   - 3.137.025 cmKp V' = - 18.000 Kp 

M"y = -( - yG'y + "yG"y) = 3.137.025 cmKp V" = - 18.000 Kp 

The system of equivalent actions (reactions) for bar 1-3 

can be represented by the vector A, whose components agree 

with the numbering of the movements: 

A =

(

 
 
 

𝑁 
𝑉 
𝑀 
𝑁"
𝑉"
𝑀")

 
 
 

=

(

  
 

0
−18.000

−3.137.025
0

−18.000
3.137.025 )

  
 

 

The equivalent actions produced by bars 0 (1-0) and 2 (3-2) 

are null and void as there are no charges acting on them. 

In global coordinates, the equivalent actions of the 4 nodes 

are: 

A =

(

 
 
 
 
 
 
 
 
 

0
0
0
0

−18.000
−3.137.025

0
0
0
0

−18.000
3.137.025 )
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4.3. Calculation of the Coefficients of the 

Stiffness Matrix 

The elementary stiffness matrices of each bar are calculat-

ed according to Figure 7 for recessed bars – recessed in their 

local axes: 

 
Figure 10. Elemental Stiffness Matrix: Recessed and Recessed bar. 

These matrices are then transferred to global axes by 

means of the transformation matrix, and once on global axes 

the global rigidity matrix of the structure is assembled. 

The resulting matrices in this process are the following: 

For Bar 0. 

A0 = 1.200 cm2, I0 = 160.000 cm4, L = 600 cm, E = 310.000 

k/cm2,  = 1, 'y = "y =4, y = 2 

A = 𝐴₀𝐸/L = 620000.0 

B = E I0 (
´ +

´́
) / L3=2755.5 

C1 = EI0 
´ /L=330666666.6 

C2 =EI0 
´́ /L=330666666.6 

C3 = EI0  /L=165333333.3 

D1 = EI0 (
´) /L2=826666.6 

D2 = EI0 (
´́) /L2 =826666.6 

Table 1. Elemental Stiffness Matrix on bar shafts (MR_elem_0). 

620000 0 0 -620000 0 0 

0 2755.5 826666.6 0 -2755.5 826666.6 

0 826666.6 330666666.6 0 -826666.6 165333333.3 

-620000 0 0 620000 0 0 

0 -2755.5 -826666.6 0 2755.5 -826666.6 

0 826666.6 165333333.3 0 -826666.6 330666666.6 

Table 2. Transformation Matrix (T_0). 

0 -1 0 0 0 0 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 -1 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

Table 3. Matrix of the bar on global axes (K_global_0): (K_global_0) =(T_0T) x (MR_elem_0) x (T_0). 

2755.5 0 826666.6 -2755.5 0 826666.6 

0 620000 0 0 -620000 0 

826666.6 0 330666666.6 -826666 0 165333333.3 

A -A

B D1 -B D2

-D1C1

A

B

C2

-D2

C3D1

-A

-B

D2

-D1

C3 -D2

ELEMENTAL STIFFNESS MATRIX: RECESSED - RECESSED BAR

The subscript z is omitted. The rest of the coefficients are zero.

B   = E I0 ( '  '' +2) / L3

C1 = E I0  '  / L

C2 = E I0  / L

C3 = E I0  / L

D2 = E I0 ( ' +) / L2

D1 = E I0 ( ' +) / L2

A    =  E A0 / L
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-2755.5 0 -826666.6 2755.5 0 -826666.6 

0 -620000 0 0 620000 0 

826666.6 0 165333333.3 -826666 0 330666666.6 

 

For Bar 1. 

A0 = 1.200 cm
2
, I0 = 160.000 cm4, L = 900 cm, E = 

310.000 k/cm
2
,  = 1.1442, 'y = "y =7.72763, y = 

4.8827. (Some value may differ somewhat by the calculation 

algorithm) 

A = 𝐴₀𝐸/L = 472939.9 

B = E I0 (
´ +

´́
) / L3=1715.9 

C1 = EI0 
´ /L=425878491.3 

C2 = EI0 
´́ /L=425878491.3 

C3 = EI0  /L=269094744.6 

D1 = EI0 (
´) /L2=772192.4 

D2 = EI0 (
´́) /L2 = 772192.4 

Table 4. Elemental Stiffness Matrix on bar shafts (MR_elem_1). 

472939.9 0 0 -472939 0 0 

0 1715.9 772192.4 0 -1715.9 772192.4 

0 772192.4 425878491.3 0 -772192 269094744.6 

-472939 0 0 472939 0 0 

0 -1715.9 -772192.4 0 1715.9 -772192.4 

0 772192.4 269094744.6 0 -772192 425878491.3 

Table 5. Transformation Matrix (T_1). 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

Table 6. Matrix of the bar on global axes (K_global_1): (K_global_1) =(T_1T) x (MR_elem_1) x (T_1). 

472939.9 0 0 -472939 0 0 

0 1715.9 772192.4 0 -1715.9 772192.4 

0 772192.4 425878491.3 0 -772192 269094744.6 

-472939 0 0 472939.9 0 0 

0 -1715.9 -772192.4 0 1715.9 -772192.4 

0 772192.4 269094744.6 0 -772192 425878491.3 
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For Bar 2. (It's the same as for bar 0) 

A0 = 1.200 cm2, I0 = 160.000 cm4, L = 600 cm, E = 310.000 

k/cm2,  = 1, 'y = "y =4, y = 2 

A = 𝐴₀𝐸/L = 620000.0 

B = E I0 (
´ +

´́
) / L3=2755.5 

C1 = EI0 
´ /L=330666666.6 

C2 =EI0 
´́ /L=330666666.6 

C3 = EI0  /L=165333333.3 

D1 = EI0 (
´) /L2=826666.6 

D2 = EI0 (
´́) /L2 = 826666.6 

Table 7. Elemental Stiffness Matrix on bar shafts (MR_elem_2). 

620000 0 0 -620000 0 0 

0 2755.5 826666.6 0 -2755.5 826666.6 

0 826666.6 330666666.6 0 -826666.6 165333333.3 

-620000 0 0 620000 0 0 

0 -2755.5 -826666.6 0 2755.5 -826666.6 

0 826666.6 165333333.3 0 -826666.6 330666666.6 

Table 8. Transformation Matrix (T_2). 

0 -1 0 0 0 0 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 -1 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

Table 9. Matrix of the bar on global axes (K_global_2): (K_global_2) =(T_2T) x (MR_elem_2) x (T_2). 

2755.5 0 826666.6 -2755.5 0 826666.6 

0 620000 0 0 -620000 0 

826666.6 0 330666666.6 -826666 0 165333333.3 

-2755.5 0 -826666.6 2755.5 0 -826666.6 

0 -620000 0 0 620000 0 

826666.6 0 165333333.3 -826666 0 330666666.6 

 

4.4. Global Stiffness Matrix and Stiffness 

Equation 

The coefficients that make up the Global Stiffness Matrix 

are obtained by adding those of the elementary bar matrices 

in global coordinates, in the position that corresponds to 

them according to the numbering of movements. 

These elementary matrices in global coordinates have 

been calculated in section 4.3 above. 

Once the Global Stiffness Matrix has been assembled in 

this way, it is necessary to apply the boundary conditions to 

it by cancelling the equations that correspond to the restrict-
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ed movements (which are movements 0, 1, 2, 6, 7 and 8) 

equalizing their coefficients to 0 minus that of the main di-

agonal to which the value 1 is given. 

The 12x12 Global Stiffness Matrix is (K_global_total): 

[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

[0, 0, 0, 475695, 0, 826666, 0, 0, 0, -472939, 0, 0] 

[0, 0, 0, 0, 621715, 772192, 0, 0, 0, 0, -1715, 772192] 

[0, 0, 0, 826666, 772192, 756545158, 0, 0, 0, 0, -772192, 

269094744] 

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 

[0, 0, 0, -472939, 0, 0, 0, 0, 0, 475695, 0, 826666] 

[0, 0, 0, 0, -1715, -772192, 0, 0, 0, 0, 621715, -772192] 

[0, 0, 0, 0, 772192, 269094744, 0, 0, 0, 826666, -772192, 

756545158]] 

And the vector of Global Forces is (F_global_total): 

[[0], [0], [0], [0], [-18000], [-3136332], [0], [0], [0], [0], [-

17999], [3136332]] 

The stiffness equation of the model is: 

(K_global_total) x D = (F_global_total) 

Once the system is solved, the vector D is obtained, whose 

value is: 

[[0], [0], [0], [0.005615197581263467], [-

0.02903225806451541], [-0.006443680670371993], [0], [0], 

[0], [-0.005615197580875675], [-0.02903225806451604], 

[0.006443680670370919]] 

From this vector the displacements that correspond to bar 

1, which are the only non-zero ones, coincide with those of 

the local coordinates of bar 1: 

Table 10. Vector (desp_local_1). 

0.005615197581263467 

-0.02903225806451541 

-0.006443680670371993 

-0.005615197580875675 

-0.02903225806451604 

0.006443680670370919 

 

Table 11. Elemental Stiffness Matrix on bar shafts (MR_elem_1). 

472939.9 0 0 -472939 0 0 

0 1715.9 772192.4 0 -1715.9 772192.4 

0 772192.4 425878491.3 0 -772192 269094744.6 

-472939 0 0 472939 0 0 

0 -1715.9 -772192.4 0 1715.9 -772192.4 

0 772192.4 269094744.6 0 -772192 425878491.3 

 

Multiplying (MR_elem_1) x (desp_local_1) yields the val-

ues of the internal forces, which added to the equivalent 

actions of the bar (AC_equiv_1) gives the final actions at the 

ends of the bar. 

4.5. Calculation of Actions at the Ends of the 

Bars 

From the above, the actions at the ends of bar 1 (nodes 1,3) 

are as follows: 

A1-3 = (MR_elem_1) x (desp_local_1) + (AC_equiv_1) = 

N' = -5311 = -5.3 t 

V’ = -18000 = -18 t 

M’ = -2126068 = -21.2mt 

N" = 5311 = -5.3 t 

V” = -18000 = -18 t 

M" = 2126068 = 21.2mt 

4.6. Calculation Results 

The stresses resulting from the calculation are shown be-

low graphically by changing the units to m and t (meters and 

tons). These stresses are used to calculate the necessary rein-

forcements in the case of reinforced concrete, for which the 

method found in Annex 7 of [4] can be used.  
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Figure 11. Calculation Results. 

5. Conclusion 

By means of this approach to the Stiffness Matrix for bars 

of variable section, any structure of straight bars with varia-

ble section can be calculated by the Stiffness Matrix Method. 

The matrix equations that result is of the same size as 

those used for bars of constant section, although the coeffi-

cients of the matrix are different and must be obtained by 

integration along the bar. 

The same happens with the equivalent actions of the end 

of the bar, which also have to be calculated by integration. 

Because obtaining the Coefficients of the Stiffness Matrix 

by integration along the bar can be laborious when the varia-

tion of its mechanical constants or the distribution of mo-

ments becomes complicated, numerical integration is advan-

tageous. 

To this end, Simpson's rule obtains sufficient precision, 

with not too many intervals. 

In isotropic materials, the direct application of the method 

for variable section bars can be carried out directly from their 

geometry without the need to make hypotheses about the 

behaviour of the material as when it is non-isotropic. 

This happens in the example of section 4 and is also the 

case of steel profiles that have reinforcements in some areas. 

For example, gussets or reinforcements in bars that increase 

their rigidity in the reinforced areas, as can happen in metal 

columns when certain types of semi-rigid joints are used to 

thicken them and have a lot of influence on the seismic cal-

culation. 

In the case of non-isotropic materials, such as reinforced 

concrete in a cracked state or mixed beams, it is necessary to 

establish hypotheses that define the laws of variation of the 

mechanical constants of the bars. 

There are numerous structural systems where the variable 

stiffness of the bars can be significant, so applying the meth-

od can be useful and be the subject of new studies. 

This study is complemented by a Python program whose 

source code is provided so that it can be reviewed, modified 

and improved by any interested party. 

Abbreviations 

A Area 

Ab Bar End Equivalent Actions 

D Longitudinal Displacement 

Db Bar End Movements 

E Warp Module 

F Action 

G', G" Charging Terms 

CALCULATION RESULTS

a) Bending Moments Graph a) Axial graph

b) Shear stress graph a) Displacement graph
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I Moment of Inertia 

It Torque Modulus 

K Coefficient 

L Longitude 

M Bending Moment 

N Normal Strength 

Rb Stiffness Matrix 

T Torsor Moment 

U Mechanical Capability 

V Shear Stress 

W Rugged Module 

a Distance. Arrow 

b Width 

d Useful Song 

e Eccentricity 

f Resistance 

g Permanent Load Spread 

h Canto Total 

i Turning Radius 

k Coefficient 

l Length, Light 

m Bending moment per unit length 

w Arrow 

 (Alpha) Angle, Coefficient 

 (Beta) Angle, Coefficient 

 (Gamma) Weighting Coefficient 

 (Epsilon) Relative Deformation 

 (Eta) Stiffness Coefficient 

 (Theta) Angle 

 (Lambda) Formal Bar 

 (Mu) Formal Bar 

 (Nu) Relative Normal Effort 

 (xi) Coefficient of Variation 

 (Rho) Geometric Amount 

', " Stiffness Coefficients 

 (Sigma) Tension. Tangential Tension 

 (Fee) Coefficient 

 (Psi) Coefficient 

 (Omega) Mechanical Amount 
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