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Abstract 

This paper considers the ergodicity of maps on the two-dimensional torus, focusing on transformations where invariant real-

valued functions are constant. The study considers both additive and multiplicative transformations, providing a detailed 

analysis of the conditions required for a map to be classified as ergodic. The investigation is grounded in the theory of 

dynamical systems and leverages mathematical tools such as orthonormal double sequences in Hilbert spaces and Fourier 

series to establish necessary and sufficient conditions for ergodicity. By connecting these conditions to the Lebesgue measure, 

the research outlines the fundamental properties of ergodic transformations on the torus. A key aspect of this study is its 

treatment of invariant functions and their role in defining ergodic behavior. Invariant functions, which remain unchanged under 

the dynamics of a given transformation, are examined in depth to understand how their constancy relates to the overall system. 

The analysis also highlights the interplay between additive and multiplicative transformations and their impact on the ergodic 

properties of the system. The results of this work not only provide a robust framework for understanding the dynamics of 

transformations on the two-dimensional torus but also have implications for higher-dimensional systems. This contribution is 

particularly relevant for studying complex systems in ergodic theory, where the behavior of transformations under the 

Lebesgue measure often serves as a foundation for further exploration. By addressing these fundamental aspects, the paper lays 

the groundwork for extending these concepts to more intricate and multidimensional settings in mathematical and applied 

research. 
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1. Introduction 

Ergodic theory (ET) is a dynamic branch of mathematics 

that investigates the long-term behavior of systems preserving 

a measure. Its roots trace back to Ludwig Boltzmann in the 

19th century, who introduced the term "ergodic" in the context 

of statistical mechanics to describe the motion of gas particles. 

The term itself is derived from the Greek words ergon (work) 

and odos (path) [1]. Over time, ET has evolved into a versatile 

framework applied in probability theory, statistical physics, 

functional analysis, and dynamical systems [2]. 

At the foundation of ET lies the concept of transfor-

mations that preserve a measure. A transformation is deemed 

ergodic if, when iterated, the system cannot be decomposed 

into simpler invariant subsystems [3]. A foundational result 

in this area is the Poincaré Recurrence Theorem, which as-

serts that almost every point in a measurable subset of the 

phase space will eventually return to that subset [4]. This 

theorem provided early insights into the deep connections 

between geometry, dynamics, and measure theory, setting the 
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stage for further developments [5]. 

A central aspect of ET is its focus on invariant functions—

functions that remain constant under the action of a trans-

formation. For a transformation to be ergodic, any invariant 

real-valued function must be constant almost everywhere. 

This property is pivotal for understanding the statistical be-

havior of systems over time and underpins applications in 

areas such as statistical physics, number theory, and chaos 

theory [6, 7]. 

The study of ergodic transformations on the torus has at-

tracted considerable attention due to the torus's intrinsic sim-

plicity and structural richness. Often visualized as a dough-

nut-shaped surface, the torus serves as a model for periodic 

and quasi-periodic systems [8]. While transformations on the 

one-dimensional torus are well-explored, with established 

conditions for ergodicity [9], extending these analyses to the 

two-dimensional torus introduces additional challenges. 

These include proving ergodicity and analyzing invariant 

functions in higher-dimensional settings. 

Motivated by these complexities, this study builds on 

foundational concepts in ET to explore the ergodic properties 

of maps on the two-dimensional torus. In particular, it exam-

ines cases where every invariant real-valued function is con-

stant, using FS as a central analytical tool. Fourier analysis 

facilitates the decomposition of functions into orthonormal 

sequences in Hilbert spaces, enabling systematic comparison 

of Fourier coefficients to demonstrate ergodicity [10]. 

This research also underscores the interplay between er-

godic transformations, Lebesgue measures (LM), and invari-

ant functions. By leveraging these connections, the study 

establishes robust conditions under which maps on the two-

dimensional torus exhibit ergodic behavior [11]. The findings 

not only extend classical results in ET but also contribute to 

understanding higher-dimensional systems, where ergodicity 

plays a critical role in analyzing dynamical systems [12]. 

In summary, this work provides a systematic approach to 

proving ergodicity using FS and invariant measures. The 

implications extend beyond the two-dimensional torus, offer-

ing a foundation for analyzing higher-dimensional transfor-

mations and advancing the broader study of ergodic proper-

ties in dynamical systems [6]. 

2. Remakes on Special Torus 

Originally, skew-product transformations were considered 

in the context of the torus. This concept can be traced back to 

[13], who demonstrated that a skew-product transformation 

( , ) ( , ( ))x y x y x    on the torus 
2( ) , where ( )  is 

irrational, has the same spectral type as the cross-product of 

the shift transformation on an infinite torus. However, while 

the induced operators in 
2 2( ( ))L  are unitarily equivalent, 

the transformations are not isomorphic. 

In the context of [14], the transformation 

( , ) ( , )T x y x y   is given for   irrational, where y  is a 

measurable function. The condition for non-ergodicity in this 

case is that there exists an integer n  and a measurable map g 

such that ( ( , )) ( , )ng T x y g x y  almost everywhere. This 

condition provides a basis for analyzing non-ergodicity in 

skew-product systems. 

The study of skew-product transformations extends natu-

rally to infinite products. For instance, one can consider the 

map 1 2 2 3 1( , , ) ( , , , ( ))T x x x x f x   , where f  represents 

the skewing function. These transformations are closely 

linked to representations of groups and serve as valuable 

tools for understanding the structure of complex dynamical 

systems [15, 13]. 

Clotet in [16] examined horocycle flows and showed that 

they admit measurable reparameterizations that yield irra-

tional flows on the torus. However, such flows are not metri-

cally weakly mixing. Nicol, in [2] established that certain 

skew-product transformations, such as those involving irra-

tional rotations, are uniquely ergodic for almost every initial 

point on the torus. 

Furthermore, translations on the torus and irrational rota-

tions of the circle play a significant role in proving funda-

mental theorems related to ergodicity. These results under-

score the deep connections between skew-product transfor-

mations, ergodic behavior, and the broader framework of 

dynamical systems. 

2.1. Properties of Measure-preserving 

Dynamical Systems and Topological 

Groups 

(i) Let  0,1X   and let   be the σ-algebra of all Lebes-

gue measurable subsets of X. Suppose that   is 

XT X   mod 1  where   is irrational. Here X  is locally 

compact (but not compact), however is Hausdorff subspace 

of the real line  [17]. 

(ii) Let G  be the circle group, that is, the topological 

group of all complex numbers Z  with absolute value 1 

equipped with the normalized Haar measure V  on B ( B   

the o-algebra of all Borel subset of G ) then, the map 

 T z az z G   , where a G  is not a root of unity [18]. 

2.2. Proposition in Some Cases on Two-torus [9, 

15] 

Let  2, , , ,f g L X B   then f g  holds, and   is al-

most everywhere, if and only if, their Fourier coefficients are 

equal i.e. 

   n nC f C g  n                     (1) 

Proof: 

Proving Ergodicity using FS. 
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Suppose  2 , ,f L X B  , then we associate with f  the 

FS. 

  2 inx
n

n

f C f e 




                         (2) 

where, 

   
1

2

0

inx
nC f f x e du                    (3) 

If we let, 

    2
n

ilx
n l

l n

S x C f e 



                   (4) 

Then 
2

0nS f   as n . 

If T  is measure preserving transformation it follows that 

 

 

  

1
2

1
2

1
2

2

2

2

2

2

                       

                       

                       0
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n
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S f Td

S f d

S f
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 




   


 

   
  


 



  








              (5) 

As n , it follows that the lim n
n

S T


 is the possible 

sum of the form 2 inxe  , which gave FS of f T . 

In particular if we take the FS for  f x  and evaluate at

 T x , then we obtain the FS  f Tx . i.e 

f T f                     (6) 

almost everywhere. This prove help us to compare the rela-

tionship between Fourier coefficients and show that f  is 

constant [15]. 

3. Additive Theorem on Two Torus 

Let   be irrational and let T  be the mapping of the two 

dimensional tours  2T  in mod 1 given by the formula. 

   , ,T x y x y x   ,                       (7) 

which is uniquely ergodic with invariant function in lebsegue 

measure. [5]. 

Proof: 

Consider an irrational rotation x x    on T as the base 

and 

 x x                                     (8) 

We only need to verify that T is ergodic on 2T  with re-

spect to the lebsegue measure. 

Let 2E T  be some Borel set with 

 2 1 0M E T E                              (9) 

Consider the FS decomposition, 

 2 2 2,E L T M  , 

 
, ,

,

   E k l k l

k l

C U                         (10) 

where 

 
 2

, ,

i kx ly

k j x y
U e

 
                      (11) 

Taking the transformation of 

f f T                                (12) 

   

 

 
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   

 

 
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2

2
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2
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2
,

,
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,

,

                = ,
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              =
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q r q r q r

k lq r z
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q r z
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C U x y x C e

C e

C e e
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  2

2
,

,

 =  iq
q r q r r

q r z

C U e  




                     (14) 

, ,

.

q k l l r

q r k l i k

   


     

                       (15) 

Comparing the coefficient of (10) and (14), we have the 

identities. 

 2
, ,

i k l
k j k jC C e

 
                            (16) 

In particular, 

, , 2 ,k l k l l k l lC C C                        (17) 

Since, ,k lC is the square sum on 2Z  then , 0k lC  , when-

ever 0l  . 

For  0l  , we have 

2
,0 ,0

ik
k kC e C                             (18) 

As, 
2 1ike     0k  , 

and we conclude that , 0k lC   for all    , 0,0k l  . 

Thus F is an arbitrary constant on 2T , which shows that 

it is an ergodic. 

3.1. Lemma in L
2
(m) Orthonormal Double 

Sequence 

Let  
 ,

, : 1P q

p q Z Z
U V U V

 
   and   ,m n

e  be a 

complete orthonormal double sequence in Hilbert space H,

1/2

2
,

,

| | ,m n

m n

x x
 
 
 
 
‖ ‖  where ∥x∥ is the norm induced by 

the inner product, and  ,m n
x  are the coefficients correspond-

ing to the orthonormal basis   ,m n
e  [18]. 

Proof: 

Let, p iptU e and q iqsV e                   (19) 
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
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















             (20) 

This completes the proof. 

3.2. Multiplicative Theorem in L
2
(m) That Are 

Ergodic 

Let the following be defined: 

    22
, , ,

iiT U V Ue Ve
   

 


              (21) 

If argu  , where ,   are irrational real constants, for 

all complex ,U V , then 

1U V   is ergodic [2]. 

Proof: 

Now, with reference to [18], let  ne be a complete or-

thonormal double sequence in Hilbert space H in Hilbert 

space  2L m . If f is a function in H, i.e  2f L m , then 

   
 

,

,

, p q
p q z z

p q z z

f u v a U V
 

 

  ,               (22) 

holds almost everywhere m  for some constants  ,p q
a , 

called the Fourier coefficient with respect to orthonormal 

sequence 

       2
, ,

,  in 
p q p q

a f e L m  

where, 

     ,
,    ,p q

p q
e U V U V U V G G   

                     (23) 
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Remark: G  is a circle group. Hence, 

     

 

, ,
,

        = ,

p q p q

G G

P q

G G

f U V e dm

f U V U V dm



 














,                (24) 

where, 

 argP pi u PU e U   . 

Similarly, 

q qV V  . 

Next, 

Suppose that f  is T -invariant function in  2L m , then 

    , ,f T U V f U V                       (25) 

   
 

   ,

,

 . . . = .
qp

p q

p q z z

f U aV b a Ua Vb 

 

 ,         (26) 

holds in  2L m . 

Where  22  and 
iia e b e

   



  . 

If argu  ,   and  irrational  . 

Comparing the coefficient of (22) and (26) we get the 

identities 

     ,

qp

p q
a a b . 

So, 

     , 0   
, 0,0

p q
a p q

 
 . 

This implies that p  is not an integer, except 0p   and 

   q   is not an integer except q=0. Then for    . 

Thus 

   0,0
,  f u v a , 

holds almost everywhere on m  in G G . 

4. Concluding Remarks 

This study has explored the ergodic properties of maps on the 

two-dimensional torus, focusing on cases where every invariant 

real-valued function is constant. The analysis demonstrated that 

such ergodic behavior occurs under specific conditions, such as 

the presence of irrational rotation parameters. These results 

build upon foundational contributions by [5, 19]. The findings 

offer valuable insights into the interplay between ergodicity, the 

Lebesgue measure, and transformations on the torus. By lever-

aging FS and systematically comparing Fourier coefficients, this 

research presents a robust and effective method for establishing 

ergodicity in two-dimensional systems. 

In conclusion, the results presented in this work have 

broader implications for extending ET to higher-dimensional 

tori. The methodologies and principles outlined here provide 

a systematic framework for analyzing measure-preserving 

transformations in increasingly complex dynamical systems. 

This contribution deepens our understanding of invariant 

functions and their role in ergodicity, setting the stage for 

further investigations into multidimensional dynamical sys-

tems and their ergodic properties. 
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