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Abstract 

To measure the average lifespan of systems and components, and to analyze lifetime data with a monotonic failure rate, 

distributions such as Weibull, Exponential, and Gamma are commonly used in reliability and survival studies. However, these 

distributions are not suitable for datasets with non-monotonic patterns like the bathtub curve. To address this, the Chen 

distribution, which accommodates increasing or bathtub-shaped failure rates, has been proposed. Yet, this model lacks a scale 

parameter. This article presents a new four parameter lifetime distribution with bathtub-shaped failure rate called Additive 

Dhillon-Chen (ADC) distribution. We applied the additive methodology to establish the model, for which the Dhillon 

distribution was considered as baseline distribution. Some statistical properties such as quartile function, mode, moment and 

moment generating function, order statistics and asymptotic behavior of the distribution are studied. Parameters of the 

distribution are estimated using the maximum likelihood estimation method. The ADC distribution is applied to two lifetime 

dataset and compared with an existing distribution in the literature. Model selection was carried out based on Log-likelihood, 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Corrected Akaike Information Criterion (AICc). 

The results, based on parameter estimation from real-life data, demonstrate that the ADC distribution fits the data well and offers 

a valuable alternative for modeling datasets with non-monotonic behavior. 
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1. Introduction 

In reliability and survival studies, lifetime distributions like 

Weibull, Exponential, and Gamma are commonly used to 

gauge the average lifespan of system and device components 

and analyse data with a monotonic failure rate. However, 

these models fall short when dealing with data exhibiting 

non-monotonic patterns, such as the bathtub curve. To address 

this issue, several alternative approaches have been proposed 

[17, 23]. 
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The work of introduced a new two-parameter probability 

distribution with increasing or bathtub-shaped Failure Rate 

(FR) function. The c.d.f. of the Chen distribution is given by 

𝐹(𝑡) = 1 − 𝑒𝛼(1−𝑒
𝑡𝛽), 𝑡 > 0, 𝛼, 𝛽 > 0        (1) 

It has an increasing FR when 𝛽 ≥ 1 and a bathtub-shaped 

when 𝛽 < 1. But, the distribution is not flexible because it 

lacks scale parameter. In view of the above, extended works 

on Chen distribution have been considered by many re-

searchers to provide more flexibility for describing different 

form of data sets using different methodologies. For example: 

A new extension of Chen distribution was proposed by [6]. 

The shape of the density of the model is decreasing or uni-

modal according to the value of the parameters, while the 

shape of the hazard rate is increasing or bathtub-shaped. The 

authors adopted the method of generalizing a cumulative 

distribution function of a given distribution introduced by [10] 

through introduction of additional parameter α > 0 given by 

𝐹α(𝑡) = [𝐹(𝑡)]
α. [21] consider an extension of the exponen-

tiated Chen distribution based on the quadratic rank trans-

mutation map technique named Transmuted Exponentiated 

Chen distribution with application to survival data. They 

estimated the parameters using the method of maximum 

likelihood and finally, the flexibility of the new distribution 

was illustrated using strengths of glass fibers data and nicotine 

in cigarette data [7]. A new continuous probability distribu-

tion called Exponentiated Chen distribution was introduced 

by [8]. Their main focus was on estimation from frequentist 

point of view and they derived some statistical and reliability 

characteristics for the model. [12] introduced the Kumaras-

wamy Exponentiated Chen distribution for modelling a 

bathtub-shaped hazard rate function. [4] introduced a new 

censoring scheme named statistical analysis of competing 

risks model from Marshall-Olkin extended Chen distribution 

under adaptive progressively interval censoring with random 

removals. [23] introduced a new lifetime distribution called 

addictive Chen-Weibull (ACW) distribution and describe its 

application in reliability modelling. The distribution has an 

increasing and bathtub-shape failure rates. [22] introduced a 

three-parameter probability distribution named Chen Expo-

nential distribution with applications to engineering data. The 

model was developed by introducing additional parameter to 

Chen distribution. [17] introduced an additive Chen distribu-

tion with applications to lifetime data. The model has an in-

creasing, decreasing, and bathtub shape failure rate. The au-

thor deployed additive methodology and consider Chen dis-

tribution as the baseline distribution and so also, the distribu-

tion has excellent flexibility in describing failure rates with 

non-monotone behavior or with the shape of bathtub curve. 

In practice, a considerable number of generalized models 

have been proposed for modelling lifetime data with 

non-monotone failure rates (FRs) from various lookouts, par-

ticularly reliability engineering [2]. Some of these generalized 

models includes; Exponentiated additive Weibull distribution 

by [3], A new weighted Gompertz distribution with applica-

tions to reliability data by [5], An extension of Chen’s family of 

survival distribution with bathtub-shape or increasing hazard 

rate by [6], Chen-Burr XII model as a competing risks model 

with applications to real-life datasets by [11], on some lifetime 

distribution with flexible failure rate by [14], A new extension 

of the Topp-Leone family of models with applications in re-

pairable systems by [15], The alpha power Weibull transfor-

mation distribution applied to describe the behavior of elec-

tronic devices under voltage stress profile by [18], Beta Sar-

han-Zaindin modified Weibull distribution by [19], A new 

extension of the exponential power distribution with applica-

tion to lifetime data by [20], Classical and Bayesian estimations 

of improved Weibull-Weibull distribution for complete and 

censored failure times data by [25], and On the upper truncated 

Weibull distribution by [26],. Despite the usefulness of these 

distributions in reliability engineering, research has shown that 

a substantial part of these distributions has bathtub failure rate 

(FR) shapes but lack the FR’s relatively constant [2]. Accord-

ing to [13], this phase (useful life) is very vital or may be the 

most critical phase for reliability modelling, this is because it 

describes the useful life span of the component or system. 

Hence, it is paramount important to construct a model(s) that 

can accurately represent this constant failure rate (CRF) phase. 

Combining the FR of two distributions is considered as a very 

useful technique in obtaining more flexible models with simple 

FR. In view of this, [24] established the additive Weibull model 

using the idea of combing the hazard rates of two Weibull dis-

tribution. In this paper, we propose a four-parameter lifetime 

distribution by using additive methodology to combine the fail-

ure rates of the Dhillon distribution which was introduced by [9] 

and the Chen distributions in a serial system, which will be called 

as the Additive Dhillon-Chen (ADC) distribution. The propose 

distribution is considered to be very flexible to model data with 

monotonic and non-monotonic behavior. 

The rest of this research paper is organized as follows. In 

section 2, we define and introduce the new ADC distribution 

and present its important functional forms. In section 3, we 

consider some properties of the new distribution such as 

moment generating function, moments. We also consider the 

method of maximum likelihood estimator (MLE) for the 

estimate of the model parameters in section 4. In section 5, we 

present the flexibility of the ADC distribution using two life-

time datasets and the results are compared with some com-

petitor distributions. Finally, the conclusion of this paper was 

presented in section 6. 

2. The Additive Dhillon-Chen (ADC) 

Distribution 

Let us consider a system with two components arranged 

and functioning in a series, each component is operating in-

dependently at a given time t. The system fails when the first 

component fails. In view of this, our new model signifies the 

http://www.sciencepg.com/journal/ijsda
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lifetime of the entire serial system with two components. The 

first component’s lifetime follows a Dhillon distribution with 

parameters λ and θ, while the second component’s lifetime 

follows a Chen distribution with parameters α and β. The 

complete system’s lifetime is determined by the minimum 

lifetime of the two components. In other word, let 𝑇1 repre-

sent the lifetime of the first component, which follows Dhillon 

distribution with parameter λ and θ, and let 𝑇2 represent the 

lifetime of the second component which follows Chen with 

parameter α and β. If the system lifetime is T, then 

T = min (𝑇1, 𝑇2) has the distribution given by 

𝐹(𝑡) =  1 − 𝑒
− 𝑙𝑛(𝜆𝑡𝜃+1)+𝛼(1−𝑒𝑡

𝛽
)          (2) 

for 𝑡, 𝜆, 𝜃, 𝛼 >  0 and 𝛽 ≥  0. 

The probability density function (pdf) of this distribution is 

given by 

𝑓(𝑡) = (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
) 𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
) (3) 

For random variable 𝑇  with pdf in (3), we write 

𝑇~𝐴𝐷𝐶(𝜆, 𝜃, 𝛼, 𝛽). 

 
Figure 1. Plot of the ADC density function for some values of parameter. 

Finally, the failure rate function as well as the survival function of the proposed ADC distribution is given as 

𝑕(𝑡) =
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝛽𝑡𝛽−1 𝑒𝑡

𝛽
                                    (4) 

𝑆(𝑡) = 𝑒− 𝑙𝑛(𝜆𝑡
𝜃+1)+𝛼(1−𝑒𝑡

𝛽
)                                    (5) 

 
Figure 2. Plot of the ADC failure rate for some values of parameter. 

 
Figure 3. Plot of the ADC failure rate for some values of parameter. 
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3. Properties of ADC Distribution 

3.1. Measure of Central Tendency 

We shall provide some measures of central tendency of the 

ADC distribution in this section. 

Quartile Function 

The quantile function or quantile function is used to obtain 

random data with which it is possible to carryout pdf simula-

tions. The 𝑝𝑡ℎ quartile 𝑞𝑝 presented by t of ADC based on 

equation (1) can be calculated as 

𝑝 = *1 − 𝑒− 𝑙𝑛(𝜆𝑞
𝜃+1)+𝛼(1−𝑒𝑞

𝛽
)+         (6) 

The above equation does not have a close form solution, as 

such, it is necessary to make approximations through the use 

of numerical methods provided in specialized software’s like 

R-package. We obtained the median of the ADC distribution 

by setting 𝑞 = 0.5 in equation (6). 

Mode 

The mode of the ADC distribution is the value(s) of the ran-

dom variable at which the probability density function (pdf) 

reaches its maximum. To obtain the mode of the ADC model, we 

take the first derivative of term in equation (3) and equate to zero. 

𝑑[.
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+αβ𝑡𝛽−1𝑒𝑡

𝛽
/𝑒
−𝑙𝑛(𝜆𝑡𝜃+1)+𝛼(1−𝑒𝑡

𝛽
)
]

𝑑𝑡
= 0

      (7) 

The mode is obtained in equation (8) 

[
[(𝜆𝑡𝜃+1)𝜆𝜃(𝜃−1)𝑡𝜃−2−(𝜆𝜃𝑡𝜃−1)(𝜆𝜃𝑡𝜃−1)]

(𝜆𝑡𝜃+1)
2 + αβ(𝛽 − 1)𝑡𝛽−2𝑒𝑡

𝛽
+ αβ2𝑡2𝛽−2𝑒𝑡

𝛽
] *(

𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
) 𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
)+ (8) 

3.2. Moment Generating Function and Moment 

If 𝑇 is a random variable that follows the ADC distribution 

with parameters 𝜆, 𝜃, 𝛼, and 𝛽. Then the moment generating 

function of 𝑇 defined by 𝑀𝑡(𝑥) = 𝐸[𝑒
𝑡𝑥] is obtained as: 

𝑀𝑡(𝑥) = 𝐸[𝑒
𝑡𝑥] = ∫ 𝑒𝑡𝑥𝑓(𝑡)𝑑𝑡

 ∞

 0
          (9) 

Since by series expansion, 

𝑒𝑡𝑥 = ∑
𝑡𝑖𝑥𝑖

𝑖!

∞
0   

Then, 

𝑀𝑡(𝑥) = ∑
𝑥𝑖

𝑖!

∞
𝑖=0 ∫ 𝑡𝑖𝑓(𝑡)𝑑𝑡

 ∞

 0
= 1 + ∑

𝑥𝑖

𝑖!

∞
𝑖=1 ∫ 𝑡𝑖𝑓(𝑡)𝑑𝑡

 ∞

 0
 (10) 

= 1 + ∑
𝑥𝑖

𝑖!

∞
𝑖=1 𝐸(𝑡𝑖) = 1 + ∑

𝑥𝑖

𝑖!

∞
𝑖=1 𝜇𝑖

′(𝑡)        (11) 

where 

𝜇𝑖
′(𝑡) = 𝐸(𝑡𝑖) = ∫ tie− ln(λt

θ+1)+α(1−et
β
)dt

∞

0
      (12) 

= 𝑖 ∫
𝑡𝑖−1

𝜆𝑡𝜃+1
𝑒𝛼(1−𝑒

𝑡𝛽)𝑑𝑡
∞

0
                 (13) 

Since 
1

𝜆𝑡𝜃+1
= (𝜆𝑡𝜃 + 1)

−1
= ∑ (−1)𝑘𝜆𝑘𝑡𝑘𝜃∞

𝑘=0 . Then, 

𝜇𝑖
′(𝑡) = 𝑖 ∑ (−1)𝑘𝜆𝑘∞

𝑘=0 ∫ 𝑡𝑘𝜃+𝑖−1𝑒𝛼(1−𝑒
𝑡𝛽)𝑑𝑡

∞

0
    (14) 

Rearranging the exponential terms, we have 

𝜇𝑖
′(𝑡) = 𝑖𝑒𝛼 ∑ (−1)𝑘𝜆𝑘∞

𝑘=0 ∫ 𝑡𝑘𝜃+𝑖−1𝑒−𝛼𝑒
𝑡𝛽

𝑑𝑡
∞

0
   (15) 

Hence, the ith moment of T, is given as 

𝜇𝑖
′(𝑡) =

𝑖𝑒𝛼

𝛽
∑ (−1)𝑘𝜆𝑘∞
𝑘=0 𝛻(𝑚).       (16) 

Consequently, the MGF of T from (16) is therefore derived 

as 

Mt(x) = 1 + ∑
xi

i!

∞
i=1 E(ti) = 1 + ∑

xi

i!

∞
i=1

ieα

β
∑ (−1)kλk∞
k=0 ∇(m).                     (17) 

3.3. Order Statistics 

The order statistics and their moments have great im-

portance in many statistical problems and applications in 

reliability analysis and life testing. Let 𝑇1, 𝑇2, … , 𝑇𝑛  be a 

random sample from the ADC distribution and 𝑇𝑘:𝑛  is the 

𝑘𝑡ℎ  order statistic of the sample, then the PDF of 𝑇𝑘:𝑛  is 

given by 

𝑓𝑘:𝑛(𝑡) =
1

𝐵(𝑘,𝑛−𝑘+1)
[𝐹(𝑡)]𝑘−1[1 − 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡)                          (18) 

where 

http://www.sciencepg.com/journal/ijsda
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𝐵(𝑘, 𝑛 − 𝑘 + 1) =
Γ(𝑘)Γ(𝑛−𝑘+1)

Γ(𝑛−𝑘+1+𝑘)
=
Γ(𝑘)Γ(𝑛−𝑘+1)

Γ(𝑛+1)
=
(𝑘−1)!(𝑛−𝑘)!

𝑛!
  

The k
th

 order statistics is given by 

𝑓𝑘:𝑛(𝑡) =

(

 
 

𝑛!

(𝑛−𝑘)!(𝑛−𝑘)!
∑ (−1)𝑖 (

𝑘 − 1
𝑖
) 𝑒

−𝑖{𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡
𝛽
)}𝑘−1

𝑖=0

2𝑒
−(𝑛−𝑘){𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡

𝛽
)}
3 (

𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝛽𝑡𝛽−1𝑒𝑡

𝛽
) 𝑒

−{𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡
𝛽
)}

)

 
 

              (19) 

3.4 Asymptotic Behavior 

We consider the asymptotic behavior to investigate the behavior of the pdf of the ADC model as 𝑡 → 0 and as 𝑡 → ∞. 

lim𝑡→0 𝑓(𝑡) = lim 
𝑡→∞

𝑓(𝑡) = 0                                    (20) 

This implies that, 

lim𝑡→0 𝑓(𝑡) =  lim𝑡→0 *(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
) 𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
)+ = 0                  (21) 

lim𝑡→0 𝑓(𝑡) =  lim𝑡→0 (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
) lim
𝑡→0

(𝑒− 𝑙𝑛(𝜆𝑡
𝜃+1)+𝛼(1−𝑒𝑡

𝛽
)) = 0                (22) 

lim
𝑡→0

𝑓(𝑡) =  lim
𝑡→0

.
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃 + 1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
/𝑋 0 

lim𝑡→0 𝑓(𝑡) =  0.  

Similarly, 

lim𝑡→∞ 𝑓(𝑡) = lim𝑡→∞ *(
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
) 𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
)+ = 0                  (23) 

lim𝑡→∞ 𝑓(𝑡) = lim𝑡→∞ (
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ αβ𝑡𝛽−1𝑒𝑡

𝛽
)  𝑋 lim

𝑡→∞
(𝑒− 𝑙𝑛(𝜆𝑡

𝜃+1)+𝛼(1−𝑒𝑡
𝛽
)) =0              (24) 

lim𝑡→∞ 𝑓(𝑡) = 0  𝑋 lim
𝑡→∞

(𝑒− 𝑙𝑛(𝜆𝑡
𝜃+1)+𝛼(1−𝑒𝑡

𝛽
)) = 0  

lim𝑡→∞ 𝑓(𝑡) = 0.                                          (25) 

Hence, the ADC distribution has a unimodal. 

4. Parameter Estimation 

Maximum Likelihood Estimator 

The Maximum Likelihood Estimation (MLE) is a statistical 

technique used to estimate the parameters of a given proba-

bility distribution or statistical model. It classifies the param-

eter values that maximize the likelihood function, which 

measures how fit the model describes the observed data. Let 

𝑡1,𝑡2,…… . . 𝑡𝑛, be observed values of a random sample drawn 

from the ADC distribution with parameters vector 𝜇 =

(𝜆, 𝜃, 𝛼, 𝛽) . Then, the log-likelihood function of 𝜇|𝑡𝑖,𝑖 =

1, 2, … . . , 𝑛 is developed from the pdf 𝑓(𝑡) in equation (3) as 

𝑙(𝜇) = 𝑛𝑙𝑜𝑔 (
𝜆𝜃𝑡𝑖

𝜃−1

𝜆𝑡𝑖
𝜃+1

+ αβ𝑡𝑖
𝛽−1𝑒𝑡𝑖

𝛽
) − 𝑙𝑛 ∑(𝜆𝑡𝑖

𝜃 + 1) + 𝑛𝛼 (1 − 𝑒𝑡𝑖
𝛽
)                (26) 

The associated score function for each ADC parameter from (36) are 
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𝑈𝜆(𝜇) = ∑ (
𝜃𝑡𝑖

𝜃−1(𝜆𝑡𝑖
𝜃+1)−𝜆𝜃𝑡𝑖

𝜃−1(𝑡𝑖
𝜃)

𝑔(𝑡)(𝜆𝑡𝑖
𝜃+1)2

−
𝑡𝑖
𝜃

𝜆𝑡𝑖
𝜃+1
)𝑛

𝑖=1 ,                       (27) 

𝑈𝜃(𝜇) = ∑ (
𝜆𝑡𝑖

𝜃
(𝜆𝑡𝑖

𝜃+1)−𝜆𝜃𝑡𝑖
𝜃−1𝑙𝑛(𝑡𝑖)𝑡𝑖

𝜃

(𝜆𝑡𝑖
𝜃+1)2𝑔(𝑡)

−
𝜆𝑡𝑖

𝜃𝑙𝑛(𝑡𝑖)

𝜆𝑡𝑖
𝜃+1

)𝑛
𝑖=1 ,                      (28) 

𝑈𝛼(𝜇) = ∑ .
𝛽𝑡𝑖

𝛽−1𝑒𝑡𝑖
𝛽

𝑔(𝑡)
+(1 − 𝑒𝑡𝑖

𝛽
)  /𝑛

𝑖=1 ,                             (29) 

𝑈β(𝜇) = ∑ .
𝛼(𝑡𝑖

𝛽−1𝑒𝑡𝑖
𝛽
+𝛽𝑡𝑖

𝛽−1𝑒𝑡𝑖
𝛽
𝑙𝑛(𝑡𝑖)

𝑔(𝑡)
− 𝛼𝑒𝑡𝑖

𝛽
𝑡𝑖
𝛽𝑙𝑛(𝑡𝑖)/

𝑛
𝑖=1                       (30) 

Considering the nature of the score function 

𝑈𝜆(𝜇). 𝑈𝜃(𝜇), 𝑈∝(𝜇), 𝑎𝑛𝑑 𝑈β(𝜇), we recommend computing 

the estimates 𝜇̂ = (𝜆,̂ 𝜃̂, ∝̂, β̂)
′
 numerically using statistical 

software. For this study, we utilized the maxLik package 

(Henningsen and Toomet, 2011) in R to maximize the likeli-

hood function. 

5. Application 

Table 1. Failure functions of some Bathtub Shape Distributions. 

Model h(t) 

ADC 
𝜆𝜃𝑡𝜃−1

𝜆𝑡𝜃+1
+ 𝛼𝛽𝑡𝛽−1 𝑒𝑡

𝛽
  

AddC 𝛼𝛽𝑡𝛽−1𝑒𝑡
𝛽
+ 𝜆𝜃𝑡(𝜃−1)𝑒𝑡

𝜃
  

ACW 𝛼𝛽𝑡𝛽−1𝑒𝑡
𝛽
+ 𝜆𝜃𝑡𝜃−1  

APW 
𝛼𝜆𝑒𝜆𝑡

1+𝛼𝑒𝜆𝑡
+  𝜃𝛽𝑡𝛽 − 1  

This section evaluates the ADC distribution by applying it 

to real-life data with non-monotonic characteristics and con-

trasts its performance with other distributions that use an 

additive approach. The distributions compared are Additive 

Chen distribution (AddC), Additive Chen Weibull distribution 

(ACW) and Additive Perks Weibull (APW) distribution. Ta-

ble 1 present the FR functions for each distribution. 

The parameters were estimated through MLE in Rstudio 

using Maxlik Library, the gradient and Hessian of each of the 

distributions are considered. 

5.1. Reliability Analysis for Lifetime Data of 50 

Devices 

In this study, we determining the behavior of the failure 

times of 50 devices. The data was reported by [1] and was 

used by [16, 17, 23]. The data is known to have a bath-

tub-shaped FR function. 

Table 2. Aarset Data of 50 Devices. 

0.1 0.2 1 1 1 1 1 2 3 6 

7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 

67 67 67 67 72 75 89 82 82 83 

84 84 84 85 85 85 85 85 86 86 

Table 3. Descriptive statistics for the Aarset data. 

N Min. 1st Qu. Median Mean Sd. 3rd Qu. Max. 

50 0.10 13.5 48.5 45.69 32.84 81.25 86.0 

We consider the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Corrected Akaike Infor-

mation Criterion (AICc) for model selection. The model with smaller values is considered to be the best model. 
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Table 4. Estimated values, standard errors in bracket and summary values of the fitted models fitted. 

Model Lambda Theta Alpha Beta Loglik AIC BIC AICc 

ADC 
-0.55640 

(0.01701) 

-0.25385 

(0.01327) 

0.07325 

(0.05181) 

0.24405 

(0.05319) 
-188.54 385.08 383.88 377.96 

AddC 
2.08×10-17 

(1.1×10-22) 

0.822 

(0.0165) 

0.05977 

(0.00059) 

0.249 

(0.00711) 
-203.05 414.12 421.76 406.88 

ACW 
0.01118 

(0.00039) 

86.231 

(2.414) 

0.04215 

(1.0×10-5) 

0.278 

(0.0224) 
-205.35 418.71 426.36 411.58 

APW 
0.443 

(0.01921) 

0.05320 

(0.04221) 

7.16×10-17 

(1.1×10-19) 

0.688 

(0.01025) 
-212.87 433.75 441.44 426.62 

 

Table 4 above displays the MLEs of the models’ parameters 

as well as the value of log-likelihood, AIC, BIC, and AICc 

statistic. It is observed that the values of AIC, BIC, AICc of 

the ADC model appear to be the smallest among the compet-

itive models, hence the ADC distribution appears to be a very 

competitive for the dataset. 

5.2. Analysis on Failure and Running Times of 

30 Devices 

Table 5 present data of failure and running times of 30 de-

vices reported by [16] and was studied extensively by several 

authors among which include [17, 23]. 

Table 5. Meeker and Escober Data of 30 devices. 

2 10 13 23 23 28 30 65 80 88 

106 143 147 173 181 212 245 247 261 266 

275 293 300 300 300 300 300 300 300 300 

Table 6. Descriptive statistics for the Meeker and Escober data of 30 devices 

N Min. 1st Qu. Median Mean Sd. 3rd Qu. Max. 

30 2.00 68.75 196.50 177.03 114.99 298.25 300.00 

Table 7. Estimated values, standard errors in bracket and summary values of the fitted models. 

Estimated Parameters 

Model Lambda Theta Alpha Beta Loglik AIC BIC AICc 

ADC -1.1078 (0.0146) -0.1481 (0.0189) 0.0004 (2.22×10-4) 0.3615 (0.0141) -114.73 237.47 235.37 238.60 

AddC 0.407 (0.01146) 8.419×10-2 (0.001654) 3.042×10-11 (5.958×10-13) 0.561 (0.00711) -147.89 303.77 311.42 301.68 

ACW 0.0033 (0.000017) 259.427 (14.558) 0.01518 (0.00210) 0.260 (0.00301) -151.34 310.67 316.28 308.58 

APW 0.08802 (0.002114) 0.00111 (0.00933) 5.14×10-12 (8.06×10-8) 0.807 (0.172) -167.91 343.82 349.42 341.73 

 

Table 7 above displays the MLEs of the models’ parameters as well as the value of log-likelihood, AIC, BIC, and AICc 
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statistic. It is observed that the ADC distribution has the least 

values of AIC, BIC, AICc and hence considered to be the best 

model. 

6. Conclusions 

In this article, we developed a new four-parameter lifetime 

distribution with application to two real reliability data sets 

which are well known from existing literature. This distribu-

tion combines the failure rates of the Dhillon and Chen dis-

tributions using an additive methodology, accommodating 

both monotonic and non-monotonic behavior. The study ex-

plores the distribution’s properties and applies it to real-life 

datasets, evaluating its goodness-of-fit through various in-

formation criteria. The results, based on parameter estimation 

from the real-life data, indicate that the ADC distribution fits 

the data well. Consequently, it is concluded that the ADC 

distribution offers a valuable alternative for modeling datasets 

with both monotonic and non-monotonic behavior. 
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Appendix 

Let 𝑔(𝑡) = 𝜆𝜃𝑡𝜃−1 and 𝑞(𝑡) = 𝜆𝑡𝜃 + 1 

This implies that, 𝑔′(𝑡) = 𝜆𝜃(𝜃 − 1)𝑡𝜃−2 and 𝑞′(𝑡) =

𝜆𝜃𝑡𝜃−1 

By apply quotient rule, we have 

𝑞(𝑡)𝑔′(𝑡)−𝑔(𝑡)𝑞′(𝑡)

𝑞(𝑡)2
=
[(𝜆𝑡𝜃+1)𝜆𝜃(𝜃−1)𝑡𝜃−2−(𝜆𝜃𝑡𝜃−1)(𝜆𝜃𝑡𝜃−1)]

(𝜆𝑡𝜃+1)2 
  

Also, 

𝑑(αβ𝑡𝛽−1𝑒𝑡
𝛽
)

𝑑𝑡
= αβ(𝛽 − 1)𝑡𝛽−2𝑒𝑡

𝛽
+ αβ2𝑡2𝛽−2𝑒𝑡

𝛽
.  

Now, let 𝑚 = 𝛼𝑒𝑡
𝛽

, implies t = *log (
m

α
)+
1/β

 and 

dt =
1

βm
*log (

m

α
)+

1

β
−1

, then 

𝜇𝑖
′(𝑡) = 𝑖𝑒𝛼 ∑ (−1)𝑘𝜆𝑘∞

𝑘=0 ∫ *log (
m

α
)+

𝑘𝜃+𝑖−1

𝛽
𝑒−𝑚 × *log (

m

α
)+

1

𝛽
 −1 𝑑𝑚

𝛽𝑚

∞

α
                  (A-1) 

=
𝑖𝑒𝛼

𝛽
∑ (−1)𝑘𝜆𝑘∞
𝑘=0 ∫ 𝑚−1 *log (

m

α
)+

𝑘𝜃+𝑖

𝛽
 −1

𝑒−𝑚𝑑𝑚
∞

α
  

𝜇𝑖
′(𝑡) =

𝑖𝑒𝛼

𝛽
∑ (−1)𝑘𝜆𝑘∞
𝑘=0 𝛻(𝑚)                                 (A-2) 

Where the integral 𝛻(𝑚) = ∫ 𝑚−1 *log (
m

α
)+

𝑘𝜃+𝑖

𝛽
 −1

𝑒−𝑚𝑑𝑚
∞

𝛼
 is intricated and can thus be evaluated numerically. 

𝑓𝑘:𝑛(𝑡) =
1

,
(𝑘−1)!(𝑛−𝑘)!

𝑛!
-
[𝐹(𝑡)]𝑘−1[1 − 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡) =

𝑛!

(𝑛−𝑘)!(𝑛−𝑘)!
 [𝐹(𝑡)]𝑘−1[1 − 𝐹(𝑡)]𝑛−𝑘𝑓(𝑡)  

Where 𝐹(𝑡) 𝑎𝑛𝑑 𝑓(𝑡) are given in equations (2) and (3) respectively 
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[𝐹(𝑡)]𝑘−1 = 01 − 𝑒
−{𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡

𝛽
)}
1

𝑘−1

= ∑ (−1)𝑖 (
𝑘 − 1
𝑖
) 𝑒

−𝑖{𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡
𝛽
)}𝑘−1

𝑖=0
  

Similarly, 

[1 − 𝐹(𝑡)]𝑛−𝑘 = 0𝑒
−{𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡

𝛽
)}
1

𝑛−𝑘

= 𝑒
−(𝑛−𝑘){𝑙𝑛(𝜆𝑡𝜃+1)−𝛼(1−𝑒𝑡

𝛽
)}
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