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Abstract: The study provides an in-depth analysis of COVID-19 infections in Kenya, aiming to model the non-linear
trajectory of daily cases. The research explores two statistical techniques: fractional polynomials and linear splines, to fit the
growth of infection rates over time. COVID-19, which first appeared in Kenya in March 2020, exhibited fluctuating trends in
daily infections. The study utilizes infection data collected from March 13, 2020, to June 6, 2021. Descriptive statistics and
exploratory data analysis revealed significant variability in daily cases, with the infection trajectory characterized by multiple
waves. Fractional polynomial models, known for their flexibility in fitting non-linear relationships, were evaluated at varying
degrees to identify the best model for COVID-19 incidence trends. The analysis showed that a second-degree fractional
polynomial with powers (1, 2) provided the most accurate fit for the data. The closed test algorithm was applied to confirm the
model’s suitability. Additionally, linear spline models were employed, partitioning the data into segments and fitting linear
splines at each knot point. The model with 19 knots demonstrated superior performance based on Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), outperforming the fractional polynomial model. The comparison of the two
methods concluded that linear splines provided a more precise fit for the infection data, capturing the complex nature of
COVID-19’s spread in Kenya. The study’s findings offer critical insights into the infection dynamics and can aid policymakers
in resource allocation and mitigation planning during pandemics. The study recommends further analysis by incorporating more
covariates and extending the models to other countries for a comparative understanding of pandemic management strategies.

Keywords: COVID-19, Fractional Polynomials, Linear Splines, Continous Data, Knots Placement, Best Fitting Model,
Multivariate Regression Models

1. Introduction

1.1. Background of the Study

Coronavirus popularly abbreviated as COVID-19 continues
to spread at an alarming rate and continues to penetrate
globally across all continents. According to World Health
Organization (WHO), Covid-19 is a respiratory illness which
originated in Wuhan city, China on December 2019. The virus
is caused by severe acute respiratory syndrome (SARS-CoV-
2) whose symptoms include coughing, fever, headache and
difficulty in breathing. On 13 March 2020, Kenya reported
its first case of the novel coronavirus disease which saw the

government move with speed to identify persons who came
into contact with the first case. As of June 25, 2020, there were
9,519,482 confirmed cases, 483,959 fatalities and 5,169,767
recoveries globally. Out of these statistics, 5,206 cases were
from Kenya with 132 fatalities and 1,823 recoveries [1]. These
deaths greatly supersede the number of deaths associated with
both severe acute respiratory syndrome coronavirus, SARS-
CoV, and Middle East respiratory syndrome coronavirus
(MERS-CoV). COVID 19 poses a huge threat to the global
public health and the economy considering the outbreak
continues to spread within the communities. The coincidence
of the emergence of COVID-19 with the Spring Festival travel
season was largely attributed for the rapid national and global
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spread of the virus especially across Europe and Asia [1].
The pandemic not only presents an imminent, but also a
severe threat to the lives of the citizens globally, the global
healthcare system as well as the global economy. If no serious
measures are taken, it is expected that the escalating COVID-
19 infection rate could result in significant morbidity and
mortality for a large percentage of the global citizens in the
future months [2]. The observed reproduction number and
mortality rates of COVID-19 have been compared to those
of the Spanish Flu of 1918. Recent reports indicate a high
fatality rate of approximately 61.5% for critical cases which
could be significantly high depending on the patient’s age and
any underlying comorbidities. Because of this severity, great
pressure has been put on medical services which has further
led to a shortage of intensive care resources both in developed
economies like the United States and Italy as well as the
developing economies like Kenya [3]. With the unavailability
of prognostic biomarkers aimed at distinguishing patient’s
requiring immediate attention and consequently estimate their
mortality rate, it is an urgent yet challenging necessity to
easily identify and urgently accord necessary care to patients
at imminent risk of death [4]. It is important to assess severity
of COVID-19 in order to determine the appropriate mitigation
strategies. This is especially important for a developing
economy like Kenya as it enables planning for health-care
needs with the increasing rate of infections. Considering
the extent of the spread and the nature of its distribution,
determining crude case fatalities only by dividing the number
of deaths by the number of cases cannot offer a broader
context and understanding the problem at hand [3]. This is
further expounded by the failure to know the final clinical
outcome of a majority of the reported cases during the
growing pandemic hence making it impossible to accurately
estimate the true case fatality ratio at the earlier stages of
the pandemic. It is even difficult in the case of the country
like Kenya where the proportion of the population tested is
pretty low and cannot be considered to be a representative
sample of the pandemic outbreak. This is not unique to
Kenya only as data from the epicenter of the outbreak in
Wuhan were mainly obtained through hospital surveillance
which implies that the reported cases would mainly represent
moderate and severe illnesses while the mild cases would be
ignored [4]. This biased approach would ultimately lead to
a relatively higher case fatality ratio. The spatio-temporal
pattern exhibited by COVID-19 infections in Kenya shows
scaling trends without illustrating a tendency of stabilization.
This study, therefore, seeks to investigate a flexible approach to
fitting non-linear trend of the COVID-19 incidence infections.
This is to be achieved within the context of promising a
success story in the fight against the diseases. This study
uses the fractional polynomial (FP) method while maintaining
the number of infections as a continuous variable. Fractional
polynomial method was selected because of its ability to allow
the data to determine the best fitting functional form for the
infection rate without imposing a specific functional form
[5]. This parametric method for modeling the evolution of
the Kenyan Covid-19 infection-curve yields more accurate

forecasting compared to the conventional polynomial methods.
An alternative approach is the linear splines method which
involves partitioning the data into different segments and
fitting of linear splines at each partition. This method provides
an easier way of interpreting the coefficients of the model
which is quite difficult in the case of fractional polynomial
method. The two methods are compared using AIC. These
methods provide the ability to capture the growth trajectory of
the infections in a compact, parsimonious model.

1.2. Statement of the Problem

Since the COVID-19 pandemic started in Wuhan in
December 2019, it has spread across the globe at a very
alarming rate. Across both developed and developing
countries, it has not only caused mortality, but also put
considerable stress on health systems with a vast majority
of the affected needing critical care including mechanical
ventilation [3]. This is why there is urgency in determining
an accurate estimate to effectively manage the rising case
load while providing the highest quality of health care
possible. The forecasts and scenarios for COVID-19 have
largely been based on mathematical compartmental models.
These models assume random mixing between all individuals
in a given population. While results of these models are
sensitive to stating assumptions and thus differ between
models considerably, they generally suggest that given current
estimates of the basic reproductive rate (the number of cases
caused by each case in a susceptible population), 25% to 90%
of the population could eventually become infected unless
effective mitigation measures are put in place and adhered
to the latter. A number of sub-Saharan African countries,
including Kenya, are at moderate to high risk of novel
coronavirus importation, measured by volume of air travel
arriving from infected Chinese provinces [3]. And as such,
the likelihood of a significant outbreak remains high, with
potentially severe consequences for fragile regional health
systems. The potentially high negative impact of a novel
coronavirus outbreak in Kenya provides a strong motivation
for forecasting studies of COVID-19 pandemic magnitude
ahead of a serious outbreak under a number of plausible
scenarios. This modeling study provides a baseline for
continuous updating as improved data become available, e.g.
time course of COVID-19 cases, updated mobility estimates,
the proportion and infectivity of asymptomatic cases, and
new intervention strategies proposed or implemented. It also
provides the basis for studies of health service capacity.

1.3. Objectives of the Study

1.3.1. General Objective
To determine COVID-19 incidence infections in Kenya

using fractional polynomials and linear splines.

1.3.2. Specific Objectives
1. To fit a fractional polynomial model for COVID-19

infections.
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2. To fit a linear spline model for COVID-19 infections.
3. To evaluate the best fitting model for COVID-19

infections.

1.4. Justification of the Study

From the fatality and infections recorded and with the
government testing more people, successful management of
the pandemic calls for the need to understand the fatalities
and infections to determine whether mitigation measures
are effective. Considering the public health and economic
repercussions brought about by the pandemic, there are
high chances that mathematical modelling can help bring
into perspective essential epidemiological parameters that
determine the fate of the pandemic Other forecasting models
focus on modelling the empirically observed COVID-19
population death rate curves which directly reflect both the
transmission of the virus and the infection fatality rates in each
specific community. In a situation for a country like Kenya,
deaths offer more accurate estimates since there is limited
testing capacity and the tests are prioritized for more severe
ill patients. This is why the proposed methods are considered
since they build on a recent conceptualization of detecting
communities of connectivity in a time-series and develops a
novel model based on the fractional polynomials and linear
splines that guarantees more accurate and reliable forecasting
[5]. Such an approach not only provides insight of good
policy and decision-making practices, but also management
that would greatly aid in decision-making and management
of the available health resources in the fight against COVID-
19 pandemic. Mathematical epidemiologists use models not
only to support a broad range of policy questions, but also
gain an understanding of the pandemic itself. In far reaching
pandemics like COVID-19, mathematical models have been
used widely for planning and identifying critical gaps and
preparing plans aimed at detecting and responding to pandemic
events. This study, therefore, plays a significant role in not
only helping understand the transmission of the virus, but
also forecast the likely mortality rate and by predicting where
transmission is likely to happen and advice on where controls
can be put in place.

1.5. Scope of the Study

The scope of this study encompasses the application of
statistical modeling techniques to analyze the daily COVID-
19 infection rates in Kenya. The research focuses on modeling
the non-linear growth trajectory of the pandemic using two
specific methods: fractional polynomials and linear splines.
The data used spans from March 13, 2020, to June 6, 2021,
capturing daily infection rates and enabling the exploration of
trends across different phases of the pandemic. The study
involves conducting exploratory data analysis to understand
the underlying distribution of COVID-19 cases and to select
the most appropriate modeling technique. The fractional
polynomial model is applied to fit the non-linear trends in the
infection data, with the best fitting model identified through

a closed test algorithm. Additionally, linear spline models
are employed, dividing the data into segments and estimating
the most accurate model by determining optimal knot points.
Model selection criteria, including AIC and BIC, are used to
evaluate the performance of each model. This study aims
to provide a comprehensive analysis of COVID-19 infection
trends in Kenya and to identify the most suitable model for
forecasting and policymaking in pandemic response efforts.

2. Literature Review

2.1. Introduction

This chapter on literature review assess previous literature
on the subject and places each work in the context of its
contribution to understanding the research problem under
consideration. However, COVID-19 is a relatively new
phenomenon and as such the literature review will seek
to synthesize information from previous studies on other
pandemics in a bid to identify new ways of interpreting prior
research as well as locate this research within the context
of existing literature. For this reason, this chapter reviews
COVID-19 incidence infections in Kenya as well as a review of
the fractional polynomials and linear splines modeling which
is very popular for modeling and summarizing the relationship
between any biological aspects in correlation to its causative
factors.

2.2. Review of COVID-19 Incidence Infections in Kenya

The government of Kenya started enforcing stringent
measures on combating COVID-19 on March 13th
immediately patient zero tested positive for the novel
coronavirus. Since then, the number of cases to have tested
positive and the number of deaths continue to increase
gradually. As of May 22nd 2020, the Republic of Kenya
had a total of 1,161 cases after testing a sample size of
55,074 according to [6]. Reference [6] also noted that by
May 22nd 2020, they had discharged a total of 380 COVID-
19 patients. Mapping the COVID-19 infections by counties,
the Ministry of Health noticed that the most affected counties
were Nairobi, Mombasa, Mandera, Kwale, and Kajiado. The
country had also registered 50 fatalities at the aforementioned.
The fatalities were from the confirmed cases of COVID-
19. This means that from the tested and confirmed cases,
the case fatality rate (CFR) stood at 4.3%. However, it is
important to note that the country was not at its optimal
position of testing for COVID-19 infections due to reduced
testing capacity and human resources. This means that the
infection fatality rate (IFR) could be higher than the CFR
due to the possible discrepancies between the confirmed cases
and potential infections that are yet to be confirmed due to
some limitations. The COVID-19 tracking model used by the
Kenyan Ministry of Health has been under review as it appears
to have discrepancies in relation to models developed by other
institutions. According to [7], as of May 5th 2020, the country
had confirmed 490 COVID-19 cases after the PCR testing,
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which were only a small subset of infections. This is due to the
fact that most of the cases were either asymptomatic or even
mild. Reference [7] noted that the lack of testing kits and the
technical personnel had inhibited Kenya’s ability to test more
individuals, which is largely to be blamed for the low numbers
of confirmed cases posted against a relatively high number
of projected and predicted infections in the country. By May
22nd 2020, the country had only tested 55,074 individuals for
a period of more than two months which indicates a low testing
rate considering that the country has a population of around 47
million persons. According to [7], the low testing levels and
the high levels of asymptomatic cases, it becomes impossible
to make inferences on the actual number of infections from
the currently confirmed cases, which necessitates the need for
the development of models that can paint the actual picture
of the COVID-19 infections in Kenya. Reference [7] noted
that a randomized test by a private organizer in Kibera, the
largest slum in the country, confirmed 3 positive cases out of
the 400 sample tested. The testing carried out at the end of
April indicated that the actual current infections in the country
should be around 79,000 devoid of the infection growth rate
that exist in the country. Reference [7] also indicated that the
IFR of COVID-19 stood at 0.66% of the infections, which
is a projection of the country having at least 3700 COVID-
19 infections by May 5th 2020. According to [8], the crude
mortality ratio for COVID-19 is between 3-4% which means
that in the worst case scenario the country will be recording
40 deaths for every 1,000 confirmed cases. Technically this
appears to be true considering that the country has recorded 50
deaths out of the 1161 confirmed cases which translates to a
crude mortality ratio of around 4.3%. However, [8] noted that
the models being used by the government were unclear with
the data sharing protocols being opaque. The government is
yet to develop a way of modelling the pandemic. Reference
[8] proposed the Susceptible, Exposed, Infectious, Recovered
(SEIR) model in dealing with the pandemic. The model
is essential in the development of interventions as well as
enhancing the preparedness of the country in dealing with the
pandemic.

2.3. Review of the Fractional Polynomials and Linear
Splines Modeling

Either the fractional polynomials or linear splines can
be used to model and summarize the relationship between
the growth of any biological aspect (be it good or bad) in
correlation with its causative factors. For instance, the two
models can be used to summarize the correlation between
age and height increase among children or the correlation
between nutrition and death. According to [9], these models
are “often used to describe trajectories, as they analyse
repeated measures (level 1) clustered within individuals (level
2)”(pp.129). The two approaches are used to model a
dependent factor against independent functions which are
bound to be either linear or which are supposed to include
polynomials. These models are used to develop the best
fitting trajectory within the modeling framework with the

fractional polynomials producing a smooth function and the
linear splines generating a set of connected phases [9]. For
the linear spline each phase will have a different growth rate
although the connected phase will be within the best fitting
trajectory. An example of how the two look like is shown in
the figure below.

Figure 1. Tilling, Macdonald-Wallis, Lawlor, Hughes & Howe, 2014.

In their study on the relationship between obesity and
mortality using BMI, [10] identified that the multivariate
fractional polynomials are essential in addressing the
asymmetric and nonlinear relationships between two
biological aspects by “allowing the data itself to determine
the functional form of the correlated factors and the other
adjustment variables”. Fractional polynomials have been
identified to be a best fitting model due to its power
transformation of the covariates. The fractional polynomial
model is essential in creating symmetry in curves that are
nonlinear and asymmetrical as a way of creating the best fit
trajectory for two functional factors that are correlated [10].
Allowing the estimated trajectory curve to have a flexible
shape is essential in ensuring that the fractional polynomial
model is sensitive about the correlation between the dependent
variable and the single continous covariate. Fractional
polynomial being a flexible regression model provide a succint
and accurate approximation of the relationship between the
covariate and the response variable [11]. Whenever an
analysis is being done using skewed data, there is a doubt
on the linearity assumption, which necessitates the use of a
logarithmic model that categorizes the continuous variables
to enhance linearity [12]. In this case, the use of fractional
polynomials comes in handy to enhance the model by the
power transformation of continous variable. According to [13]
there are two types of fractional polynomials FPI which has
8 models and FP2 which has 36 models. These two types
of polynomial models have the ability to produce a range of
curves which are essential in covering different continuous
functions in health sciences.

In randomized controlled trials the adjustment of the
prognostic covariates is essential in ensuring that the
imbalances between the functional factors is eliminated, which
leads to the development and specification of the nature
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of association between causative factor and the outcome
[14]. The adjustment of the prognostic is essential in
identifying whether the nature of association between the
functional factors is logarithmic, quadratic, or linear. The
adjustment of the continuous covariate becomes essential
when the association between the outcome and the covariate
is unknown whereby the fractional polynomials and the linear
splines becomes very imperative [14]). The benefits of using
the fractional polynomials is the ability to allow non-linear
associations as well as keeping the data as continuous as
possible. Fractional polynomials are crucial for modeling
considering that it is available in a number of statistical
packages. Using the linear splines is also equally important
as it also keep data continuous and allow for non-linear
associations. In randomized control trials, the linear splines are
used by ensuring that knots are chosen and placed at specified
percentiles of the data to ensure that a smoothened trajectory of
the covariates and the outcome is developed according to [15].
According to [15] the application of the smoothing splines
involves knots being placed at different data points though
a penalized likelihood should be maximized to ensure that
smoothed estimates and trajectory are derived. This makes
linear splines an equally important model in epidemiological
research. However, linear splines appear to be more detailed
than the fractional splines considering that knots are inserted at
every major data point in the estimated trajectory. According
to [16], while both fractional polynomial and linear splines
are essential in identifying the functional forms for continuous
covariates and are similar in predicting performance, they
differ to some extent. However, the fractional polynomial
is better than the splines in terms of performance when the
amount of information is medium, which means that the
former is better in recovering simpler functions [17]. On
the other hand, the linear splines are better in recovering the
complex functions that contain large amounts of data with
no localized structures and forming into explanatory models
that be easily inference. Reference [18] noted “ that spline
modeling, while extremely flexible, can generate fitted curves
with uninterpretable ‘wiggles’, particularly when automatic
methods for choosing the smoothness are employed.”

In their study, [19] applied multivariate linear regression
model to provide an estimation of the H1N1 pandemic in
different countries as a way of coming up with the mortality
burden of the pandemic. By using these models, the study
found out that the pandemic’s mortality was tenfold higher
than the WHO’s laboratory-confirmed mortality. This means
that the multivariate linear regression models of polynomial
and splines are more accurate in determining the actual
mortality of pandemics than any other model. Refence [19]
used a model that included virology surveillance time series
data and the linear secular trends so that the pandemic’s
mortality could be estimated. The use of the multivariate
regression model that included the polynomials and the
splines was essential in obtaining the missing data points,
which explains why the studied countries were posting lower
mortalities than the ones identified by this particular study.
What this means is that the multivariate regression models

are the best in modelling pandemics or other epidemiological
diseases with high infections and mortality rates. Moreover,
the modeling paints the correct picture of severity and
mortality especially when a pandemic’s data is continuous over
a period of time.

3. Methodology

3.1. Introduction

This chapter introduces the proposed models for purposes
of modeling and analyzing the data. The section introduces
and justifies the suitability of fractional polynomials and linear
splines. The chapter also outlines the model selection criteria
where the best fitting model for the data is selected.

3.2. Fractional Polynomials

Proposed by Royston and Altman, fractional polynomials
(FP) is a generalization of the polynomial function which
provides a flexible parameterization of a continuous variable.
The general fractional polynomial function of degree m is
defined as;

φm(X;β,p) = β0 +

m∑
i=1

βiX
(pi) (1)

where m is a positive integer, p = p1 ≤ p2 ≤..........≤ pm
represents the real-valued vector of powers, β1, β2, ......, βm
represents the real-valued coefficients. The round brackets
notations denotes the Box-Tidwell transformation [12];

X(pi) =

{
X(pi), pi 6= 0,

lnX, pi = 0

Equation (1) can be extended to the case when m > 1. For
m = 2 and p = (p1, p1);

φm(X;β,p) = β0 + (β1 + β2)X
(p1) (2)

which is a fractional polynomial of degree 1. However, if p1 =
p2 , the second-degree fractional polynomial transformation is
defined as;

Xp =

{
Xp1 , Xp2 p1 6= p2

Xp1 , Xp1 lnX p1 = p2

The functional form of the second power, for the repeated
powers is as a result of the limit as p2 tends to p1 for

Xp1(Xp2−p1)(p2 − p1)−1 (3)

Such that FP2 model with repeated powers p1 = p2 can be
defined as;

φm(X;β,p) = β0 + β1X
(p1) + β2X

(p1)lnX (4)

for m > 2 and p1 ≤ p2 ≤..........≤ pm, (4) can be generalised
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as follows;

φm(X;β,p) = β0 + β1X
(p1) +

m∑
i=2

βiX
(pi)
i (lnXi)

−1 (5)

Given arbitrary powers p1 ≤ p2 ≤..........≤ pm, and setting
H0(X) = 1 and p0 = 0, we obtain the extended definition of
the fractional polynomial function;

φm(X;β,p) =
m∑
i=0

βiHi(X) (6)

where i = 1, 2,........,m and the recurrence relation Hi(X) is
defined;

Hi(X) =

{
X

(p)
i , pi 6= pi−1,

Hi − (X)lnX, pi = pi−1

The first degree fractional polynomial, FP1 (m = 1) performs
eight tests with the power transformations given in the
predefined set S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3} where 0
represents the log transformation [11]. In FPI, p is a single
power. As for a second-degree fractional polynomial, the
model is fitted to each possible pair of powers from the set
of powers, S. FP2 model fits 36 models.

In fractional polynomials, duplication of powers does not
reduce the degree of the model. The process of fitting a
polynomial of degree one involves taking each power from the
set to determine whether the fit of the model is improved by the
transformations. From (4) the second term is multiplied the log
since we will have two separate terms with the same powers.
In fractional polynomials, the covariate X must be greater
than zero to ensure that the interpretation of the intercept is
meaningful.

Model selection criteria
Combination of different pairs of the polynomials will yield

different model deviances which is examined to determine the
best-fitting polynomial. The best fitting fractional polynomial
is the model with the smallest deviance. However, in order to
increase parsimony and stability of the selected models, [11]
proposed the use of a closed test algorithm for model selection
of fixed m and a level of significance, α. The procedure follows
the steps:

1. Inclusion - For a covariate X, the best fitting second-
degree fractional polynomial is compared with the null
model using χ2 with 4 d.f. at the α level. If the result
is statistically significant then continue, otherwise drop
the covariate X from the model.

2. Non-linearity - Test the best fitting second-degree
fractional polynomial in comparison with the linear
model using a χ2 with 3 d.f. at the α level. If the test is
significant then continue, otherwise we choose the linear
model.

3. Simplification - Test the best fitting second-degree FP
against the best fitting first-degree FP with 2 degrees of
freedom. If the test is significant, second-degree FP is
the best fitting model, otherwise the best fitting model is

first-degree fractional polynomial.

3.3. Linear Splines

Linear splines also known as piecewise model or broken
stick is an alternative approach in modelling COVID-19
infections by using a series of joined knot points. The method
involves partitioning the data into different segments and
fitting a linear spline at each segment where the corresponding
coefficients of each spline describes the average slope between
each knot point [9]. Linear splines models yields interpretable
coefficients compared to the fractional polynomials model.
The linear spline model with knots at tk, k = 1,2,.....,K
continous at each knot point will be of the form;

φ(x) = β0 + β1x+

K∑
k=1

µk(x− tk)+ (7)

where βk denotes the weight of each linear segment and
(x − tk)+ refers to the kth linear function with a knot at tk
[20]. The positive part of the function is defined as;

(x− tk)+ =

{
x− tk, x > tk,

0, otherwise

The linear spline model can be extended to be a piecewise
polynomial of p;

φ(x) = β0 + β1x+ ...+ βpx
p +

K∑
k=1

µk(x− tk)p+ (8)

The basis function for the linear spine model is defined as;

[1, x, (x− t1)+ + . . .+ (x− tK)+]

Combining equation (3.8) with the basis function, the linear
spline model can be written as follows;

φ(x) = β0 + β1x+ β2(x− t1)+ + β3(x− t2)+ + ... (9)

Determination of the number of knot points The number
and position of the knot points is done by either placing the
knots at the center (average) of the distribution or starting with
a large number of knots then gradually reduce the number
until a smooth curve is achieved [21]. However, increasing
the number of knots points beyond the optimal point will lead
to over fitting. In our study, the knot points were determined
using AIC and the BIC to determine the optimal number of
knot points [22]. A low value of AIC or BIC corresponds to
the optimal number of knot points.

AIC = −2ln(L) + 2K (10)

Where;
AIC - Akaike Information Criterion
L - the maximum likelihood
K - the number of parameters in the model
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BIC = −2ln(L) + kln(n) (11)

Where;
BIC - Bayesian Information Criterion
L - the maximum likelihood
n - number of observations
k - the number of parameters in the model
The best fitting fractional polynomial will be compared with

the best fitting linear spline using the AIC.

4. Data Analysis and Results

4.1. Data

In this study, we used daily COVID-19 infections data from
the period March 13, 2020 to June 6, 2021 (N = 450). The
data was obtained from the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University. As of June
13, 2021, there were 175,337 total cases with 3,410 total
deaths and 120,208 total recoveries. R software was used
for data analysis by loading several packages such as mfp,
ggplot2, gridExtra, tidyverse, gam among others to help in
statistical model building and plotting.

4.2. Exploratory Data Analysis

4.2.1. Description of COVID-19 Infections Data

Table 1. Descriptive Statistics.

Daily infections

Length (N) 450

Minimum 0

Maximum 2,008

Mean 382.9

1st Quartile 105.0

Median 246.0

3rd Quartile 560.5

Table 1 presents the summary statistics for the daily
COVID-19 infections, the average daily infections in Kenya
for the past 15 months (450 days) is 382.9 with a minimum
value of 0 cases and a maximum value of 2,008 cases. The
median COVID-19 infections is 246.0 cases. The lower (1st)
and upper (3rd) quartiles are 105.0 and 560.5 respectively.

4.2.2. Scatter Plot for the Number of Infections
Figure 2 shows the distribution of the daily infections in

Kenya. It is observed that there is an increasing trend in
number of new infections from the day the first case was
reported with a peak experienced around mid August, 2020.
There was a significant drop in the number of daily cases
reported in September. In November, 2020, there was a
significant upward trend in the number of cases with a decline
reported in January 2021. The third wave is observed in

March, 2021 characterized by a sharp rise in the number of
daily infections.

Figure 2. Scatter plot for the raw data of COVID-19 Infections.

4.3. Fractional Polynomial Model

The first method to modelling COVID-19 daily infections
is the fractional polynomial model which involves power
transformation taking powers from the predefined subset of
powers S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3}. Table 2 shows the
summary of the first degree fractional polynomials (FP1);

Table 2. Summary for FP1 model.

Coefficient Estimate Std. Error t value Pr(>| t |)

Intercept -128.07 48.07 -2.664 0.008

I((days/100)0.5) 360.75 32.01 11.269 < 2× 10−16

From Table 2 above, the power of FP1 is 0.5. The scaled
continuous predictor variable (days) has one significant term
I(days/100)1) with the scaling parameter taken as 100. The
FP1 model is of the form;

FP1 = −128.07 + 36.075× days0.5 (12)

Next, the second degree fractional polynomial (FP2) is of
power; p = (1, 2).

The summary for FP2 is shown in Table 3;

Table 3. Summary for FP2 model.

Coefficient Estimate Std. Error t value Pr(>| t |)

Intercept -81.02 47.68 -1.699 0.0899

I(days/100)1) 355.20 48.82 7.275 < 1.56×10−12

I((days/100)2) -49.76 10.48 -4.747 < 2.79× 10−6

The summary for the second degree fractional polynomial
shows that the scaled continuous predictor variable (days) have
two significant terms I(days/100)1) and I(days/100)2). The
FP2 model is of the form;

FP2 = −81.02 + 3.552× days1 − 0.004976× days2 (13)

Figure 3 shows different polynomial models.
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Figure 3. FP1 and FP2.

Figure 4 shows that FP2 provides a better fit for the
daily COVID-19 infections since it yields a smoother curve
compared to the FP1 curve.

Figure 4. FP1 and FP2.

Estimating the best fitting fractional polynomial
The best fitting fractional polynomial is obtained using the

closed test algorithm which combines variable transformation
and model selection. Table 4 provides a step-by-step
illustration of the model selection process with a significance
level; α = 0.05. Since the three steps are statistically
significant with p-values less than 0.05, the best fitting model
for predicting the number of daily COVID-19 infections is
the second-degree (FP2) with powers (1, 2). The coefficients
of the final model are; β0 = -81.02, β1 = 3.552 and β2 = -
0.004976.

Table 4. Application of the closed test algorithm.

Model Deviance Powers Step Comparison p-value

FP2 50355608 1, 2 1 FP2 vs Null 1.86× 10−27 (df = 4)

FP1 51331225 0.5 2 FP2 vs Linear 8.29× 10−5 (df = 3)

linear 52893900 1 3 FP2 vs FP1 0.0161 (df = 2)

Null 65881646

4.4. Linear Spline Model

After examining the best fitting fractional polynomial, we
fit an alternative model to fit the daily COVID-19 infections.
Linear spline model fits a curve at different segments also
known as knots, polynomial regression coefficients are then
obtained at each knot. The first step is to determine the optimal
knot points using AIC and BIC.

Determination of the number of knot points
The optimal number of knots is 19 because it has a lower

AIC and BIC as shown in table 5. Different linear spline
models with different number of knot points are shown in
Figure 5.

Figure 5. Linear spline models with 3 segments (top left), 19 segments (top right), 29 segments (bottom left) and 40 segments (bottom right).
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Table 5. AIC and BIC for linear spline models with different number of knots.

Number of knots AIC BIC
40 5972 6145
35 5965 6116
29 5962 6089
22 5972 6071
20 5962 6052
19 5935 6022
15 6024 6094
11 6104 6158
9 6155 6201
3 6512 6533

4.5. Comparison Between Fractional Polynomials and
Linear Splines

After determining the best fitting fractional polynomial and
the linear spline with different knot point, it is important
to evaluate the best fitting model for the daily COVID-19
infections. We used AIC to determine the best model. AIC
values for the two models are given in table 6;

Table 6. AIC for best fitting fractional polynomial and linear spline model.

Model AIC
Fractional polynomial (FP2) 6516
Linear spline 5935

Linear spline model with 19 knot points has a lower AIC
= 5935 compared to the second degree fractional polynomial
which indicates that the linear spline model provides a better
fit for the daily COVID-19 infections.

4.6. Discussion

In this study, we modelled the trend of the daily COVID-
19 cases in Kenya. The number of daily COVID-19 cases
depicted a non-linear growth trajectory depicting the different
stages of transmissions. The initial stages of the pandemic
was as a result of imported cases which was followed by
local transmission of the disease among people who came
into contact with the first patients. The cases continued to
increase rapidly as a result of community transmission with
the government acting with speed to implement mitigation
measures that were aimed at curbing further spread of the
virus.The aim of this study to develop the most accurate
model for fitting the number of cases in Kenya. Fractional
polynomials and linear spline models have the ability to
capture the non-linear trend. The two models were applied
to the COVID-19 data in Kenya with the help of R software to
determine the best fitting model for the data.

Further, fractional polynomials of different degrees were
fitted to the data with the closed test algorithm being applied
to determine the best fitting fractional polynomial. Many
linear spline models with different number of knots were also
applied to the COVID-19 data and AIC and BIC were used to
determine the most accurate model. That is, the linear spline

model with minimum value of AIC and BIC provides the most
accurate fit for the data.

Among the fractional polynomials fitted, the second-degree
fractional polynomial with powers (1, 2) provided the best
fitting model. The finding is in agreement with [10]
who identified that fractional polynomials are essential in
addressing the asymmetric and non-linear relationships by
allowing the data itself to determine the functional form of
the covariates. On the other hand, a linear spline with an
optimal number of knot points (knots = 19) provided the most
accurate fit for the COVID-19 data. These findings concur with
the results of [15] which noted that linear splines ensured a
smoothened trajectory of the covariates by ensuring that the
knots are selected and placed at specified data percentiles.

Moreover, comparing the two models for fitting the number
of cases the best fitting models were compared using AIC. The
best fitting model for the data has the lowest AIC; the linear
spline has the lowest AIC. Thus, the model provides a more
accurate fit for the daily COVID-19 infections in Kenya.

5. Conclusion and Recommendation

5.1. Conclusion

With the emergence of the COVID-19 pandemic globally,
there is an urgent need for development of statistical
models for accurate forecasting of the trend pattern of the
virus. Despite the fact that the pandemic is still ongoing,
models for accurate forecasting using the available data
are pertinent in facilitating the medical stakeholders and
governments to develop strategies for decision making and
resource management aimed at curbing further spread among
communities. This study employed fractional polynomial
and linear spline models for modelling the number of daily
COVID-19 cases. Based on the daily COVID-19 data in
Kenya, the proposed methods captured the non-linearity trend
exhibited by the number of daily cases. The fractional
polynomial method fitted models of different degrees allowing
the data to determine the power of the covariate. The linear
spline approach partitioned the data into segments and fitted a
linear function at each segment.

This analysis showed that second-degree fractional
polynomial provided an accurate fit for the data compared
to the first-degree fractional polynomial model. However, the
linear spline model with 19 knots outperformed the fractional
polynomial models which had the lowest value of AIC and
BIC. Therefore, the linear spline model is proposed for fitting
the number of daily COVID-19 cases.

5.2. Recommendation

This study relied solely on the COVID-19 data from Kenya,
which has recorded relatively lower number of daily cases.
Similarly, the study involved a single covariate whereas
there are other factors that have a positive effect on the
number of daily cases. The proposed model might need
further examination to incorporate new covariates as well as
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comparison with other countries. This study recommends
modelling for other countries especially those that were badly
affected by the pandemic as well as countries within the East
Africa region. This will provide an insight on the efficiency
of different countries in managing the spread of the virus
based on the different mitigation strategies adopted such as
quarantine and social distance.

Abbreviations

COVID-19 Coronavirus Disease
WHO World Health Organization
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
CFR Case Fatality Rate
BMI Body Mass Index
SARS-CoV-2 Severe Acute Respiratory Syndrome
MERS-CoV Middle East Respiratory Syndrome

Corona Virus
FP Fractional Polynomial
IFR Infection Fatality Rate
SEIR Susceptible Exposed Infectious Recovered

Model
H1N1 Swine Flu
CSSE Center for Systems Science and

Engineering
FP1 First Degree Fractional Polynomial
FP2 Second Degree Fractional Polynomial
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