
International Journal of Statistical Distributions and Applications
2025; 11(2): 74-84
http://www.sciencepublishinggroup.com/j/ijsda
doi: 10.11648/j.ijsda.20251102.16
ISSN: 2472-3487 (Print); ISSN: 2472-3509 (Online)

Generating New Lifetime Distributions Using Parsimonious
Transformation: Properties and Applications

Santanu Dutta, Aditya Kumar Yadav∗

Department of Mathematical Sciences, Tezpur University, Assam, India

Email address:
sdutta@tezu.ernet.in (Santanu Dutta), adityakumaryadav448@gmail.com (Aditya Kumar Yadav)
∗Corresponding author

To cite this article:
Santanu Dutta, Aditya Kumar Yadav. (2025). Generating New Lifetime Distributions Using Parsimonious Transformation: Properties and
Applications. International Journal of Statistical Distributions and Applications, 11(2), 74-84.
https://doi.org/10.11648/j.ijsda.20251102.16

Received: 18 May 2025; Accepted: 3 June 2025; Published: 21 June 2025

Abstract: In this paper, we propose a new parsimonious transformation for obtaining lifetime distributions, and as special
cases, we obtain two new lifetime distributions using exponential and Weibull distributions as baselines in the transformation.
We study the mathematical properties of the transformation, and for the two new lifetime distributions, we obtain survival
functions, hazard functions, moments, moment-generating functions, mean deviation, Rényi entropy, and quantile function.
We estimate the parameters of the new lifetime distributions using the maximum likelihood (ML) estimation method, and the
Monte Carlo simulations are used to assess the consistency of the ML estimators of the parameters. The proposed new lifetime
distributions provide a better fit in terms of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) scores
in comparison to the baseline distributions and other competing models, based on two real datasets, namely the exceedance of
the flood peaks of the Wheaton River, and the failure times of 50 items.

Keywords: Lifetime Distribution, Parsimonious Transformation, Exponential Distribution, Weibull Distribution

1. Introduction
The study of the duration of life of organisms, systems,

or devices is of major importance in the biological and
engineering sciences [8]. Modeling lifetime distribution is a
fundamental aspect of reliability theory and survival analysis,
where understanding the failure mechanisms of systems and
organisms plays an important role [8]. Recently, many authors
have introduced and studied various transformations to obtain
new lifetime models using existing distributions as baselines.
Most of these transformations are obtained by adding one or
more parameters to the baseline distribution. For instance,
Sule et al. [16] introduced the Topp Leone Kumaraswamy-G
transformation and showed its application using cancer data;
Sule et al. [17] introduced a new five-parameter distribution
and showed its application using biomedical datasets; Marshall
and Olkin [10] introduced the Marshall-Olkin transformation
to generate new lifetime models; Gupta et al. [3] studied the
exp-G (exponentiated-G) family (also known as the Lehmann
family) of distributions.

The added parameter(s) can improve the flexibility of
the model, but it complicates parameter estimation and
incurs penalties in model selection criteria such as Akaike
Information Criterion (AIC) [1] and Bayesian Information
Criterion (BIC) [15]. To overcome this difficulty, researchers
developed new transformations without adding any extra
parameter(s) to the baseline distribution. Such transformations
are referred to as parsimonious transformations, and
the resulting distribution as parsimonious distribution [4].
Recently, parsimonious modeling of lifetime distributions has
gained renewed importance. Kumar et al. [6] proposed DUS
transformation and showed its application to bladder cancer
patient data using the exponential distribution as a baseline. In
[7], Kumer et al. introduced another transformation known as
SS transformation using the sine function and demonstrated
its applications using cancer data. Kavya and Manoharan
[4] proposed another parsimonious transformation, known as
the KM transformation, and by applying it to the exponential
and the Weibull distributions, they introduced new lifetime
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distributions referred to as the KME and KMW distributions.
The KME and KMW distributions outperformed several other
competing distributions for the exceedance of flood peak and
bladder cancer datasets, respectively [4].

Both the DUS [6] and KM [11] transformations are
obtained by compounding the baseline df with an exponential
function, while the SS [7] transformation is obtained by
compounding the df of the baseline with a sine function.
Parsimonious transformations based on other trigonometric
functions have also been studied in the literature (see [4]).
However, parsimonious transformation based on compounding
the baseline df with the logarithmic function does not
seem to be studied in the literature. The logarithmic
function, is a fundamental mathematical function with many
valuable properties such as monotonicity, continuity, and
differentiability.

In this paper, we introduce a new parsimonious
transformation (referred to as logarithmic transformation)
by compounding the baseline distribution with a logarithmic
function. Let G(x) be the distribution function (df) of a given
baseline distribution. The transformed df F (x) is defined as

F (x) =
1

1− ln(e− 1)
ln

(
1 +

G(x)

e− 1

)
(1)

where ln denotes the natural logarithm. IfG(x) is a continuous
distribution with probability density function (pdf) g(x), then
the pdf f(x) of the transformed distribution is

f(x) =
g(x)

(1− ln(e− 1)) (e− 1 +G(x))
. (2)

The hazard function of the distribution with df (1) is
obtained as

h(x) =
g(x)

[1− ln(e− 1 +G(x))] (e− 1 +G(x))
. (3)

In the sequel, as special cases, we obtain two new lifetime
distributions by takingG(x) equal to the dfs of exponential and
Weibull distributions in (1); we refer to these new distributions
as LTE and LTW, respectively.

The hazard function, which describes the instantaneous
failure rate at any given time, is a key characteristic used
to determine the suitability of a probability distribution for
modeling lifetime data. From Fig. 1(b), we observe that
the hazard rate of the LTE distribution can be non-increasing,
making it suitable for modeling datasets that have a non-
increasing hazard rate. The hazard function of the LTW
distribution can be both increasing and decreasing for different
choices of the parameters (see Fig. 2(b)). Furthermore, we
observe that the proposed LTE distribution outperforms the
exponential, KME, and DUSE [6] distributions in terms of
AIC and BIC when fitted to the exceedance of the flood peaks
of the Wheaton River dataset. The proposed LTW distribution
outperforms the Weibull, KME, DUSEE , and GDUSE [11]
distributions in terms of AIC and BIC when fitted to the failure

times of 50 component dataset.
In Section 2, we investigate the properties of our proposed

transformation for an arbitrary baseline distribution. Lemma
2.1 shows that the transformed df defined in (1) can
be expressed as an infinite linear combination of exp-
G dfstribution functions. Lemma 2.2 establishes that if
the moment-generating function (m.g.f.) of the baseline
distribution exists, then the m.g.f. of the transformed
distribution with df (1) also exists.

In Section 3.1 and Section 3.2, we introduce two
new lifetime models, namely, LTE and LTW distributions,
respectively. We obtain several mathematical properties of
LTE and LTW distributions, such as survival functions, hazard
functions, moments, m.g.f., mean deviation, entropy, and
quantile functions. The parameters are estimated using the ML
method.

In Section 4.1, we conduct simulation studies to assess the
consistency of the parameters involved in the LTE and LTW
distributions. The simulation results are reported in Tables
1 and 2 of the Appendix. In Section 4.2, we fit LTE, LTW,
exponential, and Weibull distributions and other competing
models such as KME, DUSE , and GDUSE to two datasets,
viz., the exceedance of the flood peaks of the Wheaton River,
and failure times of 50 components using the maximum
likelihood estimation method. We assess the goodness-of-fit
of each model using the Kolmogorov-Smirnov (KS) test. In
Table 5 - 6 (Appendix), we report the ML estimates and other
goodness-of-fit measures for each of the fitted models. From
Table 5, we observe that the LTE distribution outperforms
all the fitted distributions in terms of AIC and BIC scores
for the exceedance of the flood peaks dataset. From Table
6, we observe that the LTW outperforms all the other fitted
models in terms of AIC and BIC scores for the failure times of
component dataset.

2. Properties of the Logarithmic
Transformation

In this section, we study mathematical properties of
the logarithmic transformation (1) for any given baseline
dfstribution function G.

Lemma 2.1. The logarithmic transformation in equation (1)
can be represented as

F (x) =

∞∑
n=1

cnHn(x) (4)

where cn is given by (5) and Hn(x) is the df of the exp-G
distribution with power parameter n.

Proof Using the series expansion of ln(1 + x) for x < 1,
equation (1) can be written as

F (x) =
1

1− ln(e− 1)

∞∑
n=1

(−1)n+1 G(x)n

n(e− 1)n
.
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Now, taking

cn =
(−1)n+1

n(1− ln(e− 1))(e− 1)n
(5)

and Hn(x) = G(x)n we get (4).
Lemma 2.2. If the m.g.f. of the baseline distribution exists, then the m.g.f. of the transformed distribution (1) also exists.
Proof Let Y be a random variable with pdf g(y) and X be the random variable of the transformed distribution with pdf f(x)

in equation (2).

MX(t) =

∫
R
etxf(x)dx. (6)

Using (2), we have

MX(t) =

∫
R

etxg(x)

(1− ln(e− 1)) (e− 1 +G(x))
dx,

since
g(x)

(1− ln(e− 1)) (e− 1 +G(x))
<

g(x)

(1− ln(e− 1))
,

therefore, we have

MX(t) <

∫
R

etxg(x)

(1− ln(e− 1))
dx

which implies

MX(t) <
MY (t)

1− ln(e− 1)
.

This shows that if the m.g.f. of Y exists, then the m.g.f. of X also exists.

3. Properties of LTE and LTW
Distribution

3.1. LTE Distribution

The exponential distribution has been widely used in
reliability and survival analysis because of its simplicity
and analytical tractability [8]. The exponential distribution’s

hazard function is always constant, but this need not be
the case in real-life situations. So we try to obtain a new
distribution with a non-constant hazard function by using
the exponential distribution as the baseline distribution in
our newly proposed transformation. We take the df of the
exponential distribution G(x) = 1 − e−λx, x > 0, λ > 0
in Equation (1), to get a new lifetime distribution. We call this
the LT-Exponential (LTE(λ)) distribution. The df and pdf are
respectively defined as follows:

F (x) =
1

1− ln(e− 1)
ln

(
e− e−λx

e− 1

)
, x > 0, λ > 0, (7)

and

f(x) =
λe−λx

[1− ln(e− 1)] (e− e−λx)
, x > 0, λ > 0. (8)

The survival and hazard functions of the LTE(λ) are respectively given by

S(x) =
1− ln

(
e− e−λx

)
1− ln(e− 1)

, (9)

and

h(x) =
λe−λx

[1− ln (e− e−λx)] (e− e−λx)
. (10)
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To better understand the possible shapes of the pdf and hazard function of the LTE(λ), we plot these graphs for different
values of λ in Figs. 1(a) and 1(b). From Fig. 1(b) we see that the hazard function of the LTE(λ) distribution is non-increasing.

(a) Plot of the pdf of the LTE(λ) for different values of λ (b) Plot of the hazard function of the LTE(λ) for different values of λ

Figure 1. Plots of the pdf and hazard function of LTE(λ) for different values of λ.

We now discuss the mathematical properties of the LTE distribution.

3.1.1. Moments
Theorem 3.1. Let X ∼ LTE(λ), λ > 0. Then, for any

r ∈ N, the rth moment of X exists and can be expressed as

E(Xr) =
λ

[1− ln(e− 1)]

∞∑
m=0

r!

em+1(λ+ λm)r+1
.

Proof We begin by examining the existence of the moments
X . For any r ∈ N, we have

E(Xr) ≤ 1

[1− ln(e− 1)]

∫ ∞
0

λxre−λxdx

≤ r!

λr [1− ln(e− 1)]
.

Thus, the rth moment of X exists for any r ∈ N, and it can
be expressed as follows:

E(Xr) =
λ

[1− ln(e− 1)]

∫ ∞
0

xre−λx

(e− e−λx)
dx

=
λ

[1− ln(e− 1)] e

∫ ∞
0

xre−λx(
1− e−(λx+1)

)dx.

Expanding 1/
(
1− e−(λx+1)

)
, we get

E(Xr) =
λ

[1− ln(e− 1)] e

∫ ∞
0

xre−λx
∞∑
m=0

e−(λmx+m)dx

=
λ

[1− ln(e− 1)] e

∞∑
m=0

e−m
∫ ∞
0

xre−(λ+λm)xdx,

which reduces to

E(Xr) =
λ

[1− ln(e− 1)]

∞∑
m=0

r!

em+1(λ+ λm)r+1
.

3.1.2. Moment Generating Function
Theorem 3.2. Let X ∼ LTE(λ), λ > 0. Then, the m.g.f. of

X exists for any λ > 0, and it can be expressed as

MX(t) =
λ

[1− ln(e− 1)]

∞∑
m=0

1

em+1(λm+ λ− t)
, t < λ.

Proof Since the m.g.f. of the exponential distribution exists
for any λ > 0, therefore by Lemma 2.2 the m.g.f. of LTE(λ)
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also exists. For t < λ, the m.g.f. of X can be expressed as

MX(t) =
λ

[1− ln(e− 1)]

∫ ∞
0

etxe−λx

(e− e−λx)
dx

=
λ

[1− ln(e− 1)] e

∫ ∞
0

etxe−λx
∞∑
m=0

e−(λmx+m)dx

=
λ

[1− ln(e− 1)]

∞∑
m=0

1

em+1

∫ ∞
0

e−(λm+λ−t)xdx

=
λ

[1− ln(e− 1)]

∞∑
m=0

1

em+1(λm+ λ− t)

3.1.3. Mean Deviation
The mean deviation about the mean is defined as

E(|X − µ|) =

∫ ∞
0

|x− µ|f(x)dx

=

∫ µ

0

(µ− x)f(x)dx+

∫ ∞
µ

(x− µ)f(x)dx

where µ is the mean. Simplifying, we obtain

E(|X − µ|) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x)dx.

Now, for the LTE(λ) with pdf (3.1) we compute the
following integral∫ ∞
µ

xf(x) =
λ

[1− ln(e− 1)]

∫ ∞
µ

xe−λx

(e− e−λx)
dx

=
λ

[1− ln(e− 1)]

∞∑
m=0

1

em+1

∫ ∞
µ

xe−(λ+λm)xdx.

The complementary incomplete gamma function is defined
as Γ (n, x) =

∫∞
x
xn−1e−xdx, which can also be expressed

as (n − 1)!e−x
∑n−1
k=0

xk

k! . Using this result in the above
expression, we obtain the mean deviation about the mean of
the LTE distribution

E(|X − µ|) =
2λ

[1− ln(e− 1)]

∞∑
m=0

e−(λ+λm)µ(1 + (λ+ λm)µ)

em+1(λ+ λm)2
+ 2µF (µ)− 2µ.

3.1.4. Quantile Function
The quantile function of LTE(λ) is obtained by inverting (7) as follows

Q(p) = − 1

λ

[
1 + ln

{
1−

(
e

e− 1

)p−1}]
, 0 ≤ q ≤ 1. (11)

3.1.5. Rényi Entropy
The Rényi entropy of a random variable X represents a measure of the variation of the uncertainty [13]. The Rényi entropy is

defined by

Iγ(X) =
1

1− γ
ln

[∫ ∞
−∞

(fX(x))γdx

]
, γ > 0 and γ 6= 1. (12)

Thus, the Rényi entropy of X ∼ LTE(λ) is given by

Iλ(X) =
1

1− λ
ln

[(
1

1− ln(e− 1)

)γ ∫ ∞
0

λγe−γλx

(e− e−λx)
γ dx

]
.

Setting z = e−λx, the above equation reduces to

Iλ(X) =
1

1− λ
ln

[(
1

1− ln(e− 1)

)γ ∫ 1

0

λγ−1tγ−1

(e− t)γ
dt

]
.

Now, for 0 < γ < 1, we have

Iλ(X) =
1

1− λ
ln
[
(1− ln(e− 1))

−γ
λγ−1Γ (γ) Γ (1− γ)

]
.

3.1.6. ML Estimation of the Parameter of LTE
Distribution

Let X1, . . . , Xn be independently and identically
distributed (i.i.d.) random variables from the LTE(λ) where
λ > 0. The log-likelihood function associated with the random
sample is given by

L(λ) = −n ln [1− ln(e− 1)] + n ln(λ) (13)

− λ
n∑
i=1

Xi −
n∑
i=1

ln
(
e− e−λXi

)
. (14)

It can be checked that the log-likelihood function satisfies
the regularity conditions on the parameter space

Ω = {λ ∈ R|λ > 0}.
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Partial derivative of the log-likelihood function with respect
to the parameter λ is

∂lnL

∂λ
=
n

λ
−

n∑
i=1

xi −
n∑
i=1

xie
−λxi

(e− e−λxi)
.

The estimating equation is obtained by equating the above
partial derivative to zero. Since a closed-form solution of the
estimating equation cannot be obtained, we maximize the log-
likelihood function (13) using the optim function in R.

3.2. LTW Distribution

The Weibull distribution is an important distribution in
reliability theory and survival analysis [8]. In this section,
we introduce a new distribution, which we refer to as the
LTW (LT-Weibull) distribution, by using the df G(x) = 1 −
e−(βx)

α

, x > 0, α, β > 0 of the Weibull distribution in (1).
The df and pdf of the LTW (α, β) distribution are obtained,
respectively, as

F (x) =
1

1− ln(e− 1)
ln

(
e− e−(βx)α

e− 1

)
, x > 0, (15)

and

f(x) =
αβ(βx)α−1e−(βx)

α

(1− ln(e− 1))
(
e− e−(βx)α

) , x > 0, (16)

where α > 0, β > 0.
The survival and hazard functions of the LTW (α, β) are

rsepectively given by

S(x) =
ln
(
e− e−(βx)α

)
1− ln(e− 1)

, (17)

and

h(x) =
αβ(βx)α−1e−(βx)

α[
1− ln

(
e− e−(βx)α

)] (
e− e−(βx)α

) . (18)

The plots of the pdf and hazard functions of the
LTW (α, β), for different values of α and β, are presented in
Figs. 2(a) and 2(b). From Fig. 2(b) we see that the hazard
function of the LTW (α, β) distribution can be both increasing
and decreasing depending on the values of the parameters.

(a) PDF of LTW (α, β) (b) Hazard function of LTW (α, β)

Figure 2. Comparison of the pdf and hazard function of LTW (α, β) for different values of α and β.

We now discuss mathematical properties of LTW
distribution.

3.2.1. Moments
Theorem 3.3. Let X ∼ LTW (α, β), α, β > 0. Then, for

any r ∈ N, rth moment of X exist and can be expressed as

E(Xr) =
1

(1− ln(e− 1))βr

∞∑
m=0

Γ
(
r
α − 1

)
em+1(m+ 1)

r
α
.

Proof The rth moment of X exist for any r ∈ N and it can
be expressed as follows
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E(Xr) =
αβα

[1− ln(e− 1)] e

∫ ∞
0

xr+α−1e−(βx)
α(

1− e−(βx)α−1
)dx

=
αβα

[1− ln(e− 1)]

∞∑
m=0

1

em+1

∫ ∞
0

xr+α−1e−(m+1)(βx)αdx

=
1

(1− ln(e− 1))βr

∞∑
m=0

1

em+1(m+ 1)
r
α

∫ ∞
0

x
r
α e−xdx

=
1

(1− ln(e− 1))βr

∞∑
m=0

Γ
(
r
α − 1

)
em+1(m+ 1)

r
α
.

3.2.2. Moment Generating Function
Theorem 3.4. Let X ∼ LTW (α, β), α, β > 0. Then, the m.g.f. function of X exists and can be expressed as

MX(t) =
βα−1

[1− ln(e− 1)]

∞∑
m=0

∞∑
n=0

tnΓ
(
n+1
α

)
βnem+1n!(m+ 1)

n+1
α

.

Proof Since the m.g.f. of the Weibull distribution exists for any α, β > 0, therefore by Lemma 2.2, the moment generating
function of LTW (α, β) also exists. The m.g.f. of X can be expressed as

MX(t) =
αβα

[1− ln(e− 1)] e

∫ ∞
0

etxe−(βx)
α(

1− e−(βx)α−1
)dx

=
αβα

[1− ln(e− 1)]
×
∞∑
m=0

∞∑
n=0

tn

em+1n!

∫ ∞
0

xne−(m+1)(βx)αdx

=
βα−1

[1− ln(e− 1)]

∞∑
m=0

∞∑
n=0

tnΓ
(
n+1
α

)
βnem+1n!(m+ 1)

n+1
α

.

3.2.3. Quantile Function
By inverting (15), we obtain the quantile function LTW (α, β) as follows:

Q(u) =
1

β

[
−1− ln

{
1−

(
e

e− 1

)u−1}] 1
α

, 0 ≤ u ≤ 1. (19)

3.2.4. ML Estimation of the Parameters of the LTW Distribution
Let X1, . . . , Xn be i.i.d. random variables following the LTW (α, β) distribution with parameters α, β > 0. The log-

likelihood function associated with the random sample is given by

L(α, β) = −n ln [1− ln(e− 1)] + n ln(αβ)−
n∑
i=1

(βXi)
α

+ (α+ 1)

n∑
i=1

ln(βXi)−
n∑
i=1

ln
(
e− e−(βXi)

α
)
. (20)

It can be checked that the log-likelihood function satisfies
the regularity conditions on the parameter space

Ω = {(α, β) ∈ R2|α, β > 0}.

Partial derivatives of the log-likelihood function with

respect to the parameters α and β are respectively

∂lnL

∂α
=
n

α
+

n∑
i=1

ln(βXi)−
n∑
i=1

(βXi)
α ln(βXi)

−
n∑
i=1

(βXi)
α ln(βXi)e

−(βXi)α(
e− e−(βXi)α

)
and
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∂lnL

∂β
=
n

β
+
n(α+ 1)

β
− α

n∑
i=1

Xi(βXi)
α−1

−
n∑
i=1

Xi(βXi)
α−1e−(βXi)

α(
e− e−(βXi)α

) .

The estimating equations are obtained by equating the above
partial derivative to zero. Since the closed-form solution of the
estimating equations cannot be obtained, we maximize the log-
likelihood function (20) using the optim function in R.

4. Simulation Study and Real Data
Analysis

4.1. Simulation Study

In this section, we use the Monte Carlo simulation method
to evaluate the performance of the maximum likelihood
(ML) estimators for the parameter λ in the LTE distribution.
Specifically, we employ the quantile function (11) to generate
N = 10, 000 random samples of varying sizes (n =
50, 100, 500, 700, 1000) for different values of the true
parameter λ (See Table 1).

In Table 1, we present the mean ML estimates (λ̂) of the
parameter along with the corresponding root mean squared
errors (RMSE), which are defined as follows:

RMSE(λ̂) =

√
E
(
λ̂− λ

)2
. (21)

Remark 4.1. The results in Table 1 indicate that the mean
estimates of the parameter approach the true parameter value
as the sample size n increases. Additionally, the RMSE
decreases toward zero with increasing sample size, suggesting
strong consistency of the ML estimator for λ.

We apply a similar simulation approach to examine
the performance of the ML estimators for the parameters
of the LTW (α, β) distribution. Here, we utilize the
quantile function of LTW (α, β), given by equation (19), to
generate N = 10, 000 random samples of different sizes
(n = 50, 100, 500, 700, 1000) for various values of the true
parameters (See Table 2).

Remark 4.2. The results in Table 2 demonstrate that the
mean estimates of the parameters converge to their true values
as the sample size n increases. Furthermore, the RMSE for
each parameter decreases toward zero with increasing sample
size, further supporting the strong consistency of the ML
estimators for α and β.

4.2. Real Data Analysis

We use the ML estimation method to fit the models to the
following two datasets. Kolmogorov-Smirnov (KS) test is used
to assess the adequacy of each model’s fit. We retain the
null hypothesis, indicating that the model adequately fits the

data, if the p-value of the KS test exceeds the predetermined
significance level of 5 percent. The best-fitted model is
selected from among those that adequately fit a specific
dataset, based on the lowest AIC and BIC scores. The datasets
and their corresponding analyses are as follows:

1. Dataset I: This dataset consists of 72 exceedances
of flood peaks (in m3/s) recorded from 1958 to
1984 for the Wheaton River near Carcross in Yukon
Territory, Canada. This data is obtained from [2] and
is presented in Table 3. Kavya and Manohoran [4]
used this dataset in their study and demonstrated that the
KME distribution outperforms several other competing
models.
We fit the LTE, exponential, KME, and DUSE
distributions to Dataset I. In Table 5, we report the ML
estimates, log-likelihood (LL), AIC, BIC values, and
the p-value from the KS test for the fitted distributions.
From Table 5, we observe that the all the models
adequately fit Dataset I when assessed using the KS
test at 5 percent significance level. Among the fitted
distributions, the LTE distribution has the lowest AIC
and BIC scores. Thus, the LTE distribution is the best-
fitted model for Dataset I.

2. Dataset II: The second dataset consists of the failure
times of 50 components (per 1000 hours). This dataset
was obtained from Murthy et al. [12]. Table 4 present
this dataset. Sengweni et al. [14] used this dataset in
their study.
We fit Dataset II to the LTW, Weibull, KME, DUSE ,
and GDUSE distributions. In Table 6, we report the
ML estimates, LL, AIC, BIC values, and the p-value
from the KS test for the fitted distributions. From
Table 6, we observe that all the models (except DUSE)
adequately fits Dataset II when assessed using the KS
test at 5 percent significance level. Among the fitted
distributions, the LTW distribution has the lowest AIC
and BIC scores. Thus, the LTW distribution is the best-
fitted model for Dataset II.

5. Conclusion
In this paper, we introduced a new parsimonious

transformation, referred to as the logarithmic transformation,
and as special cases, two new lifetime models are obtained,
and their mathematical properties are studied. The hazard
functions of both the new distributions are seen to be
monotonic. We used the ML estimation method to estimate the
parameters in the two new lifetime models, and simulations
are performed to assess the consistency of ML estimators.
Finally, we demonstrated that the two new lifetime models
outperform several other competing models when fitted to two
real datasets.
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Appendix

Table 1. Simulation results for LTE(λ) distribution.

Parameter n λ̂ RMSE(λ̂) Parameter n λ̂ RMSE(λ̂)

λ = 0.5

50 0.5114 0.0793

λ = 1.5

50 1.5317 0.2353

100 0.5059 0.0545 100 1.5197 0.1639

500 0.5013 0.0241 500 1.5035 0.0712

700 0.5007 0.0202 700 1.5027 0.0607

1000 0.5004 0.0167 1000 1.5019 0.0501

λ = 1

50 1.0199 0.1569

λ = 2

50 2.0467 0.3194

100 1.0131 0.1095 100 2.0209 0.2185

500 1.0018 0.0475 500 2.0028 0.0961

700 1.0011 0.0405 700 2.0029 0.0801

1000 1.0014 0.0339 1000 2.0022 0.0674

Table 2. Simulation results for LTW (α, β) distribution.

Parameters n α̂ β̂ RMSE(α̂) RMSE(β̂)

α = 1.5, β = 0.5

50 1.5406 0.5065 0.1791 0.0532

100 1.5202 0.5033 0.1193 0.0368

500 1.5038 0.5008 0.0516 0.0164

700 1.5024 0.5004 0.0437 0.0135

1000 1.5019 0.5002 0.0362 0.0114

α = 1, β = 1

50 1.0281 1.0234 0.1164 0.1625

100 1.0138 1.0110 0.0811 0.1115

500 1.0030 1.0025 0.0344 0.0486

700 1.0018 1.0016 0.0292 0.0407

1000 1.0010 0.1569 0.0242 0.0345

Table 3. Dataset I.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0

12.0 9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1

2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0

7.3 22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1

0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8

13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5

2.5 27.0
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Table 4. Dataset II.

0.036 0.148 0.590 3.076 6.816 0.058 0.183 0.618 3.147 7.896

0.061 0.192 0.645 3.625 7.904 0.074 0.254 0.961 3.704 8.022

0.078 0.262 1.228 3.931 9.337 0.086 0.379 1.600 4.073 10.940

0.102 0.381 2.006 4.393 11.020 0.103 0.538 2.054 4.534 13.880

0.114 0.570 2.804 4.893 14.730 0.116 0.574 3.058 6.274 15.080

Table 5. Parameter estimates and several goodness-of-fit criteria for Dataset I.

Distribution ML Estimates LL AIC BIC p-value(KS-Test)

LTE λ̂ = 0.0736 −251.7429 505.4858 507.7624 0.2271

Exp(λ) λ̂ = 0.0819 −252.1280 506.2559 508.5326 0.1083

KME λ̂ = 0.0632 −252.0125 506.0250 508.3017 0.3443

DUSE (λ) λ̂ = 1 −254.4682 510.9364 513.2130 0.3677

Table 6. Parameter estimates and several goodness-of-fit criteria for Dataset II.

Distribution ML Estimates LL AIC BIC p-value(KS-Test)

LTW α̂ = 0.6941, β̂ = 0.3282 −102.2207 208.4414 212.2654 0.4173

Weibull α̂ = 0.6613, β̂ = 0.3951 −102.3643 208.7286 212.5527 0.3645

KME(λ) λ̂ = 0.2454 −107.7518 217.5037 219.4157 0.0119

DUSE (λ) λ̂ = 0.3505 −115.5035 233.0070 234.9190 < 0.05

GDUSE(λ, α) λ̂ = 0.2146, α̂ = 0.4239 −103.3417 210.6834 214.5075 0.1570
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