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Abstract: In this paper, we consider the optimal source control of a 2-dimensional steady-state thermistor. The problem is
described by a system of two nonlinear elliptic partial differential equations with appropriate boundary conditions which model
the coupling of the thermistor to its surroundings. The heat source is Joule heat due to variable resistance. The problem is a
source optimal control problem that controls the source term necessary to approximate the temperature to a proper target function.
First, we derive the optimality condition of the problem. Based on setting the approximation problem of a given control problem
in a first order polynomial finite element function space and deriving the optimality condition of the approximation problem, we
evaluated a priori error between the optimal control, the optimal state, the conjugate state and its finite element approximation
functions. Then, we evaluate the upper bound of a posteriori error estimates that are currently available for error estimation. For a
posteriori error estimates, it is necessary to find the convergence of the error indicator. In this paper, we prove the convergence of
a posteriori error indicator by obtaining a lower bound estimate of a posteriori error and finding that the total variance error goes
to zero. And, we propose a gradient algorithm to find the optimal control and provide a condition for this algorithm to converge.
The validity is also demonstrated by adaptive numerical simulations with a detailed problem. The computational results are
obtained on three adaptive meshes and the graphs of the finite element solutions are presented.
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1. Introduction element method for optimal control problems [1-10], the
spectral method for optimal control problems [11-13], the
mixed finite element method for optimal control problems [14-
20], and the finite volume method for optimal control problems
[21, 22], a posteriori error control for time-fractional parabolic
and diffusion equations derived in [23-27]. A posteriori error
estimates of the finite element method for linear parabolic
equations with Dirac measure were derived in [1]. In [2, 3],
the authors derived a posteriori error estimates of the two-
grid finite el-ement method and two-grid finite volume method
for quasi-linear elliptic equations. The upper bound of a
posteriori error estimates of the Legendre spectral method for
source control problems of semi-linear parabolic equations
was derived in [4]. In [5, 6], they studied the existence of

Optimal control problems are frequently found in the fields
of thermal physics, sociology, economic processes, and etc,
and the numerical solutions of optimal control problems are
extremely important for better performance of those fields.
Therefore, one needs some efficient numerical methods to
approximate the solutions of optimal control problems. Finite
element method is the most widely used numerical methods
for solving optimal control problems. Furthermore, other
numerical methods, such as the spectral method, the mixed
finite element method and the finite volume method have also
been applied to approximate some optimal control problems.
For example, there has been done much work on the finite
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solution for coefficient control problems of a system of quasi-
linear elliptic equations and optimality conditions. Thermistor
problems are represented mathematically by quasi-linear
elliptic or parabolic equations. In [28], they studied super-
convergence analysis of nonconforming FEM(Finite Element
Method) for nonlinear time-dependent thermistor problem. In
[29], they studied super-convergence analysis of finite element
method for time-fractional thermistor problem, and in [30]
unconditionally optimal error estimates of Cranc-Nicholson
Galerkin method for the nonlinear thermistor equations From
the preceding results, we can see that the results related to a
posteriori error estimate for semi or quasi-linear differential
equations take the majority but not those for optimal control
problems of a system described by non-linear differential
equations. In [4], for a source optimal control problem of
a semi-linear system, a posteriori error estimate was first
attempted by Legendre-spectral method under the assumption
of strong convexity in the neighborhood of the solution of
an objective function and the results were given. However,
we have difficulties applying spectral method to the cases in
which the solution is piecewise smooth, for this is a numerical
method used when the solution is infinitely differentiable.
Galerkin finite element method is the one to overcome such
difficulties. In [5, 6, 28-30], finite element posteriori error
estimates and superconvergence of quasi-linear equations were
obtained and the existence of the solution of a control problem
of this model, optimality conditions were acquired, but not
the error estimates of quasi-linear control problem, as far as
I’'m concerned. The purpose of this paper is to get a priori
and a posteriori error estimates for optimal control, optimal
state and conjugate state by an adaptive finite element method
for a control problem of a quasi-linear differential equation
and to give numerical tests on them. The main results of this

paper are priori and posteriori error estimates of approximation
solutions by an adaptive finite element method. Numerical
testing results on three adaptive triangular meshes have been
added. It is fine to compare our results with the ones in [4, 5,
6]. This paper is constructed as follows. In section 1, 2, we
give notations and preliminaries and optimality condition, in
section 3, upper bound of a posteriori error estimates of Finite
element, in section 4, priori error estimates and in section 5,
numerical simulations.

2. Notations and Preliminaries

Let  be a bounded convex polygonal domain in R? with
boundary I' = I'; U T's. In this paper, we will study the
following state model:

2

Ay —o(y)|Vel* =g,
V. (o(y)Vy) =0, Q

dy
% + 6?] = 0, T (1)
0
o(y)5- =0, T
Y= 07 FQ

, where g € L*(Q2),g > 0inQ,0 € HY/?(T';),8 € R.
The assumption for function o, 8 is as follows:
[Assumption 1] Let o € W1°°(R), o(t) be a monotonous
function.
0<(X1§0(t)§0[2, aq, QQER, U’(t)§0, tER

The weak formula of model (1) is

/Vvadw + /ﬁyvd:v - /U(y)|V<p|2vdac = /gvdwﬁv cV :=H (Q),
Q r

Q

Q

We assume that there exist unique weak solutions y, ¢ of (1)
in HY(Q), W13(Q), respectively. (For this result, we refer to
[5] where this assumption may also be compared with r = 3
in [5])

Let H : Hlm ("
We set H :=

)1 denote the H*(£2) norm and inner product.
HO(Q) = L*(Q),U := L*(), with k = 0.

/U(y)Vngwdm = /deF,Vw eVr, ={we W1’3/2(Q)’ w=0,T2}
Iy

Q

2

We denote by || - |Ir, (-,)r or || - |lo,rs (+,-)or the L3(T)
norm and inner product, and by || - |jos, < - >0 (5 >
2) the L*(Q))-norm and duality product between L*(2) and
L¥(Q)(1/s + 1/s' = 1). The cost function is defined as
follows:

1 v
T(w(9).9) = 5 lu(9) = zallg + 5 llgllg v > 0.v € B!

where || - ||o denotes the H = L?()-norm and 2, is a given element of H, v is a weight coefficient.
[Problem 1] inIfJ J(y(g),g) where y = y(g) is a solution of (1).
ge

For that there exists at least one solution of Problem 1, we refer to [5]. This proof is very similar to [5] and we omit it here.
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3. Optimality Conditions

[Theorem 1] Assume that g is a solution of Problem 1. There
exists p € V, g € Vr, that satisfies the following:

(p+vg, 9)o=0, VgeU = L*(Q)

(vpa VU)O - (O.l(g”V@‘Qpa U)O + (U/(y)v¢VQ7 U)O+
+ (Bp,v)r = (§ — 2z4,v)0, Y EV

(U(ﬂ)VCL VOJ)() = 2(p0(§)v¢7, VW)O, Yw € sz

3)

where ¥, ¢ are unique solutions of (1), respectively, when
g=9.

(Proof) Solution g of problem 1 satisfied

(J'(9),9)0 = (y(9) = 2a,Yg)o + (¥G,9)0 =0 (4

Let us Gateaux differentiate in g to direction g in (3).

(Vig, V0)o + (BYg, v)o,r — (0" (97| Vel v)o—
—(20(5)V@Vg,v)o = (g,v)0 (5)
(J/(g)ygv997 VW)O + (U(g)v@ga Vw)o - O

where g4, ¢, are Gateaux differentiations of y,¢ in g to
direction g, respectively.

Now, let p € V,q € Vr, be the solutions of (3), and in (3)
substitute 4, @4 instead of v, w.

(vpa v@g)o - (O—/(g”v@'zp? yg)O + (U/(Q)VQV(L yg)(H'
+(Bp,9g)r = (¥ — 2d,Yg)0 (6)
(0(9)Va, Vog)o = 2(pa(y)Ve, Viog)o

And substitute p, ¢ instead of v, w in (5)

(Vg, VD)o + (Big. D)o — (0" (D3| Vol p)o—
—(20(7)VeVeg,p)o = (9,9)o (7
(O"(g)yngp, VQ)O + (U(Q)Vsbg, VQ)O =0

By comparing the second expression in (6) and (7), we can
get
(0" (9)9gV e, Va)o = =2(po(9) VP, Vidg)o

Substituting this to the first expression in (6), we can get

(Vp, Vig)o — (0" (@) VD, 990 + (20 (5)V, Vg )o+
+ (5]91 yg)F = (37 — Zd, yg)O

and comparing this with the first expression in (7), we can get

(Y — 24, Yg)o=(9,P)o

Substituting this to (4), we can get optimality condition
(p+vg, 9)o=0, Vge U =L*Q)

which completes the proof.

4. Upper Bound of a Posteriori Error
Estimates of Finite Element Method

Now, we partition € into regular triangles K;(j =

1,2,---, M) and denote by h; the diameter of each element
K;. Let h := max th, and T} be the family of
1<j<M

triangulation, F, the set consisting of the inter-element edges
on the interior of the domain and denote finite element function
space of H'() as:

VhZ:{’UhEC(Q):’Uh|K€P1(K), VKETh}
Up:={vy € L*(Q) 1 v, |[g € Py(K), VK € T}, }, s=0,1

where P;(K') denotes a polynomial space whose order is less or equal than s on the element K.

The finite element approximation of (1) is as follows:

/VthUthC+//3yhvhd$—/U(yh)|v<ﬂh\20h,d$ = /ghvh,dﬂﬁ,vw € W,
) T )

/a(yh)Vgathhde' = /HwhdF,th € Vo, i={wn € Vilwp, =0,T2}

Q I

There exists y, € Vi, ¢n € Vi, 5, unique solutions of (8),
which are bounded independently of h. Here, y5, = y1(g1) €
Vi, gn € Up. The finite element approximation problem of
Problem 1 is as follows:

[Problem 2]

inf  J(yp,
ghneth (Yn, gn)

Q

®)

[Lemma 1] g, € Uy, solution of problem 2, is bounded in
L?(Q2) independently of h.

(Proof) The boundedness is derived from the fact that .J is
coercive with respect to gy,.

[Lemma 2] (Optimality system of Problem 2) There exists
Pn € Vi, gn € Vi, so that g, the solution of Problem 2,
satisfies:



4 Changil Kim and Jayong Ri et al.: A Priori and a Posteriori Error Estimates of Finite Element Method for
Source Control Problems Governed by a System of Quasi-linear Elliptic Equations

(Pn +vGn, gn)o =0, Vg, € Uy,

(Vor, Vor)o — (0 (n) IV @r|*rs vn)o + (0" (G1)VERVan, vi)o + (Bpn vn)r = (Gn — 2a, vn)os You € Vi, ©))
(0(@r)Van, Vwr)o = 2(pro(Un)Vén , Vwn)o, Ywn € Vi, i
, where ¥y, ¢y, are unique solutions of (8) when g5, = g5. The solutions of (9), py, € V., g € V1, 1, are bounded independently
of h.

[Lemma 3]([1, 4]) Let I, : V — V, C H 1(Q) denote an orthogonal projection operator. For
Vv € HY(K),VK € T),, E C 0K, we have:

1/2
D[l = Iyllg s < Chillvlly g llv = Tnvllg s < Ch*|oll, x
—1/2 1/2 _
2) [[llg & < Chi " lvllg s + B2 IV llg 1), V0o s < ChEM IVl 10

[Lemma 4] If g is a solution of Problem 1, then

1)g=—1pe H(Q)

2) The solutions of (8), (9) are bounded independently of h. (Proof) We can get the first claim from the optimality conditions.
Then we prove the second result.

We can deduce H<,0h||W1,3(Q) <Cfflor < C for the solution ¢y, of (3) (refer to [5]).

By taking vy, := yp, we deduce

(10)

2 2
Cllynl; < |(@n)IVeonl,undo| + lgnllylunly <
2 2
< b [lenl?]|, , Mwmllos + llonllollunlly < € llonl s ol + lgnlo ol
2 2 A
Clunlly < Cllenllt s+ lgnllo < C 101G + llgnllo lunlls < CUBNo p + llgnlly) < €

Taking vy, := pp, wp, := ¢, and considering that o’/ (-) < 0, the first expression of (4) can be rewritten:

Clpnll? +llanll?) < 10" (yn)VerVan, pa)ol + (yn — 2asr)o + 2(ro (yn)Veon , Van)o <
< Cllenlly sllanllilpalloe + llyn — zallgllpnllo + 2b2llpnllo sllenlly sllanlly <

< C16llo cllgnlly lonlly + llvn = zallollpally < Cs llyn — zallg + S llpall; + Cs 10115 1 llanll} »
Ipall} + lanll} < Cllyn — zallg + 8 Ipalls + C 0N 1 llgnll; , (0 < 6 < 1)

We choose 6 such that C||0|2 < 1. Then the following inequalities hold
2 2 2 2 2 2 ~ 2
[pally + (1 = C1101l p) lgnlly < C'llyn = zallo » Crlllpally + llanlly) < Cllyn = zally < Co

where Cy := min(2 — C||6]|§ 1, 1). This completes the proof.
For simplicity, denote the cost function as

= 1 2 V2
Ta) = 2 lota) — =4l + L gl

then (refer to [4]) we can obtain: }

J'(g),v) = (vg +p,v)o,
(J"(gn),vn) = (Vg + P, vr)o,
(J"(gn),v) = (vgn + p",v)o,

with p" € V satisfying

(vphv VU)O + (ﬁpha U)F - (J/(yh)iv@h|2phvv)0 + (U/(Z/h)vsﬁthh»U)O = (yh - Zdvv)OaVU € ‘/7 (11)
(J(yh)thv vwh)o = (pho.(yh)v(p ,th)o,vw €,

(Vyh, Vu)o + (Byh,v)p - (U(yh)|vs0h|27U)0 = (gn,v)o, Vv €V,

12
(o (y")Veh, Vo)g = (6, v)r,, Vv € Vi, 12)
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[Assumption 2] The functional J is strictly convex near g,
i.e., there exists a constant C' satisfying

(J'(v) = J'(g), v

for all v in this neighborhood of g.
Let Assumption 1, 2 be valid in the subsequent theorems.
[Lemma 5] Let (y, », p, ¢; 9); (Yn, Ph, Phyqn; gn) be
the solutions of (3) and (9), respectively. Then we have

2
—9) 2 Clv=glli2q)

Hg gh||0<CHp — |3+ 2
3 = lgn +puly

where p" is defined by (10) and C' denotes a general positive
constant independent of h.
(Proof) From the assumption 2, we obtain

Cllg = gnlly < (J'(g) = ' (gn), 9 — gn)o =
=(9+p,9—gn)o+ (gn + 0", 9n — 9)o <
<(gn +p", 90 — 9)o <
< (g9n +Pn,9n — 9o+ ®" — pr,gn — 9)o

Here, the optimality condition(Theorem 1) is taken into
account.
It follows from the above inequality that

2
Cllg — gully < C5) llgn + pully + C(©) [|p" — |5 +
+6\gn — gl

Therefore, we can get
2 2
lg — gnlly < C (0" —pnl|, +Cns <C p" —pn||; +Cn3
which completes the proof.
[Lemma 6] Let (yn,@n, Ph, qn; 9n), (4", @™, 0", ¢"; gn) be
the solutions of (9) and (10), (11), respectively. Then there
holds

2 2 2 2
lyn =" ||, + lon = "I} + lon = 2" ||} + [lan — ¢"]]] <

8
0)>
=1

g = Z h% ||TK||0 K>
KeTy,

where
= > B llskllg i
KeTy,

Sk = Yn — 2a + Apn — o' (un) (|Veon|*pn — Vo Van)

2
7]3 = Z hg ||<E||0,Ea

FEeEy,

o { %] = (Vpu = Vin) -ni, BT =0

|5 + Bpn, ENT # 0
C(0) is a positive constant only depending on ||6||o,r and €2.
The quantity {ap "} defined on the edge E measures the

jump of 8” b “across the element edge E.
2
= > hic ko x
KeTh

Nk = div[o(yn)Van — 2pro(yn) Ven),

2
ni= Y hglnelop
EcEy,

- [(o(yn)Van - —2pro(yn)Ven) - n]g, ENT =0
' (o(yn)Van -n = 2pro(yn)Ven -n) g, ENT # 0
The quantity {M} measures the jump of the parameter
E
( ) across the element edge F.

2
= Z h%( ||7K||07K7

KeTy,
Vi = div(o(yn)Ven),

2
= Z hg ||’7E||0,E7

EcEy

function

f’%] OKNT =

,_{ o(umi
YE =
o(up) % +6,0KNT # 0, (E C 9K)

The quantity {M} measures the jump of the parameter
E

function ( ) across the element edge F.

ric = gn + Ayp + o (yn)|Venl,

2
77% = Z hi ||TE||07E»

EeFEy,

:{ 5], =

(Vyn —Viyn) -ng, ENT =10
S| g+ By, ENT # 0

The quantity [8“} measures the jump of % across the element edge F.
E

(Proof) (Part 1) We take

f::ph _phaff = Ih§ S Vh C Hl(Q)



6 Changil Kim and Jayong Ri et al.:

A Priori and a Posteriori Error Estimates of Finite Element Method for

Source Control Problems Governed by a System of Quasi-linear Elliptic Equations

. By using the assumption of o(-), we have

Clelf <
< (Vp", VE€)o + (Bp", &)or — (0

= (y" = 24,)0 — (o' (3"

— (0" (yn)VeonVan, £)o] + (o' (")
=(n— 24§ = &0+ " —yn. o — (d'(y

Mp |Vt ¢

(VE,VE)o + (B Eor = (VE,VE)o + (BE, Eor — (0
o — (Vpr, VE)o — (Bpn, &)o,r + (o
WVe"Va", €)o — (Vpn, VEo — (Bpn, E)o.r + (o' (yn)pn | Veon], €)o—
"2 €0 — (of
MV V", €)oo+

(yn)p|Veon|,

h)lvwhﬁf,ﬁ)o <
" )pn| Ve[, €)o =
§)o + (o

(yn)pn|Veonl, (Yn)VerVan, §)o =

§—£&r)o— (0 (yn)VerVan, € = &r)ol+

(0" (yn)VeenVan, €)o

+ [(=(Vpnr, V(€ = &1))o — (Bpn, &€ — &r)or + (0
+ (o' (4")pn | V"7, €)0 — (o (yn)pu | Vipn|*, )0 +
Clgl? < S (k&= Eox — Y (sB&—EDoe+ W = yn ot
KeTy, EcE),

+ ((Ul(yh)fmﬁhf — o' () IVeen*)pn, €)o + (0 (yn) Vo Van — o’ (y") V" V4", €)o

It is satisfied following:

(0" (4" V" [* = o' () Veon|*)pn =
"V = Ver) (V" + Vor)pr+
+ (0 (5") — o' (4n)) [ Veonp
(@ WV = o ) VionIpn, €), | <
< Clly" =~ wnllog IVenl], Vel t
+ CHV(Wh - SOh)HO(|‘V<PhHO73 + ||V80h||0,3)“§”0,6 <
< Cly" = wnll, Illy + Ol " = en)ll, 161l Il <
< Clly" =]l +Cllbllor ||€" — onll;
|(0' (yn)VeerVan — o' (") V" V", €),| <
)HO’OO”VQOh||0,3||V‘Ih||0,3||f||0,3+
+C(||en — hH1 + C|10]f,, rllan — qhHl)ano,?, <
<CO)(fln = 9"} + lon — "1y +
5+ sllel?,

=0o'(y

< HU/(yh) —o'(y"

+Cl0lo.r [lan —

Note that £ — &7 € V = HY(Q), and from Lemma 3, we
have

CllglT < Co)( P lsxclly e b3 + 32 lselly 5 i)+

FEeFEy,
+Clyn — h||1+CH<Ph— ot li+
+C 101l [|an — a"|[7) + S €113

15" = pull, < Clyn — "]} + [lon — "I} +
100 |an — (5 + C 02 +n3)
(Part 2) We set

13)

E=q" —qn&=LE€V, CH(Q),E€V

ClglT < (o(y")VE, VE)o =
= (o(y")Vg", V€)o — (0(y")Van, VE)o =
=2(p"a(y")Ve", VE)o + ((o(yn) — o(y"))Van, VE)o—
= (@(Wn)Van, V&)o + 2(pro (yn)Ven, VE)o—
= 2(pro(yn)Ven, VEo

By adding

(o(yn)Van, VEr)o — 2(pro(yn)Ven, VEr)o = 0

, we can get

=2(p"o(y")Ve" — pro(yn)Veon, VE)o+
+ ((o(yn) — o (") Van, VE)o—
—(o(yn)Van, V(§ = &1))o+
+2(pro(yn)Veon, V(€ = €1))o =

- Z (0, € = €r)o,x — Z (ne,§ —&1)o, 5+

KeTy EcEy,
+2(p" o (y") V" — pro(yn)Veon, VE)o+
+ ((o(yn) — o (¥")Van, VE)o <
< > Chiclnklox+ D Chylinello z+ 615 +

KeTy EcEy

+Cly" = wll; + 161 [[" = pul; +C " = onll;
<03+ 03+ 100 |[p" — pulls + C |ly" — wall; +

+Cle" — onlls + 6 €172

IN

Thus, we have

la" = anll; < COE +n3) +C 6]l |[p" — pal|; + (14)
+Cly* = wll; + C [l@" — enlf;

(Part 3) We take & := " — ¢, &5 = [,€ € V,, € HY(Q).
Thené € V.
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Cullel < by [ [VEPdz < [ o(y")|VE[Pdz =
[t |

Q

- / o (") V" Vedr — / o (") Vo Vede - / o () Vo Veda + / o () Vipn Veda =

Q Q Q Q
= / (a(y") V" — a(yn)Vipn) Véda — / (o(y")Ven — a(yn)Ven) Védr =
Q
— [ o)V V(e — &) — / o) VeonV (€ — &r)de — / (o) — o(yn)) Vion Védz =
Q Q

’1\{0\{0

¢~ et = 3 [ ~dio(oun)Vn)(€ ~ &)~

KEThK
=% [t e [ (o)~ o) Venveds <
KEThaK Q
) 2
NS W lklyx+ Y. helvell ) +CO) Iy -yl +ollll} <
KETh EEEh

< CO) +m3) +CO) |ly" = yullo + 3l
Hence, set § = %, by simplifying both sides, we have
le" = enll; < COR+n3) +Cly" = mlly (15)

(Part 4) We take
E=y —yn, & =6V, CcHY(Q),E€V

O ) < / Ve Pdat / BEdr - / (0(y") — o(yn)| V" edz =
Q T

Q

— | Vy'Vedet | BytedT — [ o(y)| V" [*¢de — | VynVedz— [ BynédD + [ o(yn)|Vion|*¢da—
[ [orar- | e [omeir |

- / o ()| Veon 2da + / o (yn) |V [Pedz =

0 0
= > /(gh+Ayh+U(yh)|V<Ph|2)(§—§I)d$— > /%yh(f &r)dl'—
KeTh i KeThgy
_ /ﬁyh f—f[)dr—‘,—/o’(yh)(’V(ph’Q _ |V<ph|2)§d33 <
Q

< Z Cc(o ||7"K||0K h2 + Z Cc(o ||7"E||0E hg + b2 (|0 H‘P —<PhH1+5H§H1—
KeTy, E€Ep

2
< CE) (2 +n2) + b2 0] |¢" — el + €113

Therefore, set § = %, by simplifying both sides, we obtain

8
5" =y, < C2 + ) + balBlly || 0" — n|; <O (16)
i=5
Note that Therefore, we can get
8 8
2 - 2 _
lg" = anlly < C > nf + Cliollx [[" = pall; 1" — ol < OS2+ CIOIE (lon — ") a7

=3 i=1
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where C' is a positive constant dependent on the maximum
value of |o”(-)| and Poincare Constant. Assume that 6 satisfies
C ||0H1% < 1. Then we have

8
1
P —D <C’ i, —— (18)
sl Zizl T 1-Cleiy

From (12)-(17), we can derive the desired results. This
completes the proof. In the follow theorem give a posteriori
error estimates which it is main result of our work.

[Theorem 2] Let (y,,p,q;9), (Yn, Pn,Ph, qn; gn) be the
solutions of (3), (9), respectively. Then there holds
2 2 2 2
g = gnllo + ly — yully + o — enlly + p _thl

+llg—anlly < C(0 Zm

where n7(i = 1,2,---,8) are the quantities from Lemma 5,

6 and C (0) is a positive constant obtained in the process of
proof.
(Proof) We have

9

lg—gnll2 < Cllpn — 2", <COY_ w2 (19
=1
Note that
ly —wnll} < lly = "I} + 1o — ]
lo —enll} < [l — "5 + " — enll; » 0)
lp—pull} < [lp— 2"} + [lo" — pul;
lg—anll} < lla—a"||; + |a" — anll;

By combining (1) and (11) regarding ¥, 3", taking v = y — 3" by the trial function and using the assumption of o (), we have

/!Vy y") \dm+5/!y y"|ar - / Y)|Vel® —

Note that

(0W)IVel = oy Ve" )y - y") = o(y) (V]

and that o(+) is a decreasing function, we can get

||y - || S/|Vy—Vyh]2dx+5/|y—yh|2dF < /o<y><|w2 V") -
Q I

+ [ (o= 9wz <CQlellle =&, + lo = anllly - o,

Q

— Ve )

oy Ve )y — y")de = /(g —gn)(y —y")dz

Q

(y—y") + V" (o ly) — o(y™) (y — v")

y")dz+
Q
(2D

ly = 3", <CUOlclle ="l + llg = gnllo)

By combining (1) and (11) regarding ¢, ©", taking v = ¢ — " by the trial function and using the assumption of o(-), we can

obtain

Clle - < bl/|Vgo—V<ph]2dx < /o—
Q Q

y) [V — V' P = / (o(5") — o(4)) V" V(g — h)dx

Q

< Clly = "] Lo IVE" (| Lo IV = VO"[| 120y < CllONIL[ly = "], [0 = "],

Thus, it holds that

||<P - <Ph||1 < OHGHFH?J - thlv ||y - yh||1 <C ”0”1% Hy - yh||1 +Cllg— gh“O)a
¢ =", < ClOI-CO)llg — gnlly = CO)lg — gnll,

ly = 4", < CO)llg - gnllos

where C'(6) is a positive constant defined in (8) and C'(0) :=
Similarly, by combining (3) and (11) regarding ¢, ¢",

[o(y)VqVudz — [ o(y")Vq"Vude = 2f po(y

Q Q

Note that
o(y)Vg—oly

MV ¢"Vudr =2 f po(y

(22)

Cl6]|-C(0).

taking v = ¢ — ¢” and using the assumption of ¢(-), we can obtain

YV — pho(y") V") Vode

y)V — plo(y") Vel ) Vode
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we have
Cilla—d"|, Sbl/\Vq—Vq"|2d:v§/O(y)\Vq—th!2dx§
Q

@ (23)
< / Ve (o(y") — o())(Va - V")dz
Q

la = a"[I, < C(ly" = yll, + 19lcllp = 2"[I, + le = ©"1I) < CO)lg = gllo + C1Ole]lp — "],

+2 / (po(y)Ve —p"o(y") V") (24)
Q
(Vg —Vg")dz < C(|ly" =y, + 16l |lp — "], + [l — "] )]la — ¢" I,

Similarly, by combining (3) and (9) regarding p, p", setting v := p — p” and using the assumption of &(-), we can obtain
2
/ VEPdr + / &dr — / (o' W) Vel’p — o' (") | V" | p")edt
Q r Q

+ / (o' (y)VeVq — o' (y" )\ V" V") edn = /(y —y")¢da
Q Q

Then there holds
o' ()| Vop — o' (") |V" D" = o' (1) |V *p — o’ (9) [V 20" + o’ ()| Vo D" — o' (") | V" D" =
= o' (y)|IVel*€ + "' ()| Vel® — o' ()| V" | =
= o' () |Vel*€ + o' () (Ve — V" [*) + [V * (o' (y) — o’ ("))
o' (y)VeVq — o' (y")\V"V" = o' (y)Ve(Vq — Va") + V" (o' (y) Ve — o' (y") V") =
=o' (y)Ve(Vqg—Vq") + o' (y) (Ve — V")\V¢" + V" (o' (y) — o' (") V"
Using the above estimations, we can get
Cu €l S/ \VEIQd:c+/ﬁ£2dF <C(lle =", + lv—v" |, + 16llo.rlla — "] DI,
2 / (25)
lp—2"[l, <C(le =", +ly = v"[|,) + Cllblic|la — ¢"[|,) < CO)llg — gnllo + ClOlI|la — ¢" |,
From (22) and (23), we have
lp—2"[, < Clle =", + ly = 4" [[,) + Cllblip[la — ¢"]],) <

. ) (26)
< 2C(0)llg = gnllo + C 1017 [lp = 2" ||, lp = "], < 2C(0)*[l9 = gnll,

la —d"[|, < Cly" = yll, +10Icllp = "I, + [l = "[[,) < CO)lg = ally + Cllblp|[p — "], <

< 2010[1:C(0)Ilg — gnlly + C(O)llg — gnlly: |2 — a"[|, < (C©) + C(0))llg — glly = C(O)llg — gnlly
From (18)-(25), we get the results. This completes the proof.

27

5. A Priori Error Estimation , where C is constant independent of & and py, is the solution
of (8).
(Proof) g, g, satisty the following estimates.

Before getting into a priori error estimation, we need to
consider the following result. (p+vg,w)o=0,VweU, geU (28)

[Lemma 7] If (y,%,0,¢ 9), (Yn: PhsPhydn; gn)  are
solutions of (3), (8) respectively, then we have the following
inequality. Choose 0(0 < o < 1),5 € H'(Q).
Let I, be an orthogonal projection operator as V' — V/,.

(ph + vgn,wp)o =0, YVwy, € Up, gn €Up  (29)

12
5”9 = gnllo £ Cllp — pull, +Ch
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Define and with g € H(Q), we get to know that g € H(Q), g7 €
Up.

g7 =1 —o0o)g,+0g, g :=1—-0)lhg+olpg (30) By taking w = g%, wp = gj in (26), (27) and combining
them, we get the following:

2 g g ag g
vilg = gnllo < (vg,97 = gn)o + (Vgn, g7 — 9)x + (2.9° = gn)o + (Pn-9i — 9)o + (P = Ph, 9n — 9)o 3D
Using Cauchy-Schwarz inequality, we obtain

2 v 2
(p=Pn gn = 9)o < lIp = Pally + 5 g = 9llo (32)

Note that the conjugate solutions are bounded independently of &, then by > 0,Vh < hy,0 < h < 1,0 = h, we have

(vg, 97 — gn)o = ov(g, 3 — gn)o < ovllglly(llglly + llgnlly) < Ch,
(Yan, 97 — 9)o = Vg, Ing — g)o + o (vgy, In(g — g))o < Ch, (33)
(P, 97 —gn)o=0(p, g —gn)o < Ch, (pr, g7, — 9)o = (vpp, Ing — g)o + (v, In(g —9))o < Ch

Thus, the desired result is derived from (29), (30), (31).This can complete the proof. Consider the following:

(J'(g),v) = (vg + p,v)o,
(J(gn)svn) = (Vgn + PhsVn)os
(J'(9);vn) = (vg + D", vn)o

with p”* := p"(g) € V}, satisfying

(Vp", Vun)o + (Bp",vn)r — (o' (") | V" ’ P on)o + (' (V") V" V" un)o = (¥ — za,vn)0, Yor € Vi, (34)
(o(y")Vq", Vwn)o = 2(p" U( )V<P , Vwn)o, Vwn € Ve,
2
(Vy", Vor)o + (By", vn)r — (a(y")|Ve" [, vn)o = (g:vn)o, Von € Vi, (35)

(c(y" V", Vwn)o = (0,wn)r,, Ywn € Vi,n

Now we can present the theorem for a priori error estimates of problem 1, which is our main results.
[Theorem 3] Assume that , ¢, p, q, the solutions of (3) belong to H?(Q). If (y, ¢, 0, 4; 9), (Yn, ©hs Phs qr; gn ) are the solutions
of (3) and (8), respectively, then we have

g — gnllo + v — vally + lle — enlly + llpn = plly + lan — all; < C(0.v)Vh+Ch

where C(6, ) denotes a general positive constant, independent of h.
(Proof) Denoting ¢ := Ij,p — p", ¢ := p — I,p, we have £ + ¢ = p — p”, where I}, is the operator defined in Lemma 3 and p"
is the unique solution of (10).
1. Estimation of ||p — p"||1

C €17 < (V€ VEo + (B or < (V& VE)o + (BE Eor — (' (1) Ve’ o
= (Vmnp, VE)o + (Brap, E)or — (0’ )mnp|Vel*,€)o — (VP", VE)o — (Bp", E)or + (o' (m)p" VeI, €)o =
= (Vup, VE)o + (Brp, E)o,r — (0" () mnp|Veol*, €)o — (VP", VE)o — (B", E)o.r + (! )p"|Ve|*, €)o+
+(Vp, VE)o + (B, Eo,r — (V. VE)o — (Bp,E)o,r + (0’ W)pI Vel €)o — (¢ ()pIVe|*, )0+
+ (0" (y)VeVq, )0 — (0 (y) VeV, &) =
—(V6,VE)o — (85, &)o.r + (0" ) Vel*s, €0 + (u — 24 E)o — (4" — 24, E)o — (0" (4")| V" |*p", €)o
+ (o' (") V" D", )0 + (' W)V el*p", )0 — (o (4) VeV, E)o =
—(V6,VE)o — (Bs,&)o.r + (0! @) Vel’s,€)o — (o' ()| Vel — o' ()| V" " )p", )0+
+ (o' (y")Ve" V" — o' (y) Ve Ve, €)o
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By using Lipschitz continuity of o/(-) € L>°(Q), 0'(-), we have

(@' W)Vl 0| < 196l lillonsslEllonss <

< Cllpll sl < Clelloplilh el [( @IV - o)V "), | <
< Cllbllo (v =[], + lle = "I DN [ (") V" V" — o' (y) VeV g, &), | <
< Clly = y"[lo V" V" | lIEllo,4 + Cll = "], += +Clbllo plla — ", <
<Clly =", + le — "l + 16llo.rlla — "I Il

Considering Lemma 2, we can get the following result.

€T < Cllislly + [y = o™, + e = "Il) + Clbllo.clla — "], €15
I€ll, < Ch+C(lly = ™|, + le = ¢"[1,) + ClOlorlla = a" I, (36)
lp =", < 1€l + lslly < Ch+C(lly =", + [l — " [|,) + Clbllorlla — ",
2. Estimation of |l — q4]|?
Denoting & := I,q — q", <:=q— Iq, then £ +¢ = q — ¢", and we have
||£H?<b1 IVE[l5 < (0(y)VE, VE)o = (o(y qu,vao—( (¥)Va vg)o—w(y)w V5)0+( (¥)Va, Vo
—(0(y)Vs, VE)o + 2(po(y) Ve, VE)o — (0(y") V", VE)o — (0(y) V", VE)o + (a(y ) ", V) =
—(a(y)Vs, VE)o + 2(po(y) Ve, VE)o — 2(p" o (y") V", VE)o + (o (y ) o(y))Vq",VE)o =
—(a(y)Vs, VE)o + 2(po(y) Ve — p"o(y") V", VE)o + (0 (") — a(y)) Vg 7Vf)0_
ballslly €Ny + CIOllo.rllp — 2" ||, + [l — ™|, + [l — " | NN

/\\/

el < Ch+C18llopllp —p"I, + lly = "]l + le = ¢"[1,)

(37
la=a"ll, < gl +lislhy < Ch+ CUblloxllo =" |y + lly = o™, + le = £"11,)
Consequently, we obtain the following inequality.
Ip =", < Ch+Cllly =", + [l = &"Il,) + C 10150 [lp = »"]],
Now choose 6 such that 1 — C||6]|§ - Then there holds
—p"||, < CO)h+C(o |, + h
lp =", =€) Wl = 9"l + lle = "[l,) a8)

(C(9) :=C/(1=Cbllg )

3. Estimation of ||y — y"||1
Let 4" be the solution of (11). Denoting & := Iy — y"*, ¢:=y — Iy, wehave £ +¢ =y — y".
By using Lipschitz continuity of o(-) and Lemma 2, we have

C1 €]} < (V€ V€0 + (B Oor — (o(mny) — o(y™)| V|, €)o =
= (Vmny, VE)o — (V4" Vo + (BTay: E)or — (By", o.r — (a(mny)| Vel €)o + (o(y")| V|, €)o+
+ (Y, VE)o — (4, Vo + (By, O)or — (By, Oor — (0(1)[Vel”, O)o + (o) Ve, )0 =
~(V5,V€)o — (85, E)o.r — (o(mny) — o) [Vel* €)o = (9:£)o + (9,£)0 + (0" (IVel” = [Ve"[*), )0
< lsly el + Blislloeliélo,r +Clislo | Vel el + Clle = "l all 7o + @)l el <

< C(llslly + 1llo.pllsly + 191l pll = ™[Il

lelly < CClislly + 16llopllsly + 16l [l — " [I,) <
ly = o"[l, < lIglly +lIslly < Ch+Cliollorlle — ",
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4. Estimation of || — <thi
o is the solution of (9). Denoting & := I, — ©", ¢ := ¢ — I}, we have £ + ¢ = ¢ — ™. Then, we have

Cy[I€]1T < bi(VE, VE)o < (0(y)VE, VE)o =
= (o(y) Ve, V€)o — (a(y)Ve", V&) + (0(y) Ve, VE)o — (0(y) Ve, VE)o =
= —(0(y)Vs, VE)o + (6,8)or — (0 (y")Ve", VE)o + ((a(y") — o(y)) V", VE)o =
= —(o(y)Vs, VE)o + (6,&)or — (0. &)or + (0(y") — o(y) Ve, VE)o <
<bllslly €l + Cliollorllo” =yl gL 1€ < Clislly + Clibllo rllv" = ]|, <

< Che+Clbllorllv" =yl lle = "I, <lEly + lislly < Ch+Cllbllo v =yl
ly—y"|l, < Ch+Cloll - 1v" =y,

From the assumptions on 6, there holds the following @, Numerical Simulations
inequality R
Hy - thl < C(0)h® (39) Numerical Experiments use gradient algorithm based on
optimality condition. State equation is solved by Newton-
Laphson method. We use only coarse mesh for convenience

H‘p _ ‘th1 < Ch+ CC‘(@HGIIO,Fh < C()h w0 in the numerical process.
CO):=C+ CG(H)HGHOI

and thus we deduce the following result.

6.1. Initial Data

The computational domain is taken to be = (—1,1) x

Now we can estimate ||y" — thl, lle™ — on 1

th —ph’ . | ¢ — QhHr From (4)-(6), we can get the (—1,1). The differential model, objective function and
following results. measure data are given as follows:
—~ J— —_ 2 =
Iy — |, < CLCOg — gnllo: Ayv ‘f@)'Vv@' g> g
le" = onll, < C2CO)lg — gnlo: an A
~ Y
o™ = prll, < CsCO)llg — gnlly, %—&—,By:O, r
. ~
q" —qn||, < CsCO)[lg — gn o
la" = aul, < CoCOlg — gnll %0 1
where C;(i = 1,2, 3,4) are constants independent of 6, h. —0 T
On the other hand, we also have L 2
1 2, Vo2
ly —ynll; < ||”z/ - yhﬂh + |||z|/” - yh||1|,| J(y(9):9) = 5 lly(9) = zallo + 5 lgllo
e —wnlly < |lo—@"||, +11¢" — enllys
42
o=l < [lp =2 + [l = pafl =V Ry =5 =T~ le—5
lla = anlly < lla = a"[[; + [la" = anll, The target value function zg4(x,y) within the objective

functional is defined as follows:

za(r) = (r?log(r +¢) — 2)/4 +r/4+ /6 +0.25)/

According to Lemma 4 and (36)-(40), we have

14 2 2
3 lg = anllo < Cllp" —pl[; + Ch < /(6.28 % 0.2) + (4 — 9r)/6.28,
0 = 0.0061, =0.01
< C(O) g - gnlly + COR +Ch < g
<00 |g - gh”g +Ch Now we can propose the following algorithm.
1. Compute the approximation of the optimal control on
Choose v such that v > 2C(8). Then we have the primitive mesh by the finite element method.
V ) 2. Get the average ofaposteriori errors ”T}f’k ||ka7 vn.ke o 4
(5 =C)lg — gnllo < Ch, (43) from Lemma 6 in each element, which is used as a
g — gnll, < CO,v)Vh posteriori error estimator pos.
3. Mark the elements with |74 ||, ., [|7n,xll, 5 larger than
By summing up (34)-(41), we can get the desired result. Ppos. ’ ’
This completes the proof. 4. Solve the optimal control problem on a mesh generated

by refining the marked elements.
The iterations will stop when the relative error of the objective

function b := |/ (n+1) = J(n) |/J(n t+)or L?(Q)-norm of
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difference between the target value function and the solution of
state equation ||y — Zd||2L2(Q) is less than the given tolerance
le —10 ~ le — 6.

6.2. Numerical Analysis

6.2.1. Numerical Test(I)

For convenience, we use the same parameters as in the code.
nn,ns,ne, ssj, bb, e, pos,ef f = pos/e,t stand for iteration
number, node number of the mesh, triangle number, value of
the objective function, relative error of the objective function,
ly(u) — zal|,/ne, a posteriori error indicator, the effectiveness
index, computing time, respectively.

The first mesh refinement is carried out by dividing the
domain 2 into 10 x 10 squares uniformly and further splitting
every square into two right triangles.

We choose ns = 121, ne = 200, nband = 12,v = le — 8.

In the gradient algorithm for finding the optimal control g,
the control is initialized as

(0) _ 0.101, r>1
go(r) { 0.102, r<1

and the iterations will stop when the relative error of the
objective function is less than le — 5.

function value

na

0.6

0.4

0z

Y-axis g
(i
-0.2

0.4

-0.6

-0.8

-1
-1 -08 06 04 D2 0 0z 04 06 08 1

¥-axis (m)

Figure 1. Mesh 1.

Then we can get the following results:

We have ssj = 1.682e — 5, pos = 3.15e — 4. The relative
error of objective function becomes bb = 1.94e — 4 and the
computing time is around two minutes.

The numerical result is shown in Figure 1 ~ Figure 7 about
the approximation optimal state, the corresponding co-state
and the approximation optimal control.

]

- 2318 (ri)

Figure 2. Target value function zq.

Figure 3. Optimal state yp,.

w107

-axis () Weaxis(m)

Figure 4. Optimal state @y, .
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Y- A 13(m)
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Figure 5. Co-state pp,.

¥-axisim)

Figure 6. Co-state qp,.

¥ AELS(m)

Figure 7. Optimal control gp,.

6.2.2. Numerical Test(II)
We mark the elements in which a posteriori errors are larger
than the pos = 3.15e—4(when ns = 121, ne = 200) to update

the mesh.

We perform the computation on the three refined meshes

ns = 161, ne = 280, nband = 40, v = le — 8§,
ns = 185, ne = 328, nband =40, v = le — 8§,
ns = 233, ne =424, nband =40, v=1e—9
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Y-axis g
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Figure 8. Mesh 2.
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Figure 9. Mesh 3.
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Figure 10. Mesh 4.
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In Mesh 4, we refine the initial mesh uniformly around the
origin and the circle with » = 1. The iterations will stop when
€ < le — 6 ~ le — 4and the other initial data are the same as
in Numerical test (I).

The numerical result for three cases are obtained as follows:

ssj = 1.542e — 5, e=1.50e—5, bb=1.175e—5,
pos = 2.3622e — 4,

ssj =1.542e — 5, e=1.50e—5, bb=1.666e — 5,
pos = 2.004e — 4,

ssj = 1.542e — 5, e =1.50e —5, bb=2.726e—5,
pos = 1.921e — 4.

For the case of mesh 3(ns = 233,ne = 424), the
numerical result is shown in Figure 10 ~ Figure 14 about
approximation optimal state, the corresponding co-state and
the approximation optimal control.

d 08 47
- EEisim)

Figure 11. Target value function z 4.

Y- axis (m)

Figure 12. Optimal state yyp,.

---------------

- 313 () H- ax15(m)

Figure 13. Optimal state @p,.

Y- ax1s(m) ’ ¥-axis(m)

Figure 14. Co-state py,.

- axis(m) ’ ¥-ax15(m)

Figure 15. Co-state qp,.
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180w oomeemeepmeee

- AKiS(m)

Figure 16. Optimal control gp,.

We can see ¢ = [ly(u)— z4/|,/ne, a posteriori error
indicator and the effectiveness index for different nodes and
elements in the following table.

Table 1. Result for numerical test.

No ns ne € pos eff
1 121 200 1.5e —5 3.15e — 4 21.0
2 161 280 1.5e —5 2.362e—4 157
3 185 328 1.5e—5 2.00de—4 134
4 233 424 1.5e—5 1.92le—4 128

In the table above ef f represents pos/e and the stopping
condition is € = 1.5e — 5.

7. Conclusion

In this paper, the priori and the upper bound of a posteriori
error estimates of finite element approximation solution of
source control problem governed by a system of quasi-
linear elliptic equation with homogeneous Dirichlet boundary
conditions was derived with an accuracy of about O(h'/2) in
H'-norm on triangular mesh.
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