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Abstract: The article discusses methods for identifying parameters of partial differential equations. Identification problems
are often called poorly conditioned. However, the reason is the ambiguity of the solution, even at the point of minimality
of the criterion. In particular, the article discusses: (1) An analysis of singular values for identify the unambiguous solution.
The basis of these methods is a singular value decomposition of the matrix of experimental data, what makes it possible to
abandon the inversion of matrices and, as a consequence, translate the problem of ill-conditioned problems into the problem of
ambiguity of the solution. (2) The issues of anomalous measurements and combination of various experiments. (3) A universal
optimization method for identifying parameters by their complete simple enumeration. The method is based on fast calculation of
points on a multidimensional sphere. (4) The issues of identifiability of linear structure models and construction of experiments
guaranteeing identification. (5) A method for identifying parameters via projecting linear structure model elements onto the
plane of guarantors. (6) An approach to constructing histograms of unknown parameters of dynamic systems before calculating
them using any algorithm. The approach is based on linear structure models with parameters on a sphere and a rather unexpected
application of singular value decomposition. (7) The methods are accompanied by examples of heat equations. The Appendix
contains algorithms in the MATLAB language for all examples. (8) The presented optimization, projection and statistical methods
based on the concept of linear structure models allow solving the same identification problem in fundamentally different ways,
which significantly increases the reliability of the results obtained.

KeyWOI‘dS: Identification, Identifiability, Guaranteeing Identification Experiment, Projection onto Planes of Guarantors,
Histograms of Unknown Parameters

determined during experiments. It is very important to
conduct such an experiment that the parameters are determined
unambiguously based on its results. This is the physical side

1. Introduction

The methods of identification of dynamical systems are

essentially purely mathematical, however, in this case, when
the study of physical processes is involved, they have specific
features.

When idealizing real physical processes as dynamic models
describing dependencies between physical measurements,
partial differential equations, which include constant
parameters (equation coefficients) reflecting the properties
of physical processes, are most often used. For example, in
the heat equation the coefficients characterize such properties
of the heated material as heat conductivity, heat capacity, and
others.

The parameters of physical

processes are usually

of the problem.

From the mathematical point of view, a correct
mathematical model of the process as well as a stable method
and algorithm for calculating the parameters of the model, the
results of which do not contradict the physical meaning, are
important.

Let’s consider a simple example of the heat equation:

ay wi(z,t) + ag wee (2, t) = g(a,t).

Suppose in the course of an analytical, mental experiment
at g(z,t)=0.2 we got w(z, t)=t+x(x—1)/2, then we(x,t)=1
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and w,(x, t)=1. Substituting them into the equation, we get
ar-1+asl =02,

It is obvious that the parameters identification problem has
an ambiguous general solution: a;+a2=0.2. If we choose the
normal solution of the least squares method for the numerical
solution of this problem, we’ll get a1=0.1, a2=0.1. As is
known, the normal solution is the only and stable one, it
is included in the general solution, however, in this case, it
contradicts the physical law of heat propagation from a more
heated part of the body to a less heated one, since both a;>0
and a»>0. I'd like to note that we did not have any physical
grounds to choose the normal solution from a set of equivalent
solutions only on the mathematical basis that it is unique and
stable, although these are very important arguments.

In the following sections, issues concerning correct, from
the identifiability point of view, writing of model formulas and
searching for experiments that guarantee their identification,
will be considered.

2. Linear Structure Models

Following [1, 2] let’s define the linear space 4F® over
the field A as the set of model elements. Let’s take the
fundamental relation over elements of a linear space — linear
dependence relation — as the genus relation of a model. And
let’s call this model a Linear Structure Model (LS M odel).

In physics, this relation leads us to equilibrium models such
as the energy conservation law.

In mathematics this definition allows us to write the
LSModel as a linear algebra formula. The formula symbolizes
the model as a whole and also allows us to operate within the
limits of mathematical theory.

Let’s write the Linear Structure Model Class (or LS M odels
to simplify) by the following symbolic formula

Z O‘n@n(t) =0,

nen

where

ay, 1 a symbolic model parameter,

©n(t) is a symbolic model element,

n={n} is a set of indices.

If model elements are linearly dependent, i.e. satisfy the
model formula with coefficients «,,, then «,, are called model
parameters.

Let a LSModel mean one model and LSModels mean all
models — the Linear Structure Model Class.

The given set {,,(t): n€n} of element formula defines the
particular Class, that is a subclass of LSModels.

The set a={a,: n€n} of values of symbolic model
parameters «,, defines the particular LSModel and is a vector
of the space of parameters (SP), ac_4A™

The set f(t)={fn(t): n€n} of values of symbolic model
elements ¢, (t) defines the realization of LSModel and is

also a vector of the space of parameters (SP), f(t)€ 4A™ As,
according to LSModel formula

Y anfalt) =0 or <a, f(t)>=0

nen

where <a, f(t)> is a scalar product in SP between vector
of parameters a and vector of realization f(¢).

The set {f,(t): n€n} is the minimum information
necessary for identification of the parameters a={a,,: n€n}.
The set A={a;: <a, f(t)>=0, t€t} is the hyperplane with
the normal vector f(¢) in SP.

Since we now display both parameters and realizations in
the SP space, it is more accurate to call it the space of
parameters/realizations (SPR) and in it the coordinate axes
have a double name a,,/ f,,.

Let’s fix the set t={¢} as a set of values of ¢. Then
the set f,,(¢)={f.(t): t€t} will be an element of the linear
space AFt (f,(t)e4F*), the dimension of f,(t) coincides with
the dimension of ¢.

The matrix F=f(t)=] f,.(¢) |=[ f(t) ] is called a matrix of
Experimental Data (F' D). Usually a column is an element of
the LSModel and a row is a realization of the LSModel.

The Problem of Modeling via LSModels consists in
searching for the LSModel elements f,(¢) at the interval ¢
according to given parameters a={a,} and the Problem of
Identification via the LSModels consists in searching for
parameters a={a, } according to given LSModel elements
fn(t) at the observation interval £. To solve the IP via
LSModels it is necessary to solve the algebraic matrix equation
F.a=0.

The model belonging to the Model Class and containing
all, without exception, experiment realizations in its set
of realizations will be called a Particular Solution of
Identification Problem (P.S1 P) via the Model Class according
to the Experiment.

The set of one and all particular solutions of the
identification problem (P S P) via the Model Class according
to the experiment will be called a General Solution of
Identification Problem (G.S1 P) via the Model Class according
to the Experiment.

It is obvious that the experiment realizations and the model
parameters divide the SPR into two orthogonal complements
(subspaces) : the general solution and the current model plane
(linear span of all realizations generated by the experiment).
In particular, it is clear that the only solution is a straight line,
and the model plane will then be a hyperplane.

Example

Let’s write the Linear Structure Model Class by the
following symbolic heat equation:

aq ’th(l‘,t) + (6%} wxaﬁ('xat) + as g(l‘,t) = O

Let’s assume that in the course of three experiments on the
same object of our research the measurements g(z,t), w(z,t)
were obtained and the immeasurable elements of the model
we(z,t) and w,, (x,t) were calculated by formulas of central
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difference derivatives:
wy(x,t) = (w(x,t—i—h) — w(x,t—h))/?h,
W (2, 1)=(w(x+2h,t) — 2w(z,t) + w(z—2h, t))/(2h)>

It is critical that A be a power of 2, then the computer
division of /2h is performed without additional rounding

x-axis 0 0 Otggxis

0 Otggxis

x-axis 0
Figure 4. wi(x,t) and wy,(x,t) in Ex#2.

atz={0,0.125,...,1},¢t={0,0.125, ...,0.75} are calculated.

In experiment #3 obtained measurements

errors [1].
In experiment #1 obtained measurements g(z,t)=0.2 and
g(z,t)=sin(z)-sin(t) and w(z,t)=sin(x) sin(t+6)

w(z,t)=z(x—1)/2+t look like:

look like :

S \\""q"'l
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Figure 1. g(z,t) and w(x,t) in Ex#I.
X-axis

Figure 5. g(z,t) and w(x,t) in Ex#3.

and immeasurable w; (z,t), Wy, (2,t) look like :
and immeasurable w;(x,t), Wy, (x,t) look like :

x-axis 0 0 2t—axis

00

2
0o t-axis

x-axis 0 0
Figure 2. wi(z,t) and wy (x,t) in Ex#l.
Figure 6. w¢(x,t) and wa(x,t) in Ex#3.

atz={0,0.25, ...,3},t={0,0.25, ..., 6.5} are calculated.

atz={0,0.125, ..., 1},¢={0,0.125, ...,0.75} are calculated.
And here’s how the same experiments look like in the space

In experiment #2 obtained measurements
(z,t)=0.2+t and w(z,t)=z(1—z)/6+0.625>
look ike of parameters/realizations (S PR):
a3/g H

w
az XX //a1/Wt

N

Figure 7. SPR in Ex#l.

0
0 t-axis
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0 .
0 t-axis
Figure 3. g(z,t) and w(z,t) in Ex#2.

and immeasurable w;(x,t), Wy, (2, t) look like :
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Figure 8. SP R in Ex#2.

Figure 9. SP R in Ex#3.

Here the dots mean realizations, in the first and second
experiments there are 25 of them, in the third one there are 225.
However, in the first experiment we see only one, the others are
equal to it, because wy(z,t)=1, wy,(x,t)=1, g(x,t)=0.2 for
all z,t. The only realization vector [1 1 0.2]" (dashed line)
means that the general solution is the plane perpendicular to it
: 1T-a;+1-a2+0.2-a3=0 (in the figure it is a set of dot and dash
straight lines enclosed in a rectangle). In the introduction, the
heat equation was written with g(x,%) in the right side of the
equation, that is, az=—1, then a;+a3=0.2 and the obtained
result is the same as the result from the introduction.

In the second experiment we see five different points, five
realization vectors that form a small, but a piece of the
plane. This means that the general solution is a straight line
perpendicular to all realizations (dot and dash line).

In the third experiment, everything is quite obvious: the
points lie in one well-conditioned plane. It is clear that, as
in the second experiment, the general solution is a straight
line perpendicular to all realizations. However, the third
experiment is more credible.

It is intuitively clear that it is easier to look for a general
solution in the space of parameters/realizations. There is no
such variety of elements as in the space of elements. It seems
that since the space of elements, as a functional space, is
infinite-dimensional, then the space of realizations is infinite-
dimensional as well. However, this is not the case and this is a
huge advantage of the space of parameters/realizations.

Theoretically, if the model is identifiable, then all
realizations obtained in all conceivable experiments belong to

one model plane, which is a hyperplane of a given space of
parameters/realizations (SPR). The subspace of parameters
is then a straight line. In the language of the equation, this
means that the coefficients may be multiplied by any number,
what corresponds to the mathematical spirit of the equation.
And now, having fixed any parameter, as in the introduction
we took as=—1, we get a meaningful physically justified
unambiguous solution. If the object is not sufficiently excited
in the experiment, then the linear span of the realizations
of its mathematical model (the current model plane) will no
longer be a hyperplane and we will not be able to find an
unambiguous solution (a straight line) in the general solution
of the identification problem. This is clearly seen in the figure
of the space of parameters /realizations of experiment #1.
There are infinitely many straight lines belonging to the
general solution, and it is impossible to determine which one
is correct.

3. In Search of a Unique Solution

The task is that according to the given set of realizations
determine its dimension and location in the space of
parameters/realizations, in other words, to find the current
model plane and construct a general solution orthogonal to this
current model plane.

Obviously, then the angle of deviation of the current model
plane from the ideal model plane will be equal to the angle of
deviation of the found general solution from the ideal general
solution.

And the more precisely we draw the model plane, the more
precisely we will determine the parameters.

3.1. Singular Value Decomposition (SVD)

Any mxn complex matrix F' may be represented as a
product of three matrices:

F=USV"

here

U=l[u;...u;,] — mXxm complex unitary matrix,

S=diag(s1, ..., sn) — mxn diagonal matrix,

V=[v;...v;] — nxn complex unitary matrix,

V* — complex conjugate of the matrix V.

Such a representation is called singular value decomposition
(svd), numbers s; are singular values and sy >S9 >...> s,
columns u; of the matrix U, and columns »; of the matrix
V are left and right singular vectors of the matrix F,
corresponding to s;:

’U,;k F:SZ"U:, F’Ui:Si’U,i, 1§z§n

Hereinafter we will consider only matrices consisting of
real numbers with a number of rows exceeding the number of
columns (m>n), then the operation of complex conjugation
and transposition ( )* may be replaced by the operation of
transposition ().
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Now the singular value decomposition will look as follows:
F=USV/

here U and V are real orthogonal matrices.
It’s also easy to show that

n n
F = E ’U,Z'SZ"U; = E Fl', Fi:UiSi’l);:F’Ui’U;.
i=1 i=1

It is interesting that the columns of the matrix U may be
interpreted as an orthonormal basis in the space of elements,
then the elements of the model in the basis U will look as
follows:

511)/1
F'=UF=8V' =

S0’y

As the vectors v; are normalized, then |v;;|<1 and | f};|<s;,
in other words, in the U basis the i-th coordinates of all model
elements modulo are no more than s;.

Similarly, in the V' basis, the model realizations will look as
follows:

F'=FV=US=[ w151 ... UnSn |

And as the vectors u; are normalized, then | ff] |<s;, in other
words, in the basis V' the ¢-th coordinates of all realizations of
the model modulo are no more than s;.

We can say that all realizations of the model are enclosed in
a multidimensional rectangle with sides 2s;.

The figure below shows f¥ - model elements in the U basis
and f¥ - model elements in the V' basis for the experiment #3.

Figure 10. Basis U in Ex#3.

Figure 11. Basis V' in Ex#3..

Ifsg>s9>...>2s,>0and s,41=8,42= ... =5,=0, then

’ .
Fv;=s;u;=0, Fi:uis,»vi:O, i=r+1,...,n.

It follows that any linear combination of vectors v;

is the solution of equation F'a=0 and
F=F = Zuisiv; =U.S. V!, r=rank(F),
i=1

U-=[uy..u.], Sp=diag(sy, ..., 8y), Vo=[v1..0,].

In other words, the linear span of vectors v;...v, is a
model plane in the space of parameters/realizations, and the
orthogonal to it linear span of vectors v,1...v, is a general
solution to the identification problem.

The great advantage of this method of obtaining a general
solution, or rather a fundamental solution {v,1...v,}, is the
presence of an excellent procedure for calculating the singular
value decomposition of any matrix. In Matlab, it is enough to
write:
>> [U,S,V]=svd(F);
or
>> [U,S,V]=svd(F,0);
in the last case U has dimension mxn, S and V — dimensions
nxn.

For example, in the three experiments described above, the
following singular values were calculated in the absence of
measurement noises.

In experiment #1

$1=7.1414, $9=9.5467-10716  53=0,
this means that all realizations lie almost on a straight line
segment, because two singular values are very close to zero,
what indicates the ambiguity of the problem solution.

In experiment #2
$1=4.2621, $5=0.6110, s3=5.7812-10"1F,
and in experiment #3
$1=12.251, $9=8.5309, s3=3.9351-10"*".

This means that all realizations lie almost on the plane, what
points to the obtained unambiguous solution, which should
be calculated using the third columns of the corresponding V'
matrices.

We need as to be equal to —1, then a=—wv3/vs3, or
in Matlab
>> a=-V(:,3)/V(3,3)

Do not forget that for the stability of calculations, vss,
as a divisor, must be significantly greater than zero, that is,
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congruent modulo with max ;|vg,|.
Be sure to check it out!
In experiment #2

a1=0.80000, a2=-0.60000, az=—1,
and in experiment #3
a1=0.80839, a2=-0.61266, az=—1.

In experiment #2, we obtained accurate theoretical values
of the parameters, however in experiment #3, the parameter
estimates are much worse. The discrepancies in the parameter
values are caused by the chosen method of calculating
derivatives, which works fine in the case of linear functions
and worse for nonlinear ones. To increase the accuracy, you
need to reduce the measurement step.

It is also obvious that it is practically impossible to obtain
exact zeros in singular values, especially in conditions of
inaccurate measurements and calculations. In other words, the
experimental data matrices almost always have a full rank.

However, it is extremely important for approximate
calculations that perturbations of matrix elements lead to
smaller or equal perturbations of its singular values.

Let F=F+AF then

|3; — si| < [[AF2.

It is also important that singular values do not depend on
the permutation of columns and rows of the experimental data
matrix.

But the singular vectors v,4i,...,v, are unstable to
calculations, because in the case of an ambiguous solution
(r+1<n), even if the ambiguous solution itself is stable, there
are infinitely many orthogonal bases of this solution.

In experiment #1 the ambiguous solution — the plane
a1+as+0.2-a3=0 is stable, but you can choose as many
orthogonal vectors v2, v3 lying on this plane, as you want.

If the solution is unambiguous, v,, steadily points to the
solution, while ~y is the angle of deviation from the exact

solution v;; (||v;,||=1) defines a relative error

_ Al

oa
llal|

a=cv,, a =cv,, Aa=a—a,

because triangles with vertices v,,,0,v,, and a,,0,a, are
isosceles, and their heights are medians and bisectors.
Obviously, we don’t know the exact solution. However,
7o is the angle between the model hyperplane of the svd-
solution (span{vi, ...,v,_1}) and the hyperplane of the exact
solution, as v,, and v,, are their normals. Now assuming that
the exact model plane in the basis V does not extend beyond
the boundaries of the rectangle with vertices (+£s;, £s;) we
can take the maximum deviation angle y=argtan(s,/sn—1),
since all s; are ordered. Then, as an estimate of the relative

error of da, we can take

da = 2sin(argtan(sy/sn—1)/2).

If the angle -y is small, such that sin(-y)ay, then
argtan(sy /Sn—1)~8n/Sn—1,
sin(argtan(sp/sn—-1)/2)~(sn/sn-1)/2,

in the end
da ~ Sn/Sn—1-

In the figure below, in the basis V, the points represent the
realizations of experiment #3 (AF#0), while the axis vy is
perpendicular to the plane of the figure. Implementations are
concentrated near the point 0.

1

- v
3
Ve a5y
0.5 | |
| 7 |
I i ,’,Y I
of —— 21—
[ S,V
| /, o ? 2
[ I
-0.5f  ~
b |
(=Sp=sy) (5,3
-1
-10 0 10
Figure 12. Basis V' Ex#3 AF#0.
The bold line is the current model hyperplane

span{vy, v}, within the boundaries of a rectangle with
vertices: ( s, S3), (S2, —s3 ), (—s2, —S3), (—S2, s3). The
dashed line is an exact model hyperplane maximally deflected
by an angle v, passes within the boundaries of the above
specified rectangle. Dot and dash lines denote vectors v and
v3, which make up the angle v and an isosceles triangle with
vertices: v3,0,v3.

3.2. Total Least Squares (TLS)

Following [3], but staying in our notation, the Total
Least Squares (TLS) problem involves finding a perturbation
matrix AF having minimal Frobenius norm ||AF|| z such that
rank(F+AF) is rank deficient and a vector @ such that

(F+AF)a =0.
Let
F=USV'
If s1>50,>..28,>8,41=Sp42=...=S, >0, then
o= mnk(gﬂgmm IAF] P

Moreover, the minimum is attained by setting AF'=—Faa/,
where a is any unit vector in the span{v,41, ...,V }.

It follows that if s,/s,.y1=1, then we got one hundred
percent ambiguity of solutions, and each solution gives a
deviation having the same minimum of the Frobenius norm
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|IAF|F, in other words, no method using this optimality
criterion, will be able to choose the right solution.

To simulate measurement noises, values from a normal
distribution with mean 0 and standard deviation 0.001 were
added to the calculated temperature w(zx,t).

In experiment #1

§1=7.1291, s9=0.1067, s3=0.0061,
at that a:—’Ug/’Ugg
a1=0.1862, a3=-—0.0139, az=—1.

And we got a wrong solution, although the ratio
Sn/Sr+1=83/52=0.0572 is quite satisfactory, only 5.72%
are for ambiguity. However, we know for sure that there
must be an ambiguity. But as with the chosen method of
calculating derivatives, the noise intensity in the first derivative
is much less than in the second one, we cannot expect equality
of singular numbers. Practice always makes changes to
theoretical results, and this is normal.

In experiment #2

$1=4.2664, $2=0.6160, s3=0.0838,

then s3/s2=0.1360 and only 13.6% are for ambiguity and the
solution a=—v3/vs3

a1=0.8168, az=—0.5682, az=—1

is satisfactory.
In experiment #3

$1=12.2510, $,=8.5313, s3=0.0715,

then s3/$2=0.0084 or 0.84% are for ambiguity. The
experiment is quite convincing, the solution is unambiguous

a1=0.8085, as=—0.6125, az=—1.

3.3. Matrix Approximation Theorem (MAT)

Following [4], but staying in our notation and conditions
m>n and rank(F)=n, we obtain the following writing of
theorem 2.3 (Eckart-Young-Mirsky):

Let the SVD of F'e R™*"™ be given by

n n
i=1 i=1
If r<n and
s
F =F. = Zuisiv;,
i=1
then

min

F—Dl|y=|F —Fl|z = sp41,
mnk(D):TII l2 = || l2 = sr41

and

IF=D|r=|IF = Fllr =

min
rank(D)=r

The theorem says that the best approximation of the
matrix F' of rank n by the matrix F of a given rank r<n
consists in cutting off the last n—r terms from the sum of the
singular value decomposition of the matrix F'. At the same
time, the choice of any rank r leads to an optimal solution.

Now the task is to choose the rank r, which will also lead us
to an unambiguous assessment of parameters. Otherwise, we
will consider the performed experiment unconvincing.

To estimate the effective rank, I use the inverse of the
condition number cond(F)=Smq4z/Smin- The convenience is
that cond(F') varies from 1 to oo, and 1/cond(F’) — from 0 to
1, what makes it possible to use the familiar concept of percent
(%). In this case, the matrix F' will be from 0% to 100% a
matrix of full rank.

In experiment #1

51=7.1291, s,=0.1067, s3=0.0061,
then  Syin/Smaz=53/51=0.0008556 bespeaks that only
0.08% are for the fact that F'=F,=F} +F5+F3 has the rank
r=3. This is good, it means the problem of finding parameters
for 99.92% has a solution.

Further s5/s1=0.0150 bespeaks that only 1.5% are
for the fact that F,=F;+F, has the rank r=2. At
that ||F'—F},|2=s,+1=0.0061, what indicates an excellent
approximation of the matrix £ by the matrix F}+Fb.
However, the solution a=—v3/v33

a1=0.1928, a2=0.0052, az=—1
is unsatisfactory and even contradicts the physical meaning.

Considering both factors, we come to the conclusion that
the rank of the matrix I is closer to r=1 (98.5%), what means
the ambiguity of the solution and therefore a=—wv3 /v33 cannot
consistently point to the right solution.

In experiment #2

51=4.2664, s9=0.6160, s3=0.0838,
then s3/s1=0.0196 and s5/s;=0.1444. In other words 1.96%
are for r=3 and that’s good, meaning there is a solution. But
14.44% are for r=2, that is 85.56% are for r=1, what means
ambiguity, although s3/s2=0.1360 and only 13.6% are for
ambiguity according to TLS. The experiment is inconclusive,
but the solution a=—v3/v33:

a1=0.8168, ao=—0.5682, az=—1
turned out to be satisfactory.

In experiment #3

51=12.2510, $9=8.5313, s3=0.0715,
then s3/s1=0.0058 or 0.58% are for r=3 and s5/s1=0.6964
or 69.64% are for r=2, as well as s3/s2=0.0084 or 0.84% are
for ambiguity. The experiment is quite convincing, the solution
is unambiguous

a1=0.8085, a;=—0.6125, ag=—1.

Let’s increase the noise deviation by 10 times, then in
experiment #1 we’ll get:

51=7.0542, s9=1.6244, s3=0.0456,
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then s3/s1=0.0065 and s5/s1=0.2303. In other words 0.65%
are for r=3 and 23.03% are for r=2, at that s3/s,=0.0281.
The experiment is still controversial.

In experiment #2

51=4.2930, s2=1.9915, s3=0.3830,
then s3/s1=0.0892 and s5/s1=0.4639. In other words 8.92%
are for r=3 and 46.39% are for r=2, at that s3/s9=0.1923
and 19.23% are for ambiguity according to TLS. Still an
unconvincing experiment a=—v3 /v33:

a1=1.1385, a;=—0.0508, az=—1
does not point to the correct solution.

In experiment #3

51=12.2853, 59=8.6178, 53=0.6473,
then s3/51=0.0527 and s5/s,=0.7015. In other words 5.27%
are for =3 and 70.15% are for r=2, at that s3/s2=0.0751 and
7.51% are for ambiguity according to TLS. The experiment is
still very convincing and a=—v3/v33:

a1=0.8106, aa=—0.5955, az=—1
points to the correct solution.

It is clearly seen that with a 10-fold increase in noise the
third singular numbers s3, which in an ideal experiment should
be equal to zero, also increased by 10 times or slightly less.

So far, only experiment #3 demonstrates good stable results.
Let’s increase the noise deviation by another 10 times.
I'd like note that for all z,¢ the exact values |w(x,t)|<1
and |wgq(x,t)|<1 and |g(x,t)|<1, while the standard noise
deviation is already 0.1. Then in experiment #3 we’ll get:

51=17.8796, s9=11.9318, s3=4.5130,
and s3/s1=0.2524, s5/s1=0.6673. In other words 25.24%
are for r=3 and 66.73% are for r=2, while s3/$2,=0.3782 and
37.82% are for ambiguity according to TLS.

25.24% are for r=3, In other words, all elements of the
model are 25.24% linearly independent and the identification
problem has no solution at all already at 25.24%. Besides
37.82% are for the ambiguity. The experiment becomes
inconclusive. At the same time a=—v3/vs3:

a1=0.8219, a,=—-0.1441, az=—1
of course, does not point to the correct solution.

As the performed experiments have shown, an increase in
the noise intensity leads to an increase in the last singular
number and its approach to the penultimate one, what leads
to the ambiguity of the solution or to the absence of a solution.
An excessively intense noise can ruin even a good experiment.

To explain the discrepancies in the estimates of ambiguity
by the two methods given above, let’s take, as in the previous
subsections, as a solution

n
a= Z bi_rv;=V;1b,
i=r+1

V;“+:[vr+1-~~vn]7 b:[bl...bn,,,,]/7

then

n
n /
Fa=0, Fa=e= E u;s;v; a=U, S, b.
1=r+1

In the TLS subsection we got the solution in the form of
(F+AFy5)a=0 or Fa=—AFy.a or Fa=ey;.
It’s easy to show that

FViy :UH- Sr+ )
here

Ur+:['u/r+1...un], Sr+zdiag(sr+1, ...,Sn).

Then
etlstaa/a:Ur+ ST+ bb/ W+‘/T+b:UT+Sr+b:e

at ||b]|=1, in other words at ||a||=1, what corresponds to the
conditions of the TLS theorem.
However

Fad'=U,; S, bb' V), # U,.S, V/ =F—F,

in other words,
Faa'=—AFy, # AF,=F—F.

Moreover, rank(F+AF)=n—1, however it follows from
the theorem rank(F—(F—F))=rank(F)=r. But if the
solution a=v,, is unambiguous, thatis r=n—1, s1>...>5,>0
and s, /sp,—1<<1 and s,_1/s1~1, then

_AFtls - F’U’n,v'ln = unsnv{n = F_F = AFmat-

It is very important that AF;,,; may be calculated before
calculating the parameters themselves, and therefore used to
improve their values.

3.4. Anomalous Measurements

It is known that parameter estimates deteriorate significantly
in the presence of even single anomalous measurements. It is
also clear that AF,,,,; are measurement and calculation errors,
and therefore the analysis of this value is of a certain interest.

Assume that in experiment #3 (standard deviation 0.001)
the measurements failed, and one value w(1.25, 3) increased
by 1.5 times. Having calculated the derivatives we need and
calculated the singular value decomposition of the matrix of
experimental data, we obtain:

51=12.7798, s59=10.0656, s3=2.5892,
and s3/$2=0.2572, s5/51=0.7876. In other words 25.72% are
for =1 and 78.76% are for r=2,
while 0,171)3/1}33:

a1=0.8413, a;=-0.4062, az=—1.

It can be seen that a; has changed a little, but ay has
changed quite a lot, what is not surprising, because the second
derivative suffers more than the first one.

Let’s calculate

/
AF e = U3S3v3 = [U353U13 U3S53v23 U353U33]~

In the figure below, this matrix is represented graphically,
where each column A f;=u3s3v;3 is depicted as a plot of A f;
against j=1...m. Next to it is the plot ssus of the third column
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of the matrix U multiplied by the third singular number s3.

The first thing that catches your eye, the peak values on the

plots are the impact of a single measurement failure.

- 1 m PN
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Figure 13. AF,,, o+ and s3us in Ex#3.

The location of these peaks on all plots is the same, what
corresponds to the formulas A f;=u3s3v;3. On the other hand:
Afy are errors in calculations of wy(z,y), Afs are errors in
Wey (2, ), and A f5 are errors in g(x, y). But g(z, y) is known
for sure. We will fix this shortcoming of the TLS method a
little later.

What is proposed to correct the situation with anomalous
measurements. You just need to remove the corresponding
bad realizations from the matrix F', and specify the numbers
of these realizations by the column u3. If there are not very
many anomalous measurements, this will not greatly affect
the number of F' matrix rows, but can seriously improve the
definition of parameters.

For example, the cut-off level can be taken 1/y/m (or
slightly higher), what corresponds to the assumption of
uniformity of noise throughout the experiment. In other
words, if |uj3|>1/y/m, then the row f; is removed from
the matrix F. As a result of removing only five realizations
(7=37,86,87,88,137) in experiment #3 (standard deviation
0.001) with one anomalous measurement, values of singular
numbers and parameters close to the previous ones were
obtained.

3.5. The Best Fitting for a System of Points

In 1901, Karl Pearson [5] solved the problem of the
best fitting of a system of points to a plane in the sense
of minimizing the sum of squares of the lengths of the
perpendiculars from the points to the desired plane, and at the
same time he proved the fundamentally important theorem:

The best-fitting straight line for a system of points in a space
of any order goes through the centroid of the system.

We will not repeat the method of calculating the best fitting
plane given in [5], but before calculating the singular value

decomposition of the matrix F', we will make a parallel
transfer of all realizations so that their centroid coincides with
the coordinate origin.

Then we get:
fl - fcen fi m
Fc: = ’ fcen:ij/m7
fm - fcen ffn J=1
here f; — j-realization (jth row of the matrix F') ,

feen — centroid of the matrix F realizations.
And then, as we did earlier, as a solution, we will take
a linear combination of number of columns we need v§ of
the matrix V, of singular value decomposition of the matrix
F.=U.5S.V/]:

f-c
n T 1
a =Y ot Fo=Yuisw) = | ;.
i=r+1 i=1 3
V=T 7 f%l
£+ feen F§+ feen
F= : , F= : :
fn + fcen Afn + fcen
and for all j

fiac=(fj — feen) ac=0, fjac=Ffcen ac=const.

This method makes it possible to analyze the unambiguity
of solutions and thus obtain more accurate results than the
method given in the article; it also fully corresponds to
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Pearson’s results, because it minimizes the Frobenius norm
| F.—F.||p or, in other words, the square root of the sum of
the squares of deviations. And as all v{ are orthogonal, the
deviations are perpendicular to the model plane span{Fc}.

What is the difference between Pearson’s results and the
previous ones? First of all, he considered the matrix F
as a system of points, and not vectors of the space of
parameters/realizations, what made it possible to obtain model
planes in the form of linear manifolds and equations of linear
structure models of the following form:

Z Qi pn(t) = const.

nen

From the point of view of physics, we have received many
new models that also reflect the physical laws of conservation.

However, if the solution is unambiguous, then

Up = :|:’Ufl and fcen a. =0,
because all realizations lie in the same hyperplane and the
centroid of realizations also lies in it, what means that it is
perpendicular to any unambiguous solution.

These two equalities may be used to check the unambiguity
of the solution. However, it must be remembered that in
practice these equalities are fulfilled approximately.

Let’s see how it looks on the example of our 3 experiments
with pseudo noise with standard deviation 0.001.

In experiment #1 the following singular values of matrices
F, F, and their third right singular vectors w3, v§ were
obtained:

$1=7.1291, $5=0.1067, s3=0.0061;
$¢=0.6137, $5=0.0915, s5=10""14;
—0.1930 0

vs= | —0.0033 |, w§= | —0.0000
0.9812 1.0000

As we expected v37#v§ and the solutions are ambiguous.
However, s5=10"14, what clearly indicates the unambiguity
of the solution of the equation F. ¢v5=0. At the same time
feen=[1.0000 0.9998 0.2000] and fee, v§=0.2000 (this is
another sign of the ambiguity of the solution) and the equation
looks as follows:

0-we(x,t) — 0-wge(x,t) + 1-g(x,t) = 0.2
and this is again due to the fact that g(x,¢) is measured
accurately, and wy (z, t)w,. (2, t) is measured inaccurately. As
a result, the points f. are spread out over two coordinates,
forming a small piece of the third coordinate plane. You can
estimate the size of this piece by calculating the maximum
absolute values of the elements (T-norm) of each column of
the matrix F:

max | f71=0.0211,

-
o max | f2]=0.1217,

max

c|_~71n—16
max [£55[=7-107°.

Therefore, the vector of the exact solution perpendicular to
all realizations has the form v5=[0 0 1]’. These estimates look

like singular values of the matrix F. only in a different order
and smaller in values. Correlating the obtained values with the
accuracy of calculating the derivatives, we can admit that the
piece approximately is the zero point.

In experiment #2 the following results were obtained:

51=4.2664, $,=0.6160, s3=0.0838;
s¢=1.4083, s5=0.2190, s5=0.0145;
—0.5976 0.6275

vs=| 03778 |, v5=| 0.0075
0.7072 —0.7785

The first sign of ambiguity vs# +v§. The second one
wen=[0.4672 —0.3325 0.5750] and feen, v5=—0.1570£0
also points to ambiguity.

The singular values of the matrix F. indicate that
most likely the set of realizations is a smeared segment:
$5/55=0.0103 and s§/s§=0.1555. It means that 84.45% are
for rank(F.)=1. It is also possible to calculate the T-norm
of matrix F,. columns, but everything is already clear from the
values of singular numbers. The TLS test s§/s5=0.0662 has
not worked.

If we take from the general ambiguous solution the solution
a.=—v5/v53=[0.8060 —0.0096 —1], then feer, a.=—0.2017,
and we will get one of the possible models:

0.8060 wy (x, t)—0.0096 Wy (z, t) = g(xz,t)—0.2017.

I remind that in experiment wy(z,t)=1.25¢ and
g(x,t)=0.241.

If we round the model parameters (coefficients) to the tenth
shares we’ll get:

0.8 (1.25-¢t) = 0.2+t — 0.2.

The model is quite accurate from a mathematical point of
view, but is strange from a physical point of view. And this
is always the case when the experiment does not give an
unambiguous mathematical answer.

In experiment #3 the following results were obtained:

$1=12.2510, $,=8.5313, s35=0.0715;
$¢=12.2529, s5=8.5326, s5=0.0655;
—0.5676 —0.5676
vs=| 04298 |, v5=| 0.4298
0.7022 0.7022

and feen, v5=0.000073637, both signs of unambiguity are
satisfied. A good experiment, it is by all signs a good one.

3.6. Mixed LS & TLS

A big disadvantage of the above described methods for
obtaining a general solution is the distortion of exactly known
model elements in the resulting approximation of the initial
data. This unpleasant moment is absent in the classical least
squares method, which we will use now.

Following the strategy of mixed least squares and total least
squares method (mixed LS & TLS) [4] let’s write the equation
of the model as:



International Journal of Systems Engineering 2024; 8(2): 40-65 50

Fb+Fa=0 §0§YSU [F | F||-|=0

a

here in F all columns known with certainty are collected, and
in F — those that are not known with certainty.

In experiments g(z, t) is known with certainty, and w(z, t)
is measured inaccurately, then:

g(zo, o) wi(xo,t0)  Waa(xo, o)
F=| o |, F=| : :

g(zs,ty) wy(Tp,ty) Wea(Tp,ty)
b:[ag], a:[alag]’.

QR decomposition of the matrix F, if the number of
rows exceeds the number of columns, will look as follows:

F=Q [ g ], here (@ is orthogonal, 7" is nonsingular square

upper triangular and O - null matrices.
Having multiplied the equation of the model by Q" we get

B 3 b
Q[F | F]|-
a

b

—Q'0 §U§YSU { o n }

here Q' F:[Pl | P;]’, P; are projections of inaccurate
LSModel elements (columns of matrix F ) onto the linear shell
of columns of matrix F, and P, are perpendiculars to this
linear shell.

And so we’ve got two equations

P,a=0 and Tb+Pia=0.

For the first one, we will search for an unambiguous solution
using the previously described methods and substitute the
necessary particular solution a into the second equation, which
has the following solution b=—T""'P; &.

Let’s use the obtained approximation P, to obtain the
approximation F:

r=alg nl-17]eR]]

Now the exact initial data F are not distorted in the resulting
approximation F.

As examples, let’s turn to our three experiments with a
standard deviation of noise equal to 0.01. Only this time I
combined the realizations of the first and second ones into
one matrix F'. First of all, I want to show that it’s possible
not only to delete but also add realizations, provided that
the experiments were carried out on the same object of our
research. Secondly, that two dubious experiments, being
combined, can produce a very decent result.

In the figures, the symbol * denotes the rows p?=[p; ps]
of the corresponding matrices P», as points in the space of
parameters/realizations. In the combined experiment #(1+2)

0,

the points related to the first experiment are additionally
circled.

a /P,
P
vP Yy
2 *
#
a/p,
P
* vz
_uP
Vit %

Figure 14. Mixed LS&TLS. SP R in Ex#(1+2).

Figure 15. Mixed LS&TLS. SP R in Ex#3.

After the matrix P, was calculated, its singular value
decomposition was obtained P2:UpSpr’.

In the combined experiment #(1+2) singular numbers and
their ratio

sy=7.1240, s5=1.5210, sb/s7=0.2135
indicate that 79% are for unambiguity and the second column
vh=[—0.8459 0.5333]" of the matrix V,, can be taken as the
basis of the solution.

In the figure, the dot and dash line shows vectors v} and —v}
as a general solution and the solid line — vectors v} and —v¥
as a model hyperplane.

Before calculating b, pay attention to the matrix 7', it must
be nonsingular.

In this combined experiment #(1+2) 7=3.1697. The matrix
is good, you can calculate b.

b= -T"'Pw} =1.1019.
And so
a1=—0.8459, a2=0.5333, b=1.1019,
but we need b=—1, then

a1=0.7677, as=-—0.4840, b=—1.0000.
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In experiment #3:

sP=8.6034, s£=0.9067, s /s'=0.1054,

[—0.8029, 0.5961],
T=8.7239, b=0.9852,

D
Vg

finally

a1=0.8150, ay=—0.6051, b=—1.0000.

4. Objective Functional

Use of a generalized residual indicator, which is then
minimized (maximized) under various constraints, is typical
for optimization setting of object identification problem.

Often the following objective functional

() leml)1, g>1

mem

is taken as the indicator. MATLAB makes it possible
to calculate such norms using the m-function norm (see
Appendix line 184).

And the minimum of this objective functional in the set of
model parameters is considered as the quality criterion of the

taken decision:
H}lin( Z |5m|q)1/q~

mem

Previously, we considered methods for solving
identification problems for objective functionals minimizing
the Frobenius norm and spectral or 2-norm. Next, a method
is proposed for a simple enumeration of all parameters, which
allows you to search for solutions for any objective functionals.

LSModel with parameters on a sphere makes it possible to
calculate the values of the target functional for all parameters,
because the set of parameters on a sphere is compact.

To do this, you have to be able to quickly calculate a certain
set of points on a sphere of any dimension N. The essence
of the calculation is that in an (N —1)-dimensional unit ball or
some area of it, a uniform, absolutely accurate binary grid is
taken, each point of which is the first (IN—1) coordinates of a
point of the sphere. The last Nth coordinate is calculated using
the formula:

Thus we get a point
a= {alaa27 "'7aN}a

on the sphere,
only one latest coordinate of this point is calculated with an
erTor.

This digitization produces exactly a hemisphere, and then
unambiguous solutions will have one point on the hemisphere
with the minimum value of the residual norm.

But it is also possible to consider the full sphere of
parameters, then we should consider the points with

and then unambiguous solutions will have two points on the
sphere.

T-norm of the residual was calculated for our 3 experiments
with measurements with standard deviation 0.001

lelloc = mmax,_ e,

here e=Fa, ||a||=1, e=le;...eps]’.

Below are given graphs of ||e||o, depending on the number
of the point on the hemisphere of parameters for our three
experiments.

15

-

05

Figure 16. Ex#l.

15

Figure 17. Ex#2.

Figure 18. Ex#3.
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It is clearly seen that in experiment #1, the unambiguous
minimum of the norm is not obvious, although the computer
will certainly find the minimum from approximately equal
ones. As we know, such ambiguity leads to instability in the
calculation of the minimum.

Experiment #3 demonstrates the existence of an explicit
unambiguous minimum.

Experiment #2 occupies an intermediate position, because
the minimum it is not clearly seen.

Pay attention to how anomalous measurements affect the
target functional of the criterion:

1.5

0.5

200 400 600

Figure 19. Anomalous measurements. Ex#l.

1.5

0.550%

200 400 600

Figure 20. Anomalous measurements. Ex#2.

200 400 600

Figure 21. Anomalous measurements. Ex#3.

and how the minimums of the target functionality have

sharpened, but they point to false targets.

See the appendix for details of calculations. The method of
pass around points on the parameter sphere, proposed therein,
allows us to obtain a completely understandable image of both
the multidimensional parameter sphere itself and the target
functionals of criteria based on it.

It is important that such graphs may be drawn at any
dimension of the space of parameters. And also the parameters
themselves may be calculated with given accuracy, gradually
reducing the digitization area of the sphere of parameters
and as well as the digitization step in this area, close to the
minimum [1].

5. Identifiability and Guaranteeing
Identification Experiment

Earlier it has been convincingly demonstrated that a
properly conducted experiment is of paramount importance for
qualitative identification. It is equally important to construct
the model formula correctly, from physical as well as from
mathematical points of view. Further we will consider the
mathematical side of the matter.

Following [1,2], let’s write the formula for LSModels as a
sum of two structural parts:

Salp) +65(¢) =0, (0)

where G,(y) is a structural element of the LSModel,
applied to atom ¢ with parameters «;
GS3(1) is another structure over guarantor ;
«, B are two parts of model parameters.

Let’s write the general solution (GS) of the identification
problem (IP) according to the experimental data {f,g} as a
sum of a certain particular solution {«, 3} and its variations
{Aa, AB}.

Owing to the linear structure of the LSModels we can write
two structural equations of the IP

Sa(f) +Splg) =0, (1)

Saalf) +6Gaplg) = 0. (2)

Our problem now consists in making Aa=Ag=0 in any
solution according to the guaranteeing experiment {f,g}, or
in other words, in discovering of a subclass, i.e. restrictions
on parameters of each model in a class, and the conditions on
guarantors, so that the identification problem had the unique
solution {«, 8}.

Having applied the structure S, to the equation of IP (1)
and the structure G, to the equation of IP (2) we get:

GAQGQ(f) + GAQG,@(Q) = 0’ (3)

6a6Aa(f) + 6a6A5(9) =0. (4)

Let’s subtract one expression from the other and require that
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the structures &, and & 5, are commutative, in other words,
that G A6 .=6,6 a«, then we see that

S2a65(9) — Gabaplg) = 0. ()
This expression is the LSModel for guarantors:
(g) =0 (6)

where U, =G ara65-6,6a8.

This structural relation defines the relation of recalculation
of parameters v to parameters [Aa AS]T through a matrix
J(«, B) composed of parameters «, 3

(7)

Having required nondegeneracy of the recalculation relation
matrix J(«, /3) for all LSModels in the subclass and the unique
null solution 7v=0 of identification problem via the LSModel
of guarantors according to the planned experiment, we get
Aa=0, AB=0 in the GSIP according to this experiment.
Earlier, these experiments were called the guaranteeing
identification experiments (GIExperiments).

v =3(a,B) [ ig ] -

5.1. Example
Let’s consider the following LSModels

alwt(mat) + a2www(x7t) + ﬁg(ﬁ,t) =0.

Let’s choose g(z,t) as a guarantor, then

Sal) =a1()t + a2 aa
GAa( ) - A051( )t +Aa2( )wwa

Sp (9) =Bg(x, 1), GAﬁ(g) = ABg(z,t).

Let’s make sure that G a oS, (w)=6,6 aq (w).
GaaBa(w)=Aai(ar(w): + a2 (W)zz)t -
+Aag(a1(W)t + OéQ(’I.U)TT)TQ«
:A()él o Wi + AOZl o Werypt .-
+AOZ2 a1 Wigy + AaZ 2 Wrrry
GoBan(w)=a1(Aar (W) + Acz(W)zz)t ..
+042(A0¢1 (w)t + AaQ (w)ll)ll
= AOél Wy + 01 AO[Q Wyt -
Fas Ao Wige + 02 Ao Wagen s
and taking into account that w,,;=wy,, , we get an equality.
The LSModels of guarantors (6) will be as follows:
0= u’Y(g) = GA(JCGB(g) - 6(16&,3(9)
= Aoy (Byg(z,t) )t + Aas (B g(z,t) )m
—a1 (ABg(x,t)), +az (ABg(x,t))
= (Aoq B — Aﬂ)gt(x,t)...
+(Aaz 8 —as AB) guu(x,t)
=71 9¢(x,t) + V2 guu (2, 1),
where the relations of the recalculation of parameters (7) are
M =Aaf — a1 AB,
Y2 = AagfS — aAB.
In the matrix notation the last expressions of recalculation

of parameters are:
MEIES o
= 2
72 0 8 —a Af

Now it is necessary to ensure a trivial solution for
the Identification Problem via the LSModel of guarantors
~v=0 according to the guaranteeing experiment f,g. For
this purpose all elements of the heat equation of IP via
the LSModels of guarantors G (g(z,t))={ g:(z,t), gz (x,t)}
should be linearly independent.

Then the inverse recalculation will give Aa;=Aas=AF=0
at the transformation of nonsingular matrix J.

Let the subclass of LSModels, for which the matrix J
has a completed rank, be called Linear Identifiable Structure
Models or LISModels. Let the matrix J be called
the Structural Identifiability Matrix as a characteristic of
identifiable structures of the LSModels.

We have already noted that in order to properly understand
the heat equation, it is necessary that f=—1.

Attention, a wvariation of the fixed parameter is
equal to zero!

In other words AS=0, then
[%}_[1 0 al} o _[1 0] [Aal

yo | | 0 =1 —ap 02_ 0 —1||Aas
and regardless of the value of the parameters, we got a
LISModel.

Let the LISModels, whose structural identifiability matrix
does not depend on unknown parameters, be called canonical
LISModels and let the structure of such models be called
Canonical Identifiable Structure.

And so we’ve learned to write the heat equation in a
canonical identifiable form:

0w (Z,t) + aowg, (x,t) = g(z,t).

Now let’s turn to the guarantors and see if g(z,t) have been
correctly selected in the three experiments described in the first
part of the article.

In the first experiment g(z,¢)=0.2 and

G(g(x’t)):{ 9t(,t), gua(,t)}={ 0(z,1), O(z,?) }
are linearly dependent, and we have not got an unambiguous
solution.

In the second experiment g(z,t)=0.2-+t and

G(g($7t)):{ 9t(x,t), guu(z,t) }={ 1(z,1), O(z,1) }
also are linearly dependent, but we’ve got an unambiguous
solution. Why? We were lucky with the object behavior!
In this case, for g(z,t)=0.2+t there are other behaviors, for
example, w(z,t)=0.25¢+0.625t> and then w,,(x,t)=0 and
as can be anything. In other words, in this case, unambiguous
identification is not guaranteed to us, maybe we will be lucky,
or maybe we will not.

In the third experiment g=sin(x) sin(t) and

{9:(@.1), gua(.,8)}={sin(@) cos(t), —sin(x) sin(t)}
are linearly independent, and now, in any case, we are
guaranteed to get an unambiguous solution.
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5.2. Example of a Nonlinear LSModel

The presence of nonlinear elements in the model and their
inclusion in the structures &, S, most often leads to the
noncommutativity of these structures. The exception is, for
example, the element of delay. Therefore, I recommend to
include nonlinear elements in the structures of guarantors Gz,
& A, whose commutativity is not required.

Let’s consider the following nonlinear LSModel
1wy (2,8) + g, (®,t) + asw(z,t) + B (w.(z,t))’ +
52 g (.’17 7t) =0.

Let’s choose w,>(z,t) and g(z,t) as guarantors, then

Ga()=0ai( )¢+ az2( )az +as()

Saal) =Aar(): + Aas( )e + Aaz()
Ss(g) = (Brw2+pPayg),
Saslg) = (ABL w2+ ABayg).

The LSModels of guarantors (6) will be as follows:
0="4,(9) = 62a65(9) — EaSas(g)--
=Aay(frw2+Pag), + Aoz (frwi+Bag), -
+Aaz(frwi+ Pag) —ar(Afwi+ABayg),
—an(ABrwi 4+ ABag), —as(ABi w2 +Abyg)...
= (Am ﬂl — Aﬁl) (wg) (:1: t)

+(Aasz 1 — s ABy) (wg)m (x,t).
+(Aa351—a3A61)w§( ;
+(Aay Bz — o1 ABy) gi(x,t

+(Aaz fr — a2 AB2) ga x(
+(Aa3ﬁ2—a3A52)9

=71 (w3)e(@,t) + 72 (w )u(x t)+73w (z,t),

74 91(®,) + 5 gua (T,1) + 76 (@, 1)
In the matrix notation the last expression of recalculation of
parameters is:

71 Bi 0 0 —a;r O Aay
Vo 0 81 0 —ap O A
(6%)
v» | | 0 0 B —as O A
- (0% )
’74 ﬁ? O 0 0 —Q Aﬁl
5 O 62 O 0 —Q2 AﬂZ
Y6 0 0 52 0 —Q3
at fo=—1
7 B 0 0 -0
V2 0 /1 0 - Aoy
Y3 _| 0 0 B —os Aoy
Y4 -1 0 0 0 AO(?,
- 0 -1 0 0 ABy
6 0 0 -1 0

It’s evident that the structural identifiability matrix has a full
rank at a1 #0 or as#0 or ag#0 while 51 can be equal to zero
and all the same this model will be a LISModel. We have not
got a canonical form, but we have got three conditions and it

is enough to fulfill one of them.

Now the parameter recalculation relation is as
follows: n=PBF1Ac;—a1AB, Yo=P1Ac—a AB,
v3=PB1Aaz—az AP, a=—Aaq, ys=—Aag, vs=—Aas.

It is clear that ~y=v5=7=0 guarantees that
Aa;=Aas=Aa3=0. In order for AB;=0, it is enough
that either ;=0, or 72=0, or y3=0. Often in physical
experiments g(z,t)=g(x)+g(t) and as a consequence
w(z,t)=w(z)+w(t), and then (w?);(z,t)=0 and 7; in
the model of guarantors may be anything. But the linear
independence of w2 (z,t), g(z,t), g:(x,t), gur(x,t) is easier
to ensure. Then y3=0 and AB;=0.

This bespeaks that the nonlinearity in the model gives more
options for choosing guarantors than for the linear model.

Now that we have learned how to choose LISModels
and guarantors for experiments, let’s return to calculating
parameters in conditions of inaccurate measurements.

6. Projection onto the Hyperplane of
Guarantors

From algebra it is known that the projection of the sum of
vectors onto any subspace is equal to the sum of projections
of vectors onto this subspace pr(fi+f2)=pr(f1)+pr(f2),
and also the projection of a vector multiplied by a number is
equal to this number multiplied by the projection of the vector

pr(a-f)=apr(f).

Finally a projection of a linear combination onto a subspace
is equal to a linear combination of projections with the same
coefficients.

Following [1,6] let’s take a linear span of the set of
guarantors span(G) as a subspace, then the identification
problem in m-dimensional space 4F™

Z an'fn =0,

nen

fn€AF™

may be replaced with the identification problem in (n—1)-
dimensional space span(G)=P™~1)

S o

nen

(F) =0, pr(fa)e®V.

If the guarantors are also chosen so that the noises
in the measurements are perpendicular to the subspace of
guarantors span(@G), then very good identification results can
be achieved. This additional requirement further complicates
the search for guarantors and requires some knowledge about
noises in measurements.

For experiments in which the supposed guarantors are
not expressed by mathematical formulas (of course, such
experiments most often happen in practice) is very important
to check them for linear independence.

In our three experiments from the first part of the article, the
set of guarantors
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G(g(:l:,t)):{ 9t(x,t), guz(x,t)}

may be calculated by formulas of central difference derivatives
having measurements g(z,t). And the check for linear
independence may be carried out with the help of singular
value decomposition as well as with the help of QR-
decomposition.

With the help of QR-decomposition, it is also easy to
calculate the needed projections of LSModel elements onto the
linear span of the guarantors.

Let G=[g1...9n—1] is (mxn—1)-matrix whose columns
are measured or calculated guarantors. For m>n—1 its QR-

1,
decomposition will have the form: G=Q), , here @,
0]
is orthogonal, T}, is nonsingular square upper triangular and O
is null matrices.

The orthogonal matrix ), can be considered as a new
orthonormal basis. The transition to this basis is carried out
by multiplying any vector f; on the right by the transposed
matrix Q.

From QR-decomposition it follows that

I,
Q,G=| —-
)
or
war = [t 0 .. 0 | 0..0],
R . | 0..0],
Qgn—1 = [,y Boq 1, | 0.0],

or in other words, the coordinates, starting from the number
n, of all vectors g; in the new basis are zero. This means that
the subspace consisting of n—1 coordinate is a linear span of
guarantors.

Thus, the first n—1 coordinates of any vector in the new
basis Q f; are a projection onto span(G) and the other
coordinates are a perpendicular.

Let’s turn to our three experiments again. Let ’s calculate the
matrix of guarantors G=[ g; g...| and its QR-decomposition in
every experiment.

In experiment #1 matrix Tg:{ 8 8 ] and therefore
G(g(z,t))={ g:(2,1), guo(z,t)} are not guarantors.

0 0
G(g(z,t))={ g:(2,1), guo(z,t)} are not guarantors.
In experiment #3 matrix

In experiment #2 matrix Tg:{ 0 O] and again

Ty=

8.5882 0.0099
0 8.5436

and G(g(z,t))={ g:(2,t), gz (x,t)} are almost orthogonal

guarantors with a good length and we continue.
Let’s calculate the projections of LSModel elements:

pr(w(z,t)) =Q wi(z,t)12 =[4.9971 —6.8849],
Pr(wee(2,t) =Qhwae(z,t)10 =[7.0822  5.5698],
pr(g(x,t)) =Q,g(x,t)12  =[0.0075 —8.7258]

then the matrix of the projections of LSModel elements will
be:

P.= [ pr(wt(x,t)) pr(wll($7t)) p‘r(g(:l:,t)) ]

_ 4.9971 7.0822  0.0075
T | —6.8849 5.5698 —8.7258 |’
Let’s calculate its singular value decomposition

P,=U,S,V, and perform a singular analysis

sP=12.4449, $6=8.6497, sb/s'=0.6950,

and based on it calculate parameters a,=—v% /v%,
a}=0.8074, ab=-0.5686, at=—1.0000.

Why should we perform the singular analysis, after all
we have chosen the canonical LISModel, checked a set of
guarantors for linear independence. All correct, indeed,
mathematical model obeys mathematical theory, but the object
of our research does not know what a good model we’ve
come up with and what a super guaranteed experiment we’ve
conducted. As a result, there may not be an unambiguous
solution. And then it’s necessary either to study the noise or
change the initial model and look for a guaranteed experiment
again.

If the object does not obey the stated theory for the model we
invented, then the model is redundant (insufficient), In other
words, it has an extra (missing) element.

The methods described in the previous part of the article,
especially the method using Pearson’s centroid theorem, will
help to search for a new model.

Now about the noise. In this experiment, to simulate
measurement noises, values from a normal distribution
with standard deviation 0.1 were added to the calculated
temperature w(,t). The methods from the first part of the
article could not cope with such a value of standard deviation.

Obviously, by taking sin(x)cos(t) and sin(x)sin(t) as
guarantors on their period, we ensured that the high-frequency
noises were perpendicular to our guarantors span. Hence such
good results.

It is interesting to see how the projections and
perpendiculars of the elements of the initial LSModel look
like in the element space.

In the subspace of guarantors

prw(@,t)) = Q) wi(,)]r.2,

per(wy(z,8)) = Q) wy(@,8)]205.
and to translate into the space of LSModel elements, they
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should be supplemented with the necessary number of zeros
and multiplied by the matrix @), on the left:

Q [pr(wi(z,1)) 0..0]"

Qg 100 per(w,(z.t))']"

These are 225-dimensional vectors and I will represent them
as graphs. Such graphs are very useful for practitioners to look
at, they can be drawn for models of any complexity and any
dimension of space-time (z,1).

Wy ((L’, t) W (x7 t) g(xl t)
2 2 = )
¥ * { * %
1 u;::;iu 1§$*§t”ﬁ*§i* 1
%
2 ‘?E? Aot e ﬁggf?ﬁg%
o & **M'l off 4L ¥ *# 0 i*i***i*ﬂﬁ
i HIRRAR N ﬁgggggg
)4 P, POl il
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*
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Figure 22. LSModel elements.
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Figure 24. ...and projections in Experiment #3.

Note that the element g(,t) has a zero perpendicular and
its projection is in no way different from the element, because
it is set without noise.

The success of application of the method of projection
onto the hyperplane of guarantors of course depends on the
accuracy of measurement of guarantors. Therein, the method
is very similar to the least squares method. Therefore, in
the example of a nonlinear LSModel, where the guarantor
w2(zx,t) is calculated with large errors, the method works
inefficiently.

In the third part of the article, a projection method for
guarantors measured with errors will be proposed. And we will
also abandon the calculation of derivatives from measurements
and move on to filtering these measurements.

7. Histograms of Unknown Parameters

The idea of constructing histograms is very simple. Let’s
consider it on the example of experiment #2. Let me remind
that the LSModel and its elements look as follows:

aywi(2,t) + aow. (x,t) = g(z,t),

we(x,t)=1.25¢, we,(x,t)=—1/3, g(z,t)=0.2+L.

Having taken the measurements at x=0, t=0, we substitute
them into the equation of the model and get the equation in the
space of parameters:

a1-w(0,0) + az-w,,(0,0) = g(0,0),
or

a1-(0) + az-(—1/3) = 0.2, or a;=—0.6.

Below in the left graph, this straight line (hyperplane or
general solution according to the first realization) is shown by
a bold line. Similarly, other hyperplanes were obtained for
x={0,0.125, ..., 1},t={0,0.125, ..., 0.75}.

In total, 25 straight lines are given in the graph (only 7
of them are visible). All these hyperplanes intersect at one
point a=(a1, a2)=(0.8, —0.6), because all measurements and
calculations are absolutely accurate.

However, if the measurements are inaccurate, we will get
a completely different picture of the intersections of these 25
lines in the right graph. And now we can construct histograms
of parameter values in the points of all possible intersections
of these lines.

Hyperplanes in experiment #2:

-1k

0 04 08 12 o,

Figure 26. Deviation 0.001.
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The intersection points ay, or, in other words, the outcomes
of a random experiment are the solutions of the following

equations:
N B R

where mq, mo are numbers of different realizations.

The main advantage of this method is obtaining of a
sufficiently large number of outcomes of a random experiment,
even with few measurements. In the example with 25
measurements we got Cix =25+24/2=300 intersections.

It is also very important that completely different, and not
only identical, experiments may be combined to calculate
histograms, as the parameters of the same object do not depend
on experimental data. The disadvantage of the algorithm
considered in the example is a large dispersion of intersection
points aj across the space of parameters. Therefore, to
correct this shortcoming, a restriction, for example ||ay||=1,
is imposed on the norm of the parameter vector. I call such
models LSModels with parameters on the sphere.

Then, solving the equations

using singular value decomposition and taking the last column
of the matrix V}, of right singular vectors as a solution, we
get a solution on the unit sphere. This is a very important
restriction for us, because we have obtained a compact set of
parameters and now the intersection points will not scatter over
the entire space of parameters, but will always lie on a unit
sphere. Below, the left graphs show the intersection points ay,
in 3-dimensional space of parameters, and the right ones —
hyperplanes (straight lines) of general solutions according to
the LSModel realization for two levels of measurement noises.

The graphs clearly show that the set A of elementary events
(the set of intersection points ay) has the shape of a ring. The
plane of the ring is located at some angle to the axes and
therefore the histograms of the coordinates of the parameter
vectors a; do not reflect the true distribution of points ay
across the sphere.

Figure 27. Points ay, (deviation 0.001).

Figure 28. Hyperplanes (deviation 0.001).

Figure 29. Points ay, (deviation 0.01).

Figure 30. Hyperplanes (deviation 0.01)

To match the histograms on the sphere to the histograms
on the axes (which we can calculate), it is necessary that: 1)
the diameters of the set A of elementary events coincide with
the coordinate axes and 2) the division points a,(¢) of the
Cartesian axis a,, when calculating histograms have the form:

{an(i)=cos(0;) : O;=—m, —7+7/I, ..., 0},
where [ is a number of intervals (bins). After all, the sizes of
histogram sectors should be the same on the circle, not on the
Cartesian axis.

In the MATLAB Programm it looks as follows:
I=64; axis_a=cos (-pi:pi/I:0);

o\°

68
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7.1. Algorithm

Let’s assume that the following matrix of experimental data
was obtained during the Experiment

F=[fmn]l, m=L1,..,M, n=1,...N, M>N.

Let’s form all possible, including random, samples {f(m, ),
oy f(my_,)}, consisting of (N—1)-th realization of the
experimental data matrix F' and let’s make up the matrices:

f(m,)
flmy.,)

Let’s obtain their singular value decompositions

F =

], b1, K

Fp =U, Sk Vi

and let’s take the last column v of the matrix Vj as the
exact solution of the system Fjar=0. If the solution is
unambiguous, then arp=v% and —a,= — v% will be the
intersection points of the unit sphere with the straight line of
the general solution of this system.

Let’s take the set

A={ap=2v%, k=1,..,K}.

as a set of elementary events.

Statistical formulation is reasonable when there is a lot of
same-type information obtained as a result of a sufficiently
large number of outcomes of a random experiment. In this
case, for M >N we have K= C’I\J/[V_1 various samples and exact
solutions aj, on the unit sphere of parameters.

Let singular value decomposition of the matrix of
elements F' be as follows:

F=USV,

where

U=[u;1 ... up], V=[v1 ... vy] are orthogonal (MxM)
and (/VxN) matrices consisting of u; — left and v; — right
singular vectors, respectively;

S=diag(s1,...,sn) is the diagonal (MxN)-matrix with
singular numbers s, ..., Sy on the main diagonal.

Let M >N, then the equation of the LSModel in matrix
notation will look as follows:

USV/(I,]€ = e, VakEA, A:[al...aK].

Having denoted

P=US, by=V'a

we get

Pbk:ek, kaGB, B:[ble],

then

B=V'A, A=VB, P=FV, P'=V'F’.

This means that having moved to a new basis {v1,...,vn}
in the space of parameters or, in other words, having rotated the
points of sets A and F” by an orthogonal matrix V’, we’ll get
a new equation of the LSModel. It is fundamentally important
for us that at the same time the relative position of points in the
space of parameters/realizations does not change, but only the
coordinates of these points change: a,, to b,, and f,,, t0 Dyp-

%,

a,lf

Figure 31. Experiment #1, deviation 0.001 (initial bases).

b3/p3

PP2 b/
1Py

Figure 32. Experiment #1, deviation 0.001 (V bases).

a_/f =}

Figure 33. Experiment #2, deviation 0.001 (initial bases).
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b3/p3

b2/p2

Figure 34. Experiment #2, deviation 0.001 (V bases).

Figure 35. Experiment #3, deviation 0.001 (initial bases).

Figure 36. Experiment #3, deviation 0.001 (V bases).

Let me remind that in basis V for all realization p,,
|Dmi|<si, as FV=P=US=|siuy,...,syuy] and
u; are orthonormal.

Then for example when s3=0.08, the third coordinates of
all realizations |p,,3|<0.08, in other words, the realizations
(denoted by ’o’ in the graphs) almost lie in the plane of
Cartesian axes by /p; (before replacement of the basis v;) and
ba/p2 (before replacement of v3), and almost perpendicular
to them parameters by are close to Cartesian axis bs/ps
(vs before replacement). The graphs clearly show the
concentration of 300 intersection points (denoted by ’x’)

mainly around b3 /ps and —b3/ps in experiments #1 and #2
and G- =225%224/2=25200 points in experiment #3.

The concentration of intersections near two points [00 1]
(before replacement of v3) and [00 —1] (before replacement
of —wv3) creates inconveniences when interpreting histograms
of parameters, therefore it is better to fix the sign of the last
coordinate of the calculated solution b;. To do this, when
by <0, you need to assign the value —by to by. Then the
concentration of points on the last axis will be only near the
point [0...01].

Figure 37. V bases.

Now it is possible to calculate the histograms [7] of
coordinates of parameters by. To do this, we will use the
MATLAB function hist with two arguments:

H, = hist(By,axi)

where H,, is an array of dimension I, which contains the
distribution of values of random variables from array B,
(nth row of matrix B) among [ intervals (bins) with centers,
specified by values from array axi, the dimension of which
also determines the dimension of /.

In the figure below you can see the normalized histogram
H, /K for our three experiments.

-
N
w

08

06

04

02

Figure 38. Histograms of coordinates of parameters b in experiment #1 ( deviation
0.001).
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Figure 39. Histograms of coordinates of parameters b in experiment #2 ( deviation
0.001).

08
06
04
02

Figure 40. Histograms of coordinates of parameters b in experiment #3 ( deviation
0.001).

Histograms of coordinates of vectors by clearly
indicate the most probable solution b=[0 0 1]’. Then
a=Vb=V[00 1]'=ws, only with different probabilities and
different vectors v3.

If in experiment #2 it is apparent that the solution w3
is questionable, then in experiment #1, the solution does
not cause any doubts, although we know that it is not
unambiguous. We discussed the reason for this in the first
part of the article. Experiment #3, as before, is the best of
all. But as noise intensity increases, the situation changes and
the probability that v3 is a solution, decreases.

b, b, b,
1 1 1
058 08 08
06 06 06
0.4 0.4 0.4
0.2 0.2 0.2

-1 0 1 -1 0 1 -1 0 1

0 1

Figure 42. Histograms of coordinates of parameters b in experiment #3 ( deviation 0.1).

Here I just want to emphasize that it is necessary to apply
several methods to determine the uniqueness of the solution.
And construction of histograms is one more of them.

8. Conclusion

In conclusion of the first part of the article, I offer brief
recommendations on the use of the methods described above.

You should start by dividing the identification problem into
two subproblems using the Mixed LS & TLS method. This is
very important, since it is often possible to get serious errors in
parameter estimates by mixing accurate data with approximate
ones. This will also reduce the dimension of the general
identification problem using the TLS method and it will be
easier to perform singular analysis.

Then cut off the anomalous realizations in the first
subproblem of the Mixed LS& TLS method and solve it in
two ways: with and without the involvement of the centroid,
with a complete singular analysis of both.

It is very useful to have a look at what we discard when
deciding on an effective rank. AF,,,; plots can be drawn
at any dimension of the space of parameters/realizations, in
contrast to pictures in the space itself. It is also useful
to combine various experiments and compare the results
obtained.

Additional possibilities are provided by studying the graph
of all values of the functional used to obtain the optimal
solution. The use of other functionals, including non-
norm, can change your approach to solving the identification
problem.

We need to evaluate soberly the experimental data we have:
how stable calculation of parameters they can give. The
optimality of estimates is not a guarantee of their unambiguous
stable calculation.

Projection methods are fundamentally different from
optimization methods. The latter are insensitive to small
changes in the source data. Projection methods, as
resonant in fact, have wider possibilities for the selection
of small identifying guarantor signals perpendicular to the
measurement noise.

The search for guarantors and the structure of the LSModel
used is a separate very important problem.

The histogram calculation method will help to investigate
the effect of noise on parameter identification.

It is very good when there are several different methods of
studying the same experimental data. There is something to
compare, there is something to choose from.

ORCID
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Abbreviations
ED Experimental Data
GIExperiments Guaranteeing Identification Experiments
GSIP General Solution of Identification Problem
1P Identification Problem
LISModels Linear Identifiable Structure Models
LSModel Linear Structure Model
LSModels Linear Structure Model Class
mat Matrix Approximation Theorem
mixed LS&TLS Mixed least Squares and Total Least Squares
PSIP Particular Solution of Identification Problem
SP Space of Parameters
SPR Space of Parameters/Realizations
SVD Singular Value Decomposition
TLS Total Least Squares

Appendix: MATLAB Program

clear; clf; format short e;
colormap (’ jet’);

oo
o

HEAT EQUATION
% 0.8 w_t(x,t) - 0.6 w_xx(x,t) = g(x,t)

o

Experiment=3

x1=0.; xf=1.0; hx=2"(-3);
tl=0.; tf=0.75; ht=2"(-3);

if Experiment==3,
ht=2"(-2); tf=6.5; hx=2"(-2); x£f=3.0;
end;

x=(x1:hx:xf); sx=size(x,2);
t=(tl:ht:tf); st=size(t,2);
g0=zeros (sx,st); wlO=zeros(sx,st);
m=0;
for i=1:sx, for j=l:st,
if Experiment==1,
g0(i,3)=0.2;
w0 (i, 3)=t(J) + x(i)*(x(i)-1)/2;
end;
if Experiment==2,
g0 (i, 3J)=t(3)+0.2;
w0 (1,9)=0.625%t (J) "2+x (1) * (1-x(1))/6;
end;
if Experiment==3, teta=-atan(4/3);

g0 (i, J)=sin(x(1i))*sin(t(J));
w0 (i, j)=sin(x(i))*sin(t (j) +teta);
end;
end; end;
Dev=0.001
w=w0+Dev+randn (size (w0)) ;
g=g0;
%$%% Anomalous measurement: An=1.5; !!
An=1. ;

w(fix (sx/2),fix(st/2))=...
Anxw (fix (sx/2),fix(st/2));

w_t=zeros(sx-4,st-2);
wW_xx=zeros (sx—4,st-2);
F=zeros ((sx-4)* (st-2),3);
m=0;

for i=3:sx-2, for j=2:st-1,

o
o
o
o

o
o°

o
o

o° o

o
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w_t(i-2,3-1)=... s 47
(w(i, 3+1)-w(i, 3-1)) /(£ (3+1) -t (3-1)); % 48
w_xx(1i-2,3-1)=... $ 49
(W (i+2, ) -2*w (i, J)+w(i-2,73)) ... % 50

/(2 (i+1)-x(i-1))"2); $ 51
m=m+1; % 52
F(m,1)=w_t(i-2,3-1); % 53
F(m,2)=w_xx(i-2,3-1); s 54
F(m,3)=g(i, J); % 55
end; end; % 56
[M,N]=size(F); % 57

subplot (241); surf(t,x,9); % 59
title (" {\itg(x,t)}"); $ 60
subplot (242); surf(t,x,w); % 61
title (" {\itw(x,t)}"); % 62

xm=x (3:s8x-2); tm=t(2:st-1); s 64
subplot (245); surf (tm,xm,w_t); s 65
title (" {\itw_t(x,t)}’); s 66

subplot (246); surf (tm,xm,w_xx) ; s 67
title (" {\itw_{xx}(x,t)}"); s 68

subplot (122); % 69
plot3(F(:,1),F(:,2),F(:,3),"rx"); s 70
title (' {\it F}’); grid on; s 71

o

SVD 5555555555555 %%%5%555%%%5%5%5%5%%%%%%% 13
U,S,V]l=svd(F,0); s 74
a=-V(:,3)"/V(3,3) % 75
[U_,S_,V_1l=svd([F(:,3) F(:,1) F(:,2) 1,0); % 76
pause; s 17

[

%% U and V BASES 5%%%55%55%5%%%5%55%5%5%%%%5%%%%% 79
UF=U’ «F; FV=F«*V; s 80
subplot (222) ; s 81
plot3( [0], (0], [0],"k."); hold onj; $ 82
plot3( [-5. 10.], [0 0], [0 O],"k"... % 83
01, [-6. 0.1, [0 O],"k"... s 84

01, [0 0], [-1 11,7k"); s 85

~
~ — ~

)1, [0 UF(2,1)]... % 86
)1,"g’,’LineWidth’, 3); % 87
)1, [0 UF(2,2)]... % 88
)1, c—",’LineWidth’,3); % 89
)1, [0 UF(2,3)]... $ 90
)1,"b—.",’LineWwidth’, 3); % 91
}7); grid on; % 92

axis([-5. 10. -6. 0. -1 11); % 93
subplot (224); $ 94
plot3( [0]1, [01, [01,'k."); hold on; % 95
plot3( [-2. 2.1, [0 01, [0 O],"k’"... % 96
,[0 01, [-2. 2.1, [0 O],"k"... $ 97

, [0 0], [0 0], [-.1 .1],"k"); % 98

plot3 (FV(:,1),FV(:,2),EV(:,3), r+"); % 99
title (" {\bf FV}’); grid on; %100
zlim([-.1 .11); $101
pause; %102

%% Selection of realisations 55%5%5%5%%%5%%5%%104
L=1/sqrt (M); Fl=zeros(size(F)); %105
3=0; %106
for i=1:M, %107
if abs (U(i,3))<L, %108
J=J+1; F1l(j,:)=F(i,:); %109

end; %110
end; %112
[U1,S1,V1]=svd(F1(1l:3,:),0); $113
al=-v1(:,3)"/V1(3,3) %114
subplot (122); %115
plot3(F1(1l:3,1),F1(1:3,2),F1(1:53,3), cx"); %116
title (" {\bf F_1}"); grid on; pause; clf; %117
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%% Pearson centroid 555555555555 55%%5%5%%%%%119
fcen=sum(F, 1) /M; %120
for m=1:M, Fc(m,:)=F(m,:)-fcen; end; %121
[Uc, Sc,Vc]=svd (Fc,0); fcenVc3=fcenxVc(:,3) %122
if Experiment==3, r=2; else r=1; end; %123
Fc_r=Uc(:,1l:r)*Sc(l:r,l:r)xVc(:,1:x)’"; %124
for m=1:M, Fpea(m,:)=Fc_r(m,:)+fcen; end; $125
TnormDeltaFpea=max ( abs (F-Fpea), [], 1); %126
%127

%% Mixed LS & TLS $55555%55555555%555%5%5%%%5%%128
[Q,T]=qr(F(:,3)); T1=T(1l:1,1:1)"(-1); %129
P=Q’'*F(:,1:2); [Up,Sp,Vpl=svd(P(2:M,:),0); %130
am=[ Vp(:,2); -T1lxP(1l:1,:)xVp(:,2)]1"; $131
am=—am/am (3) %132
r=1; P2r=Up(:,l:r)*Sp(l:r,1l:r)+Vp(:,1:x)"; %133
Fpr=Q«[[P(1:1,:); P2r] T 1; %134
subplot (231); hold on; %135
plot (P(2:M,1),P(2:M,2), rx"); %136
plot ([-Vp(1,1),Vp(l,1)]... $137
, [-Vp(2,1),Vp(2,1)],"'b"); %138
title (' {\itP}’); grid on; %139
subplot (232); %140
plot (2:M, Sp(l,1)*Up(:,1),"g*"); %141
title (" {\it s p_1{\bfu} p_1}"); %142
subplot (233); hold on; %143
plot (2:M,Sp(2,2)*Up(:,2),"cx"); %144
title (" {\it s p_2{\bfu}"p_21}"); %145
L=1.3%Sp(2,2) /sgrt (M-1); %146
plot ([0 M], [L L],"k", [0 M],[-L -L],"k"); %147
%%% Selection of realisations %%% %148
Po=zeros (size(P)); J=0; s2=Sp(2,2); %149
for i=1:M-1, %150
if abs(s2xUp(i,2))<L, %151
j=3j+1; Po(J,:)=P(i+1,:); 2152

end; %153
end; %154
[Uo, So,Vol=svd(Po(l:3,:)); %155
ao=[ Vo(:,2); -T1lxP(1l:1,:)xVo(:,2)]1"; %156
ao=-ao/ao (3) %157
subplot (234); hold on; %158
plot (Po(1:3,1),Po(l:3,2), rx"); %159
plot ([-Vo(1,1),Vo(l,1)]... $160
, [-Vo(2,1),Vo(2,1)],'b"); %16l
subplot (235) ; %162
plot(1l:j, So(l,1)*Uo(:,1),"g*"); %163
subplot (236); hold on; %164
plot(1l:3,S0(2,2)*Uo(:,2),"cx"); %165
plot ([0 3j1,[L L],"k’", [0 31,[-L -L],"'k"); %166
pause; %167
%168

%% Objective functional $555%%55%5%%5%%%5%%%%%%169
h=2"(-4) %170
g=Inf %% 1 or 2 ... or Inf %171
min_c=Inf; %172
C=zeros ((2/h+1)* (2/h+1)); %173
A=zeros ((2/h+1)* (2/h+1),3); %174
m=0; %175
%% the rectangle with a uniform grid %176
for al=-1:h:1, for a2=-1:h:1, %177
b=al"2+a2"2; %178
%% if the point (al,a2) is in unit disk, %179
if b<=1, a=[ al; a2; sqgrt(l-b)]; $180
for i=1, %% !! for i=1:2, !! a sphere $181
m=m+1; $182
A(m, :)=a; $183
c=norm(F=*a,q); C(m)=c; %184

if min_c>c, min_c=c; mm=m; ma=a; end; $185
a=[ al; a2; -sqrt(l-b)]; %186
end; %187
end; %188

end; end; %189
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min_a=-ma’ /ma (3) %190
subplot (121); %191
plot(l:m,A(l:m,3),’xy’); xlim ([l m]); %192
subplot (122) ; %193
plot(l:m,C(l:m),’'xg’); xlim([1 m]); %194
pause; clf; %195

%196
%% Histograms of parameters 55 %%%%%%%%%%%%197
maxKkK=1; %198
for i=1:N-1, maxK=maxK* (M-i+1)/i; end; %199
K=25000; if K>maxK, K=maxK; end; %200

A=zeros (N,K); F_k=zeros(N-1,N); %201
for k=1:K, %%%% casual realisations

$%%%202

for i=1:N-1, F_k (i, :)=F(randi (M), :); end; %203
[u,s,v]=svd(F_k); %204
if v(N,N)<0, v(:,N)=-v(:,N); end %205
A(:,k)=v(:,N); %206
end; %207
P=F«V; B=V’*A; %208
I=32; axi=cos(-pi:pi/I:0); %209
for n=1:N, subplot(l,N,n); %210
H=hist (B(n, :),axi); %211
plot(-1:2/I:1,H/K,'b’,[-1 11,[1/I 1/I]... %212
,'—.k’,"LineWidth’,2); %213
title ([’ \bfb_’,int2str(n)l); %214
xlim([-1 1]1); ylim([O 17); %215
end; %216
pause; clf; %217
%218

%% Projections onto guarantors 5%5%5%5%5%%%%%%219
g_t=zeros (sx-4,st-2); %220
g_xx=zeros (sx—4,st-2); %221
G=zeros ((sx-4)*(st-2),2); %222
m=0; %223
for i=3:sx-2, for j=2:st-1, %224
g_t(i-2,3-1)=... %225
(g(i,3+1)—g (i, 3-1)) /(£ (3+1) -t (3-1)); %226
g_xx(i-2,3-1)=... %227
(g(i+2,9)-2*g(i,3)+g(i-2,3)) ... %228
/((x(1+1)-x(i-1)) "2); %229
m=m+1; %230
G(m,1)=g_t(i-2,3-1); $231
G(m,2)=g_xx(i-2,3-1); %232
end; end; %233
[Qg, Tgl=qr(G(:,1:2)); %234
Pr=Qg’ xF; proF=Qg(:,1:2)*Pr(l:2,:); %235
[Upro, Spro,Vprol=svd (Pr(1:2,1:3),0); %236
a_pro=-Vpro(:,3)’/Vpro(3,3) %237
%%%% LSModel elements %238
subplot (2,3,1); plot(F(:,1), ' mx"); %239
xlim([1 M]);ylim([-2 21); $240
subplot (2,3,2); plot(F(:,2), ' mx"); %241
xlim([1 M]);ylim([-2 21); %242
subplot (2,3,3); plot(F(:,3), ' mx"); %243
xlim([1 M]);ylim([-2 21); %244
3%%% their perpendiculars %245
subplot (4,3,7); %246
plot ([0 0 Pr(3:M,1)"1,"bx"); $247
x1lim([1 M]);ylim([-1 11); %248
subplot (4, 3,8); %249
plot ([0 0 Pr(3:M,2)"1,"bx"); %250
xlim([1 M]);ylim([-1 11); %251
subplot (4,3,9); %252
plot ([0 0 Pr(3:M,3)"1,"bx"); %253
x1lim([1 M]);ylim([-1 11); %254
3%%% and projections %255
subplot (4,3,10); plot(proF(:,1), rx"); %256
x1im([1 M]);ylim([-1 11); %257
subplot (4,3,11); plot(proF(:,2),’rx"); %258
x1lim([1 M]);ylim([-1 17); %259

subplot (4,3,12); plot(proF(:,3), rx"); %260
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xlim([1 M]);ylim([-1 1]);
%% END of Projections onto guarantors
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