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Abstract 

An analysis, based on different mathematical approaches, of the binary Goldbach conjecture −which states that every even 

integer s ≥ 6 is the sum of two odd primes, called Goldbach primes− is presented. Each approach leads to a different 

reformulation of this conjecture, thus contributing unique insights into the structure, properties and distribution of prime 

numbers. The above-mentioned reformulations are based on the following distinct, interrelated and complementary approaches: 

projection, optimization, hybrid prime factorization, prime symmetry and analytic approximation. Additionally, it is shown that 

prime factorization is an optimal projection operation on the set of integers; that Goldbach pairs correspond to solutions of an 

optimization problem; that hybrid prime factorization can be used to generate Goldbach primes; that prime symmetry, a powerful 

property of Goldbach primes, can be used to validate the binary Goldbach conjecture in short intervals, and to determine the rules 

that govern the “algebraic evolution” of Goldbach pairs, as the value of s increases; and that analytic approximation, using 

translational and rotational shifts of smooth functions, leads to a useful approximation of a primality test function and the prime 

counting function π(s). The paper’s findings support the broader hypothesis that prime numbers, by virtue of their optimality in 

representing, additively and multiplicatively, any measurable quantity in the universe, supported by the Fundamental Theorem of 

Arithmetic and the binary Goldbach conjecture, may be a viable alternative to the exclusive use of binary logic, as a means of 

achieving additional computational efficiencies of scale in the future. 
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1. Introduction 

The binary Goldbach conjecture (bGC), also called even or 

strong Goldbach conjecture, was originally proposed by 

mathematician Christian Goldbach in 1742. It states that 

every even integer ≥ 6 can be represented as sum of two 

primes. The bGC implies the so-called tertiary, or weak, 

Goldbach conjecture (tGC), which states that every odd 

number larger than 5 can be written as a sum of three primes. 

In the 280 years since the conjecture was proposed, it has 

inspired a large body of mathematical work, including sig-

nificant inroads in proving and validating it. The basic con-

cepts and a review of advances on bGC/tGC, with extensive 

bibliography, can be found in [1-4]. 
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The work on bGC/tGC has generally proceeded on two 

tracks: numerical validation and mathematical proof. In 2013, 

the bGC has been computationally validated up to 4∙1018, and 

in 1975, H. Montgomery and R. C. Vaughan improved the 

results of earlier research by proving that the set of even in-

tegers that are not the sum of two primes has density zero [5, 

6]. 

More progress has been made in proving the tGC. In 2013, 

H. A. Helfgott submitted proof of the tGC, and it was accepted 

in 2015 for publication in the Annals of Mathematics Studies 

[7]. The manuscript is close to being finalized for publication, 

with some sections available online [8]. 

Initially, some of the conditional proofs of the tGC, such as 

the proof by Hardy and Littlewood (1923), were contingent on 

the generalized Riemann hypothesis; in this case, this de-

pendence was later eliminated by M. Vinogradov. Research-

ers continue to publish proofs of the bGC, contingent on the 

Riemann hypothesis (RH). In 2023, Cully-Hugill and Dudek 

proved that under the RH, there exists at least one Goldbach 

number in the open interval (x, x + 9696 ∙ log2x), for all x ≥ 

2, i.e. that there exists a pair of odd primes adding up to a 

number in that interval [9-11, 12]. Despite the hard work of 

many mathematicians, over more than two centuries, no 

widely accepted, unconditional proof of the bGC exists today. 

This paper is organized in five sections. In Section 2, an 

alternative formulation of the bGC, based on projection, is 

introduced. In Section 3, formulations of the bGC using op-

timization methods are discussed, extending prior research 

results in this area [13]. Section 4 describes a formulation 

based on the concept of Hybrid Prime Factorization and its 

application to the algebraic representation of primes and 

composites, as it applies to the bGC [14, 15]. The approach in 

Section 5 is based on a fundamental symmetry property of 

Goldbach primes: for any even number s ≥ 6 , Goldbach 

primes are symmetric, i.e. they are equidistant from the 

midpoint s/2. In Section 5.2 prime symmetry is used in a 

proof of the bGC for s in a short interval, and Section 5.3 

describes the algebraic evolution of Goldbach and 

non-Goldbach pairs, over larger intervals. In Section 6, 

translational and rotational shifts of smooth functions are used 

to reformulate the bGC, and to derive useful representations 

and approximations of a primality test function and of the 

prime-counting function π(s). Conclusions and a discussion of 

findings are included in Section 7. 

2. Projection 

From the Fundamental Theorem of Arithmetic (FTA), it 

follows that for every integer n ∈ ℤ, n ≥ 2, there is a unique 

vector a̅ of non-negative integers such that 

aTlog(p̅) = log(n)                (1) 

where, on the left-hand side of expression (1), the natural 

logarithm, log(∙), is understood to apply elementwise on the 

prime vector p̅ with dimensionality π(𝑛) × 1 , where π(∙) 

denotes the prime counting function. 

Since (1) applies to 2 ≤ n ≤ N, it can be expressed in matrix 

form 

A ∙ log(p̅) = log(n̅)             (2) 

where A ∈ ℤ(𝑁−1)×π(Ν) , and the vector n̅ ∈ ℤ(𝑁−1)×1  is 

defined as 

n̅T = [23456 …(N − 1)N].        (3) 

From the FTA, it follows that matrix A is unique; it also 

has full column rank, since each prime element in log(n̅) 

corresponds to a unique unit row of A. Given that the ele-

ments of p̅ are integers, expression (2) can be rewritten as 

P ∙ log(n̅) = log(n̅)             (4) 

where the columns of the square matrix P ∈ ℤ(𝑁−1)×(𝑁−1) 

match those of matrix A, if the corresponding element of n̅ is 

prime, otherwise they are equal to a 0̅ vector. 

Example 1. For N = 6, after the elementwise prime fac-

torization of n̅, the unique solution, described by (2), is given 

by 

[
 
 
 
 
1 0 0
0 1 0
2 0 0
0 0 1
1 1 0]

 
 
 
 

[

log(2)

log(3)

log(5)
] =

[
 
 
 
 
 
log(2)

log(3)

log(4)

log(5)

log(6)]
 
 
 
 
 

          (5) 

where a unique unit row is associated with each one of the 

primes in log(n̅): 2 (row 1), 3 (row 2) and 5 (row 4). Ex-

pression (5) is equivalent to 

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
2 0 0 0 0
0 0 0 1 0
1 1 0 0 0]

 
 
 
 

[
 
 
 
 
 
log(2)

log(3)

log(4)

log(5)

log(6)]
 
 
 
 
 

=

[
 
 
 
 
 
log(2)

log(3)

log(4)

log(5)

log(6)]
 
 
 
 
 

.       (6) 

From (4) and (6) 

P =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
2 0 0 0 0
0 0 0 1 0
1 1 0 0 0]

 
 
 
 

             (7) 

and since P2 = P, it follows that P ≠ I, where I denotes the 

identity matrix, is a non-trivial projection operator in ℤ5 . 

Since the largest prime factor of a number n is never greater 

than n/2, it follows that P is a lower triangular matrix and its 

rank is the sum of its diagonal elements. This sum equals the 
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number of primes ≤ n, thus, rank(P) = π(n). For the matrix P 

in Example 1, rank(P) = π(5) = 3. The FTA guarantees that 

rank(P) is the smallest possible, hence P is the unique solu-

tion to the elementwise factorization of n̅ that satisfies (4). 

If P is determined through prime factorization, as in the 

previous example for N = 6, it represents a minimal rank and 

dimensionality, non-trivial solution to (4), in the form of a 

projection operator in the vector space ℤ(𝑁−1). This general 

result is summarized in the next proposition. 

Proposition 1. If P in expression (4) is generated via prime 

factorization, the rank of P  is the smallest possible and 

rank(P) = π(N); P is a unique, integer, lower unitriangular 

and idempotent matrix, and represents a projection operator in 

ℤ(𝑁−1). 

Proof. The existence, uniqueness, lower unitriangular form 

and non-triviality of P ∈ ℤ(𝑁−1)×(𝑁−1) follows from the FTA. 

The rank of P is the number of nonzero elements on the main 

diagonal, or equivalently, due to its unitriangular form, the 

sum of all elements on its main diagonal; therefore, the rank of 

P is π(n), which implies that P has an eigenvalue of 1, with 

multiplicity π(n). P  is the unique integer solution, in a 

rank-minimization sense, to the elementwise (prime) factor-

ization of n̅ , subject to (4). Observe that P = I , where 

I ∈ ℤ(𝑁−1)×(𝑁−1) denotes the identity matrix, is a trivial, but 

suboptimal solution to this rank-minimization factorization 

problem. Solutions where P corresponds to a non-prime fac-

torization of elements of n̅ , e.g. representing 18 as 2 ∙ 9 , 

instead of 2 ∙ 32, are also suboptimal. 

Multiplication of both sides of (4) with P yields 

P2 ∙ log(n̅) = P ∙ log(n̅)             (8) 

and by using (4), the right-hand side of the above expression 

equals log(n̅). Therefore, (8) may be written as 

P2 ∙ log(n̅) = log(n̅).               (9) 

Using standard results from linear algebra, it follows that 

rank(P2) ≤ rank(P) [16]. Since the FTA guarantees that P is 

unique and of minimum rank 

P2 = P.                  (10) 

Therefore, P is idempotent, and a projection operator in 

the vector space ℤ(𝑁−1). 

Remark 1. Given the one-to-one relationship between the 

matrices A  and P , defined by (2) and (4) respectively, it 

follows that the placement information of primes within n̅ is 

preserved. The prime vector p̅, as the unique solution of (2), 

can be recovered from n̅  via the Moore-Penrose 

pseudoinverse, given by 

p̅ = exp[(ATA)−1AT log(n̅)]         (11) 

where exp(·) and log(·) apply elementwise to the corre-

sponding vector elements [17]. Since ATA is full rank and 

therefore invertible, it is straightforward to show that if p̅ 

satisfies (2), it also satisfies (11). 

Example 2. In Example 1, the matrix A is given by 

A =

[
 
 
 
 
1 0 0
0 1 0
2 0 0
0 0 1
1 1 0]

 
 
 
 

 

so that 

(ATA)−1AT = [
0.182 −0.09 0.364 0 0.091
−0.09 0.545 −0.18 0 0.455

0 0 0 1 0
] 

and hence, p̅ also satisfies (11), since 

[

log(2)

log(3)

log(5)
] = [

0.182 −0.09 0.364 0 0.091
−0.09 0.545 −0.18 0 0.455

0 0 0 1 0
]

[
 
 
 
 
 
log(2)

log(3)

log(4)

log(5)

log(6)]
 
 
 
 
 

. 

Remark 2. One of the consequences of P being a projection 

matrix is that the Rank Theorem may be applied, to uniquely 

represent any vector x̅ ∈ ℝ(𝑁−1), as follows [18]: 

x̅ = x̅1 + x̅2              (12) 

where the component vectors x̅1 ∈ ℝ(𝑁−1), x̅2 ∈ ℝ(𝑁−1) are 

unique, given by 

x̅1 = P ∙ x̅                 (13) 

x̅2 = x̅ − x̅1.                  (14) 

From (10) and (13)-(14), it follows that P ∙ x̅1 = x̅1  and 

P ∙ x̅2 = 0̅, i.e. x̅1 is in the projection space (range) of P and 

x̅2 is in the null space of P. 

As proved in prior research work, prime factorization is the 

unique solution to an integer minimization problem, where a 

number is factorially represented with the minimum possible 

factor sum, including any factors with multiplicity >1 [13]. 

Therefore, the prime factorization of n̅, expressed in matrix 

form by (2), implies that A is such that each element of the 

vector A ∙ n̅ attains its minimum value. The same is true for 

matrix P, since the prime factor of a prime is the prime itself. 

Since P has a zero-column for each non-prime element of n̅, 

the vectors A ∙ p̅  and P ∙ n̅  are identical, as shown in the 

following example. 

Example 3. From (5) 

http://www.sciencepg.com/journal/mcs


Mathematics and Computer Science  http://www.sciencepg.com/journal/mcs 

 

99 

A ∙ p̅ =

[
 
 
 
 
1 0 0
0 1 0
2 0 0
0 0 1
1 1 0]

 
 
 
 

[
2
3
5
] =

[
 
 
 
 
2
3
4
5
5]
 
 
 
 

          (15) 

and from (6) 

P ∙ n̅ =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
2 0 0 0 0
0 0 0 1 0
1 1 0 0 0]

 
 
 
 

[
 
 
 
 
2
3
4
5
6]
 
 
 
 

=

[
 
 
 
 
2
3
4
5
5]
 
 
 
 

.            (16) 

Each element of the resulting vector equals the total prime 

factor sum of the corresponding number, including any prime 

factors with multiplicity greater than 1, as in (15)-(16) for 

4 = 22. 

The vector P ∙ n̅ includes the total prime factor sums (in-

cluding any prime factors with multiplicity greater than 1), 

corresponding to the factorization of every number in the 

interval [2, N]. This observation provides a connection with 

the bGC: if every even number s ≥ 6 is a sum of two odd 

primes, then there exists at least one integer ŝ = f(s) whose 

prime factor sum equals s. The set of all ŝ is the union of the 

subsets, ℤk, where each subset containing all ŝ with k prime 

factors, including prime factors with multiplicity greater than 

1, if any. Since the smallest prime is 2, it follows that 

1 ≤ k ≤ ⌊
s

2
⌋ 

where ⌊∙⌋ denotes integer part. Since the bGC is characterized 

by Goldbach pairs, the subset ℤ2 is of special interest; any 

ŝ ∈ ℤ2 is subsequently referred to as a second-order Gold-

bach coprime of s. 

Definition 1. An integer, ŝ, is called a Goldbach coprime of 

order k, of an even number s ≥ 6, if the prime factorization of 

ŝ has k prime factors and the total sum of all prime factors, 

including any prime factors with multiplicity > 1, is equal to 

s. 

Remark 3. Let ŝ be a Goldbach coprime of order k, cor-

responding to an even number s ≥ 6. From the Arithmetic 

Mean-Geometric Mean inequality, it follows that ŝ ≤

ŝmax(k, s), where ŝmax(k, s) = (s k⁄ )k. By using elementary 

calculus, it can be shown that the global maximum, es/e, of 

f(x) = (s x⁄ )x  with respect to x, occurs at x = s/e, where 

e = 2.7183… is Euler’s number. Hence, an upper bound of 

any Goldbach coprime of s, of any order, is 3s/3. Another 

way to establish this upper bound, is by showing that, for 

x > 3, the derivative of f(x) is negative, therefore f(3) >

f(x) . For values of n less than 3, it can be shown that 

f(3) > f(2) > f(1), for s ≥ 8. If s = 6, n takes 3 values, 

n = 1 , n = 2  or n = 3 , and since (6/2)2 > (6/3)3 >

(6/1)1, f(n) satisfies (s n⁄ )n ≤ 3s/3, for s ≥ 6 and n ≥ 1. 

Example 4. The Goldbach coprimes of s = 10, grouped by 

their order k, are listed below: 

k = 2:25, 21              (17) 

k = 4:24                (18) 

k = 5:32               (19) 

The Goldbach coprimes of order 2, for an even s ≥ 6, are 

given by 

ŝ2 = m ∙ (s − m)              (20) 

where m ∈ [2,
𝑠

2
− 2]. Because the bGC only refers to odd 

primes, Goldbach coprimes with even values are not relevant 

and thus, the scope of (20) may be narrowed, to include only 

odd Goldbach coprimes. Hence, m ∈ [3,
𝑠

2
− 3] is odd, and 

the two odd Goldbach coprimes of 10, both of order 2, are: 25 

(m = 5) and 21 (m = 3). From these two Goldbach coprimes, 

the Goldbach pairs of 10 can be recovered through prime 

factorization: 25 ⟶ (5, 5), 21 ⟶ (3, 7), (7, 3). 

For any even s ≥ 6, the dimensionality of n̅ may be in-

creased, so that P ∙ n̅ includes every odd Goldbach coprime 

of order 2. If bGC is assumed to be true, then every Goldbach 

pair of s is encoded in the rows of matrix P. More specifi-

cally, Goldbach pairs correspond to those rows of P  that 

satisfy 

∑ Pij
M
j=1 = 2.               (21) 

Expressing m in terms of its distance, M, from the mid-

point s/2 

m =
s

2
− M               (22) 

s − m =
s

2
+ M             (23) 

where M ∈ [0,
𝑠

2
− 3] is odd, if s/2 is even, and vice versa. 

Substituting (22)-(23) into (20) gives 

ŝ2 = (
s

2
− M) ∙ (

s

2
+ M) =

s2

4
− M2       (24) 

and therefore, ŝ2 is maximized for M = 0, if s/2 is odd and 

for M = 1 if s/2 is even. 

Example 5. From (24), the maximum second-order odd 

Goldbach coprimes of s = 10 , s = 12  and s = 18  are: 

100/4 = 25, 144/4 – 1 = 35 and 324/4 = 81, respectively. 

From the above analysis, it follows that if n̅ is extended to 

the maximum odd Goldbach coprime of s, the projection of n̅, 

i.e. the vector P ∙ n̅ , includes all possible second-order 

Goldbach pairs of s. This result is formalized in the next 

proposition. 

Proposition 2. For any even number s ≥ 6, using the same 
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notation and definitions as in (1)-(4), where N = s2/4, then 

every Goldbach pair of s is represented by the projection 

vector P ∙ n̅. 

Proof. From the derivation of (4) with N = s2/4, it follows 

that P represents the prime factorization of all numbers in [2, 

s2/4]. From the FTA, the bGC and (24), it follows that the 

product of every Goldbach pair of s is a unique number, no 

greater than s2/4. Thus, the vector n̅, with N = s2/4, contains 

all possible such numbers and therefore encodes all Goldbach 

pairs of s. 

For n = 2, the upper bound s2/4, generated by (24) and 

M = 0, is smaller than the global upper bound, 3s/3, as dis-

cussed in Remark 3. This can also be directly verified through 

elementary algebra for s ≥ 6. 

Remark 4. Only those elements of the projection vector 

P ∙ n̅ that are equal to s are candidates for possible Goldbach 

pairs. Of those, as implied by (21), Goldbach pairs correspond 

to the primes associated only with those elements for which 

the corresponding row sum of the projection matrix P is 2. 

Example 6. For s = 10, N = s2/4 = 25, and the dimension-

ality of P is 24x24. Due to space limitations, it is impractical 

to display P here in full. Since every Goldbach coprime of 

order 2 is odd, P can be reduced by half without loss of in-

formation, by omitting matrix columns that correspond to 

even numbers. The resulting 12x12 linear system is 

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 2 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
3
5
7
9
11
13
15
17
19
𝟐𝟏
23
𝟐𝟓]

 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
3
5
7
6
11
13
8
17
19
𝟏𝟎
23
𝟏𝟎]

 
 
 
 
 
 
 
 
 
 
 

. 

where the projection vector includes two elements equal to 

s = 10, shown in bold typeface. These elements correspond to 

the two Goldbach coprimes, 21 and 25, of s = 10, also shown 

in bold. The relevant equations from the above system are 

[
1 0 1
0 2 0

] [
3
5
7
] = [

10
10

] 

and since both row sums are equal to 2, the two Goldbach 

pairs are (3, 7) and (5, 5). The conjugate Goldbach pair (7, 3) 

is implied, since multiplication is commutative. 

The bGC may be reformulated, in terms of the projection 

approach described in this section, by expressing Proposition 

2 as a conjecture: 

Conjecture 1 (Goldbach Pair Projection). For any even 

number s ≥ 6, using the same notation and definitions as in 

(1)-(4), with N = s2/4, the projection vector P ∙ n̅ contains at 

least one Goldbach pair of s. 

Remark 5. In the 12 x12 linear system of Example 6, the 

Goldbach coprime with the smallest projection value is 21; it 

corresponds to the Goldbach pair (3, 7) and is therefore of 

order 2. This observation connects the projection approach, 

discussed in this section, to the minimization approach de-

scribed in Section 3. 

3. Optimization 

An alternative formulation of the bGC may be obtained 

through an optimization approach, described in this section. 

Consider the class of functions defined by 

ŝ = ŝ(pi, pj) = pi ∙ pj
n             (25) 

where pi, pj odd primes and n is such that 

pi + n ∙ pj = s                  (26) 

where s ≥ 6 is even. From (25)-(26), it follows that ŝ is a 

Goldbach coprime of order n + 1. By constraining 

n =
s−pi

pj
∈ ℤ                  (27) 

i.e. n = 1, or n > 1 and pj to be a prime factor of s − pi, 

(25) becomes 

ŝ = ŝ(pi, pj) = pi ∙ pj

s−pi
pj .            (28) 

It can be proved that the minimization of ŝ, with respect to 

primes pi, pj, results in a Goldbach pair, in the form of a Gold-

bach coprime of order 2, as stated in the following proposition. 

Proposition 3. If the bGC is true, then for any even number 

s ≥ 6, a Goldbach pair of primes, pi, pj, such that 

pi +pj = s                    (29) 

exists and is the solution of the minimization of ŝ, given by 

(28), with respect to primes pi, pj, subject to (27) and 

pi ∈ [3,
𝑠

2
]                   (30) 

pj ∈ [3, s − pi].                (31) 

Proof. If 
s−pi

pj
= 1 , then ŝ = pi ∙ pj  and pi + pj = s . 

Therefore, ŝ is a Goldbach coprime of order 2. In Section 2, it 

was shown that all such coprimes satisfy 

ŝ = pi ∙ pj = (
s

2
− M) ∙ (

s

2
+ M) =

s2

4
− M2    (32) 
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where M is a non-negative integer. Thus, the value of ŝfor 

any Goldbach coprimes of order 2 does not exceed 
s2

4
. 

For the case n > 1, since n ∈ ℤ and n is odd, it follows 

that n ≥ 3, thus, from (26) 

pj ≤
s−pi

3
.                 (33) 

Next step is to show that, for any even number s ≥ 18 

ŝ(pi, pj) ≥
s2

4
               (34) 

which implies that the minimum solution never occurs at a 

higher order Goldbach coprime of s, i.e. for pi, pj such that 

(26) holds for n ≥ 3. From (34), given that the minimum 

solution has a value <
s2

4
, it must occur at one of the sec-

ond-order Goldbach primes of s, whose existence is ensured 

by the assumption that the bGC is true. 

Given (28), the inequality (34) can be written as 

pj

s−pi
pj ≥

s2

4pi

                  (35) 

and after taking natural logarithms on both sides 

s−pi

pj
∙ log(pj) ≥ log (

s2

4pi
)           (36) 

or equivalently 

log(pj)

pj
≥

1

s−pi
∙ log (

s2

4pi
).         (37) 

Since log(x)/x is strictly decreasing for x ≥ 3, it follows that 

log(pj)

pj
≥

log(
s−pi

3
)

s−pi
3

            (38) 

and, therefore, it suffices to show that 

log(
s−pi

3
)

s−pi
3

≥
1

s−pi
∙ log (

s2

4pi
)          (39) 

or 

log [(
s−pi

3
)

3

] ≥ log (
s2

4pi
).         (40) 

Since pi ≤ s/2, it suffices to have 

(
s

6
)

3

≥
s2

4pi
                (41) 

and, given that 1 3⁄ ≥ 1/pi, to show that 

(
s

6
)

3

≥
s2

12
               (42) 

which holds for s ≥ 18. The numbers 6, 8 and 10 have no 

higher order Goldbach coprimes, hence the proposition ap-

plies trivially. For s = 12, the proposition holds, since there 

is only one second and one fourth-order Goldbach coprime, 

i.e. 5 ∙ 7 < 3 ∙ 33 . Similarly, if s = 14 , there is only one 

Goldbach coprime of order >2, i.e. 5 ∙ 33, which exceeds the 

maximum value, 
s2

4
= 72 , of the second-order Goldbach 

coprimes, i.e. 11 ∙ 3 < 72 < 5 ∙ 33. For s = 16, 3 ∙ 13 < 5 ∙

11 < 7 ∙ 33. Thus, the proposition holds for s ≥ 6. 

Remark 6. The set of feasible pj may be further reduced, 

by observing that, for any given pi, if p̅j > p̿j are two prime 

factors of s − pi, with corresponding Goldbach coprimes s̅, s̿, 

respectively, s̅ > s̿, since p̅j > p̿j , and log(x) /x is strictly 

decreasing for x ≥ 3, so that 

log(p̅j)

p̅j
<

log(p̿j)

p̿j
.             (43) 

From (43), after some elementary algebra, 

log(pi) +
(s−pi)

p̅j
log(p̅j) < log(pi) +

(s−pi)

p̿j
log(p̿j)  

or equivalently 

log (pi ∙ p̅j

s−pi
p̅j ) < log (pi ∙ p̿j

s−pi
p̿j ). 

Hence, if there are multiple prime factors of s − pi, only 

the largest one needs to be considered in the minimization 

problem of Proposition 3. 

Remark 7. Since ŝ, given by (28), can be very large, taking 

logarithms of both sides helps in the graphing and computa-

tional minimization of ŝ. Thus, the minimization of ŝ can be 

replaced by that of log(ŝ), given by 

log(ŝ) = log(pi) +
s−pi

pj
∙ log(pj).       (44) 

Example 7. For s = 126, the values of log(ŝ) that corre-

spond to Goldbach coprimes of second-order are shown in 

Table 1. Coprimes of higher order occur for pj < 67, and 

result in higher log(ŝ) values. Four such instances are: 

(pi, pj) = (3, 3) ⟶ log(ŝ) = 46.14 

(pi, pj) = (3, 41) ⟶ log(ŝ) = 12.24 

(pi, pj) = (31, 5) ⟶ log(ŝ) = 34.01 

(pi, pj) = (61, 13) ⟶ log(ŝ) = 16.94. 
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Table 1. Values of 𝑙𝑜𝑔(�̂�) for 𝑠 = 126, 𝑝𝑖 ∈ [3, 61] (rows) and 𝑝𝑗 ∈ [67, 113] (columns), corresponding to the second-order Goldbach 

coprimes of s. 

 67 71 73 79 83 89 97 101 103 107 109 113 

3             

5             

7             

11             

13            7.3 

17           7.5  

19          7.6   

23         7.8    

29       7.9      

31             

37      8.1       

41             

43     8.18        

47    8.22         

53   8.26          

59 8.282            

61             

 

The minimum value of log(ŝ), from Table 1, corresponds 

to the Goldbach pair (13, 113) and is equal to 

log(ŝmin) = log(13) +
126−13

113
∙ log(113) = 7.3    (45) 

All 10 values, in Table 1, are less than log(1262/4) =

8.286, each corresponding to a Goldbach pair of s = 126. 

The bGC may be reformulated in terms of the optimization 

approach described in this section, by expressing Proposition 

3 as a conjecture: 

Conjecture 2 (Goldbach Pair Optimization). For any even 

s ≥ 6, the solution to the minimization of (28) or, equiva-

lently, (44), subject to (27) and (30)-(31), corresponds to a 

Goldbach pair of s. 

4. Hybrid Prime Factorization (HPF) 

In this section, an alternative formulation of the bGC is 

discussed, using the concept of HPF [14, 15]. Consider the 

first n primes, p1, p2, …, pn, in ascending order, where n ≥ 2. 

An HPF is an algebraic expression of the form 

HPF = p1
a1 ∙ p2

a2 ∙ … ∙ pn
an ± p1

b1 ∙ p2
b2 ∙ … ∙ pn

bn    (46) 

where the integers ai, bi satisfy: 

ai, bi ≥ 0                   (47) 

ai  ∙ bi = 0                   (48) 

ai + bi ≥ 1                   (49) 

∑ ai
n
i=1 ≥ 1                   (50) 

∑ bi
n
i=1 ≥ 1                   (51) 

HPF > 1                   (52) 

for i = 1, 2, …, n. Expression (46) is called an HPF of order 

n. 

An HPF of order n is the sum or difference of two products 

of the first n primes, where no common factor exists between 

the product terms, and no prime is excluded. 

For any even s ≥ 6, if there exists an HPF up to dimen-

sionality m = π(s/2), such that 

HPF =
s

2
± p1

b1 ∙ p2
b2 ∙ … ∙ pm

bm < pm+1
2       (53) 
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then expression (46) represents a Goldbach pair. For s = 20, 

the HPF of order 3, given by 2 ∙ 5 ± 3 < 72 represents the 

Goldbach pair (7, 13) [14]. 

Unlike the approaches described in the previous two sec-

tions, the HPF approach is computationally more complex 

and algebraically restrictive. Expression (53) is cumbersome 

to test numerically, especially for large values of s. Alterna-

tive methods that extend the scope of the applicability of (53), 

to more efficiently determine the Goldbach pairs of an even 

number s, can be found in [14]. 

The HPF expression is a useful tool for algebraically rep-

resenting, and searching for, larger primes and coprimes, as 

reported in [15]. In cases where (53) is feasible, bGC follows; 

hence, (53) is a sufficient condition for the bGC. 

5. Prime Symmetry 

Goldbach primes are symmetric with respect to the mid-

point s/2. In this section, this symmetry property is used to 

prove the validity of the bGC within a small interval and 

analyze how Goldbach pairs evolve as the value of s in-

creases. 

5.1. Preliminaries
 

For any Goldbach pair, (pi, pj), of an even s ≥ 6, the re-

lationship 

s

2
− pi = pj −

s

2
                (54) 

is a direct consequence of the bGC, equivalent to 

pi + pj = s.               (55) 

Without loss of generality, let Mi be the distance from the 

midpoint, s 2⁄ , i.e. 

Mi = |
s

2
− pi| = |pj −

s

2
|          (56) 

and let 

pi ≤ pj                   (57) 

so that (56) becomes 

Mi =
s

2
− pi = pj −

s

2
           (58) 

with 

pi ∈ [3, s 2⁄ ]                   (59) 

pj ∈ [s 2⁄ , s − 3]                 (60) 

Mi ∈ [0,
s

2
− 3].                 (61) 

A consequence of (58) is that, if s 2⁄  is odd, then Mi is 

even and vice versa. 

Let m1, m2, n be the number of primes in the left closed 

half-interval, [3, s 2⁄ ] , the right semi-open half-interval, 

(s 2⁄ , s − 3], and [3, s − 3] respectively. Hence, 

n = π(s − 3) − 1 = m1 + m2       (62) 

and 

m1 + m2 = π(s − 3) − 1           (63) 

For each of the m1 primes in [3, s 2⁄ ], define the (possibly 

non-prime) odd reciprocal, qi, of pi, as 

qi = s − pi.                  (64) 

Each of the pairs (pi, qi), i = 1,… ,m1 is either of type p-p, 

if qi is prime, or type p-q, if qi is non-prime. Similarly, each 

of the pairs (qj, pj), j = 1,… ,m2, is either of type p-p, if 

qj = s − pj is prime, or type p-q, if qj is non-prime. 

5.2. Validation of the bGC
 

This reflective correspondence between primes and odd 

composites in the two half-intervals can be used to construct a 

limited-scope proof of the bGC. 

Assuming that the bGC is false, then the number of p-p 

pairs is zero. Therefore, the number of odd composites in 

[9, s − 3] is the sum of three contributions: (1) the reciprocal 

odd composites to the primes in the left half-interval, (2) the 

reciprocal odd composites to the primes in the right 

half-interval, and (3) the pairs of odd composites corre-

sponding to the remaining values of M. A contradiction ar-

gument can be constructed, if the number of composites in 

this third subset is negative, i.e. if the contributions from the 

first two subsets exceed those of all feasible values of M. 

In the special case when s/2 is prime, this approach offers 

an additional benefit, albeit in a narrow interval: for each 

s ∈ [10, 90] where s/2 is prime, there is at least one Goldbach 

pair with different primes. This stronger version of bGC, 

denoted here as bGC+, is equivalent to the bGC, if s 2⁄  is not 

prime; if s 2⁄  is prime, it implies the existence of at least two 

Goldbach pairs. The following proposition summarizes this 

result. 

Proposition 4. The bGC+ is true for every even s ∈

[10, 90]. 

Proof. The proof is based on the prime-prime and 

prime-composite relationships described in this section. It 

shows how a capacity-based argument, combined with prime 

symmetry leads to proof of a stronger version than the bGC, in 

the interval s ∈ [10, 90]. 

Assume that the bGC+ is false. The three cases: s 2⁄  even, 
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s 2⁄  odd non-prime, and s 2⁄  prime, are considered sepa-

rately below. 

(i) If s 2⁄  is even, let M be such that 

M ∈ [0,
s

2
− 3] and M: odd.        (65) 

The number of odd values of M is 

#{M: odd} = 
𝑠

2
−3+1

2
=

s

4
− 1        (66) 

For each of those values of M, there are three possibilities 

for the pair (
s

2
− M,

s

2
+ M), spanning every odd number in 

[3, s − 3]: 

Each prime in [3, s 2⁄ ] has an odd reciprocal composite in 

(s 2⁄ , s − 3], generated by a non-zero value of M; this con-

tributes m1 odd composites in (s 2⁄ , s − 3]. 

Each prime in (s 2⁄ , s − 3] has an odd reciprocal compo-

site in [9, s 2⁄ ], since no odd composite reciprocal < 9 exists; 

this contributes m2 odd composites in [9, s 2⁄ ]. 

Each of the remaining odd values of M, if any, generates a 

pair of composites, (q1, q2) , where q1 ∈ [9, s 2⁄ ]  and 

q2 ∈ (s 2⁄ , s − 3]. Since the values of M that generate the 

composites in the previous two scenarios do not overlap, there 

are C remaining odd values of M, where 

C(s) = 
s

4
− 1 − (m1 + m2).       (67) 

Using (63), expression (67) can be rewritten as 

C = 
s

4
− π(s − 3).             (68) 

To avoid contradiction, (68) should be non-negative. This 

is not the case for small s, e.g. for s = 20, s/2 is even, 

π(17) = 7  and (63) gives C = −2 . The Prime Counting 

Theorem guarantees the existence of some s∗ , such that 

C ≥ 0, for s ≥ s∗. Using elementary computations, it can be 

shown that s∗ = 120. Figure 1 displays the graph of C(s). 

For s ≤ 92, (68) generates a negative value for C, a contra-

diction. 

 
Figure 1. Smooth line graph of 𝐶(𝑠) = 𝑠

4⁄ − 𝜋(𝑠 − 3)  for 𝑠/2 

even. 𝐶(𝑠) < 0 for 𝑠 ≤ 92, 𝑠 = 112, and 𝑠 = 116. 

(ii) If s 2⁄  is odd and non-prime, the range of M is 

M ∈ [0,
s

2
− 3] and M: even         (69) 

and therefore, the number of values M takes is 

#{M: even} = 
𝑠

2
−3

2
+ 1 =

s

4
−

1

2
.        (70) 

As in the previous case, the primes of each half-interval can 

be mirrored to an equal number of odd composites, a total of 

m1 + m2 odd composites. The number of remaining values, 

C𝑒, of M, are 

C𝑒(s) = 
s

4
−

1

2
− (m1 + m2) =

s

4
+

1

2
− π(s − 3).   (71) 

As in the previous case, contradiction is avoided only if (71) 

represents a non-negative quantity. Using similar computa-

tions as before, (71) results in C𝑒 < 0 for s ≤ 86, as shown 

in Figure 2. 

 

Figure 2. Smooth line graph of 𝐶𝑒(𝑠) = 𝑠
4⁄ + 1

2⁄ − 𝜋(𝑠 − 3) for 

𝑠/2 odd and non-prime. 𝐶𝑒(𝑠) < 0 for 𝑠 ≤ 86. 

(iii) If s 2⁄  is prime, the range of M is 

M ∈ [0,
s

2
− 3] and M: even.        (72) 

and therefore, the number of values M takes is 

#{M: even} = 
𝑠

2
−3

2
+ 1 =

s

4
−

1

2
.      (73) 

In this case, there is a trivial Goldbach pair solution, gen-

erated by (58) with M = 0, i.e. pi = pj = s 2⁄ . Therefore, the 

bCG is true. Under the assumption that bGC+ is false, the 

remaining nonzero values, Č𝑒 , of M, after all primes have 

been mapped to odd composites is 

Č𝑒(s) = 
s

4
−

1

2
− (m1 + m2)         (74) 

or 
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Č𝑒(s) = 
s

4
+

1

2
− π(s − 3).            (75) 

Using similar computations as before, Č𝑒(s) is negative 

for s < 86. In this case, the bGC+ is stronger than the bGC, 

and the contradiction implies that there is at least one Gold-

bach pair, other than (s/2, s/2), for every even s ∈ [10, 86], 

with s/2 prime. There are 12 primes in [5, 43] and, therefore, 

it is straightforward to validate that the bGC+ is true for each 

one: 10 = 3 + 7, 14 = 3 + 11, 22 = 3 + 19,…, 38 = 7 +

41,…, 86 = 19 + 67. Hence, the proposition is true. 

The next section extends the above results, by including 

additional information about the distribution of Goldbach and 

non-Goldbach pairs of s, between the two half-intervals. 

5.3. Encoding the Distribution of Goldbach and 

Non-Goldbach Pairs 

The ideas related to the counts of Goldbach and 

non-Goldbach pairs in the two half-intervals, described in the 

previous section, were used to validate a stronger version of 

the bGC for s ∈ [10, 90]. For s > 86, except for s = 112 

and s = 116, as observed from Figure 1, C(s), given by (67), 

and C𝑒(s), given by (71), are non-negative. Therefore, the 

admissible (odd or even) values of M are not exhausted in 

pairs that include one prime, and hence, no counting contra-

diction exists. 

Subsequent analysis of the bGC should therefore include 

additional information, such as the distribution of Goldbach 

and non-Goldbach pairs in the two half-intervals. The for-

mulation approach described in this section is based on a 

distributional encoding of all such pairs of an even number s. 

It is shown that such a representation describes the algebraic 

evolution of Goldbach pairs, over the next s/2 values of s, 

i.e. a portion of the Goldbach pairs of every even s̃ ∈ [s +

2, 3s 2⁄ ) may be predicted and algebraically calculated from 

the distributional encoding of s. 

For any even number s ≥ 6, if qi ∈ [3,
s

2
], qj ∈ [

s

2
, s − 3] 

are odd numbers such that qi + qj = s, the proposed distri-

butional encoding assigns a value to each pair (qi, qj), based 

on type, as shown in the table below. 

Table 2. Encoded values of Goldbach and non-Goldbach pairs. 

𝐪𝐢 𝐪𝐣 Encoded Value 

prime prime 0 

prime composite 1 

composite prime 2 

composite composite 3 

The following example describes the proposed distribu-

tional encoding method. 

Example 8. For s = 20 and s = 30, the two half-intervals, 

corresponding pairs and associated encoded values are shown 

in Tables 3 and 4 respectively. From Table 3, it follows that 

the 4-digit distributional encoding of s = 20  is c𝑑(20) =

0102. 

Table 3. The distributional encoding of 𝑠 = 20 is 𝑐𝑑(20) = 0102. 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 17 0 

2 5 15 1 

3 7 13 0 

4 9 11 2 

From Table 4 below, it follows that the 7-digit distribu-

tional encoding of s = 30 is c𝑑(30) = 1103003. 

Table 4. For 𝑠 = 30, 𝑐𝑑(30) = 1103003. 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 27 1 

2 5 25 1 

3 7 23 0 

4 9 21 3 

5 11 19 0 

6 13 17 0 

7 15 15 3 

The distributional encoding, c𝑑(s), represents the count 

and relative distribution of Goldbach and non-Goldbach pairs 

of s. It therefore includes more information than pair-counts, 

and as such, it can be a useful tool for the analysis of the bGC, 

as shown below. 

Given an even s ≥ 6 and its distributional encoding, c𝑑(s), 

the pair-count information described in Section 5.2 can be 

recovered, as follows. For s/2 even, 

#c𝑑(s) = k0 + k1 + k2 + k3 =
s

4
− 1       (76) 

k0 + k1 = m1                (77) 

k0 + k2 = m2                (78) 

where #c𝑑(s) is the length of c𝑑(s), i.e. the number of its 
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digits, and k0, k1, k2, k3 are the number of digits equal to 0, 1, 

2 and 3 respectively. Similar expressions may be derived for 

the other two cases: s/2 odd and non-prime, and s/2 prime. 

From the above description of c𝑑(s) , a mathematically 

equivalent statement to the bGC is that “for any even number 

s ≥ 6, its distributional encoding, c𝑑(s), includes at least one 

0”. In the previous two examples, c𝑑(20), c𝑑(30) have 2 

and 3 zeroes respectively. If s/2 is odd, the encodings of s and 

s+2 have identical lengths, as is the case for c𝑑(18) = 1003 

and c𝑑(20) = 0102. This implies that by using the length of 

the encoding, s can be recovered with an error of ±2, i.e. if 

#c𝑑(s) = 4, then s = 18 or s = 20. In general, 

s = 3 + 4 ∙ [#c𝑑(s)] ± 1.              (79) 

The inability to recover s from #c𝑑(s) does not impede the 

analysis of how pairs evolve, as the value of s increases. 

The distributional information encoded in c𝑑(s), combined 

with the uncertainty about the primeness of s − 1, and the 

assumption that c𝑑(s) includes at least one zero, for any even 

s ≥ 6, are used to model the evolution of c𝑑(s) digits for 

larger values of s, in the next section. 

5.4. Modeling the Evolution of 𝐜𝒅(𝐬) 

The process by which the digits that comprise c𝑑(s) 

evolve to generate portions of c𝑑(s + 2), c𝑑(s + 4) etc., is 

described below. Consider the example s∗ = 30, shown in 

Table 4 of the previous section, and s∗ + 2 = 32, shown in 

Table 5 below. 

Table 5. Half-intervals and distributional encoding of 𝑠 = 32. 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 29 0 

2 5 27 1 

3 7 25 1 

4 9 23 2 

5 11 21 1 

6 13 19 0 

7 15 17 2 

The qicolumn in Tables 4 and 5 remains unchanged, while 

the entries of column qj, in Table 4, have moved down by one 

row in Table 5. The increase in the value of s results in a new 

entry, 29 = s∗ − 1, at the top of column qj in Table 5. Since 

it is impossible to positively predict if the new entry is prime 

or not, based on the knowledge of the pairs in Table 4, it is 

reasonable to expect that the distributional encoding of s∗ 

includes the necessary information to ensure the presence of 

at least one 0 in c𝑑(s∗ + 2), i.e. to ensure the continued va-

lidity of the bGC for s∗ + 2. Hence, the uncertainty about the 

primality of s∗ − 1, combined with the assumption that the 

bGC holds for s∗ + 2, suggests making the hypothesis that 

the information ensuring the presence of at least one zero in 

c𝑑(s∗ + 2) is embedded in c𝑑(s∗). To describe this in more 

detail, it is necessary to first identify what code-strings, in 

c𝑑(s∗), ensure that a 0 is propagated, or created, in c𝑑(s∗ + 2). 

This is shown in Table 6 below. 

Table 6. The 4 propagation substrings in 𝑐𝑑(𝑠∗) , ensuring the 

presence of a Goldbach pair in 𝑠∗ + 2, i.e. the presence of a 0 digit 

in 𝑐𝑑(𝑠∗ + 2). 

# 𝐜𝒅(𝐬∗) substring 𝐜𝒅(𝐬∗ + 𝟐) substring 

1 00 x0 

2 01 x0 

3 20 x0 

4 21 x0 

The first three substrings propagate an existing Goldbach 

pair, while the last one creates a new one. Table 6 is the result 

of two observations: (1) either all, or all but the last one of the 

entries of column qi, corresponding to the half-intervals of s∗ 

and s∗ + 2, are identical; and, (2) the entries of column qj 

shift down by one row. Therefore, if c𝑑(s∗)  contains the 

substrings 00, 01, 20 or 21, it follows from Table 6 that 

c𝑑(s∗ + 2) also includes the substring x0, where “x” denotes 

0, 1, 2 or 3. Thus, the presence of any propagation substring in 

c𝑑(s∗) ensures the presence of at least one Goldbach pair for 

s∗ + 2, i.e. the validity of the bGC for s∗ + 2 is embedded in 

the distributional information contained in c𝑑(s∗), regardless 

of the primality or not of s∗ − 1. 

In all previous encoding examples, there is at least one 

propagation substring present in the distributional encoding of 

s, shown here in bold typeface: c𝑑(20) = 0𝟏𝟎2, c𝑑(30) =

1𝟏𝟎3𝟎𝟎3, c𝑑(32) = 𝟎𝟏𝟏𝟐𝟏𝟎𝟐. 

From the above, it is concluded that the universal validity 

of the bGC, combined with the uncertainty of the primality of 

s∗ − 1 results in the presence of a propagating substring in 

c𝑑(s∗). Since this uncertainty also applies to subsequent en-

tries, it follows that at least one of the 0 digits in c𝑑(s∗ + n), 

where 

2 ≤ n ≤ max(qi) + max(𝑞𝑗)        (80) 

and n  is even, is generated by the evolution of the 

half-interval columnal entries. This implies that as s∗ + n 

increases, up to its maximum value, the evolution of Gold-

bach pairs can be predicted from the distributional infor-
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mation encoded in c𝑑(s∗) . Since qi ∈ [3,
s∗

2
]  and qj ∈

[
s∗

2
, s∗ − 3], from (80) it follows that 

2 ≤ n(even) ≤
3s∗

2
− 3             (81) 

which determines the length of the evolution window for 

s∗ + n. 

The evolution of pairs described above can be quantified, 

based on considerations similar to those of Table 6, as shown 

in Table 7 below. 

Table 7. The 4 m-order propagation substrings in 𝑐𝑑(𝑠∗), ensuring 

the presence of a Goldbach pair in 𝑠∗ + 2(𝑛 + 1), i.e. the presence 

of a 0 digit in 𝑐𝑑(𝑠∗ + 2(𝑛 + 1)). 

# 𝐜𝒅(𝐬∗) substring 𝐜𝒅(𝐬∗ + 𝟐(𝐧 + 𝟏)) substring 

1 0X10 x0 

2 0X11 x0 

3 2X10 x0 

4 2X11 x0 

where X1 is any substring of length n ≥ 0, and x is 0, 1, 2 or 3. 

Table 7 is a generalization of Table 6 (n = 0); if c𝑑(s∗) con-

tains a substring of length n ≥ 0, between digits of any of the 4 

propagation substrings in Table 7, then c𝑑(s∗ + 2(n + 1)) 

includes at least one Goldbach pair. For example, if c𝑑(s∗) 

contains the substring 030, then c𝑑(s∗ + 4) has at least one 0. 

The propagation logic for n ≥ 1 is similar to that which un-

derlies Table 6. 

Because of the continuous expansion and simultaneous 

folding of the two half-intervals, as the value of s increases, 

the evolution of the last pair, i.e. the last digit of c𝑑(∙) follows 

a special rule, described in Table 8 below. The logic is similar 

to the previous two tables, e.g. if s*/2 is even and the last digit 

of c𝑑(s∗) is 0 or 2, then the last entry, q̃ = s∗/2 + 1, of 

column qj, is a prime number, and therefore the last digit of 

c𝑑(s∗ + 2) is 0, since it corresponds to the prime-prime pair 

(q̃, q̃). 

Table 8. Evolution of the last digit of 𝑐𝑑(𝑠∗ + 2), given the last digit 

of 𝑐𝑑(𝑠∗) for s/2 = even. 

s/2 = even 

# 𝐜𝒅(𝐬∗) last digit 𝐜𝒅(𝐬∗ + 𝟐) last digit 

1 0 0 

2 1 3 

s/2 = even 

# 𝐜𝒅(𝐬∗) last digit 𝐜𝒅(𝐬∗ + 𝟐) last digit 

3 2 0 

4 3 3 

Table 9. Evolution of the last digit of 𝑐𝑑(𝑠∗ + 2), given the last two 

digits of 𝑐𝑑(𝑠∗), for s/2 = odd. 

s/2 = odd 

# 𝐜𝒅(𝐬∗) ends in 𝐜𝒅(𝐬∗ + 𝟐) last digit 

1 00, 20 0 

2 10, 30 1 

3 03, 23 2 

4 13, 33 3 

The following table describes the rules by which any two 

digit substrings of c𝑑(s∗) determine the evolution of a digit 

in c𝑑(s∗ + 2). This ruleset is complete, i.e. it includes every 

two-digit substring combination. 

Table 10. Evolution of a 𝑐𝑑(𝑠∗) substring to a 𝑐𝑑(𝑠∗ + 2) digit. 

# 𝐜𝒅(𝐬∗) substring 𝐜𝒅(𝐬∗ + 𝟐) digit 

1 00,01,20,21 0 

2 10,11,30,31 1 

3 02,03,22,23 2 

4 12,13,32,33 3 

Table 6 corresponds to the first row of Table 10; the next 3 

rows of Table 10 are obtained using similar logic. 

Tables 8−10 describe a complete set of rules for the evolu-

tion of a rolling portion of c𝑑(s) , from c𝑑(s∗) , where 

s∗ + 2 ≤ s ≤
3s∗

2
− 3. Within this range of s, the distribu-

tional information in c𝑑(s∗) determines the evolution of pairs 

in a portion of c𝑑(s), ensuring the continued presence of at 

least one Goldbach pair, regardless of the primality (or not) of 

the new entries, given by s∗ − 1 , s∗ + 1 , s∗ + 3  etc., in-

serted at the top of column qj. 

Example 9. The evolution of pairs of s* = 20, in Table 11 

below, as s varies through the evolution window, i.e. for 

s = 22, 24, 26, is shown in Tables 12-14. 
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Table 11. Pairs and 𝑐𝑑(𝑠∗) digits for 𝑠∗ = 20. 

𝐬∗ = 𝟐𝟎  

# 𝐪𝐢 𝐪𝐣 Value 

1 3 17 0 

2 5 15 1 

3 7 13 0 

4 9 11 2 

Table 12. Pairs and 𝑐𝑑(𝑠) digits for 𝑠 = 22. 

𝐬 = 𝟐𝟐 = 𝐬∗ + 𝟐  

# 𝐪𝐢 𝐪𝐣  Value 

1 3 19 0 

2 5 17 0 

3 7 15 1 

4 9 13 2 

5 11 11 0 

Table 13. Pairs and 𝑐𝑑(𝑠) digits for 𝑠 = 24. 

𝐬 = 𝟐𝟒 = 𝐬∗ + 𝟒  

# 𝐪𝐢 𝐪𝐣 Value 

1 3 21 1 

2 5 19 0 

3 7 17 0 

4 9 15 3 

5 11 13 0 

Table 14. Pairs and 𝑐𝑑(𝑠) digits for 𝑠 = 26. 

𝐬 = 𝟐𝟔 = 𝐬∗ + 𝟔 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 23 0 

2 5 21 1 

3 7 19 0 

4 9 17 2 

𝐬 = 𝟐𝟔 = 𝐬∗ + 𝟔 

# 𝐪𝐢 𝐪𝐣 Value 

5 11 15 1 

6 13 13 0 

In Tables 11-14, the pairs of s = 20 are marked in bold blue 

and the associated digits of c𝑑(s) in bold. Tables 12-14 show 

the evolution of those pairs, and the associated c𝑑(s) digits, 

as the value of s increases from 22 to 26, respectively. This 

evolution follows the rules described in Tables 8−10. The 

existence of at least one Goldbach pair for s = 22 and s = 24 is 

guaranteed, since c𝑑(20) includes the substrings 01 and 010. 

From Tables 8 and 9, the last digits of c𝑑(22) , c𝑑(24) 

evolve in such a way that are both equal to 0. Hence, the 

presence of at least one 0 digit in c𝑑(22) , c𝑑(24)  and 

c𝑑(26) is a direct consequence of how c𝑑(20) evolves, as 

the value of s increases. 

The last 4 digits of c𝑑(22) evolve from c𝑑(20) as follows: 

each two digit substring in c𝑑(20) generates one digit of 

c𝑑(22) based on Table 10, i.e. 01→0, 10→1, 02→2, and the 

last digit of c𝑑(20) generates the last digit of c𝑑(22), 2→0, 

from Table 8, so that the evolved (in bold) portion of c𝑑(22) 

is x0120, where x is the digit associated with the pair (3,19), 

which corresponds to the new entry, i.e. the number 19, at the 

top of column q𝑗. Since it is not possible to know, a priori, if 

each new entry is prime or not, the assumption that the bGC 

holds for s = 22, implies that at least one of the last 4 digits 

of c𝑑(22) is zero. 

A similar argument holds for the last 3 digits of c𝑑(24), i.e. 

01→0, 12→3, and the last digit of c𝑑(24) is generated from 

the last two-digit substring of c𝑑(22), based on Table 9, is 

20→0, so that the evolved portion of c𝑑(24) is xx030. Fi-

nally, the presence of a zero in c𝑑(26)  is guaranteed, as 

shown in Table 7, since the last digit of the evolved portion of 

c𝑑(24) is 0. 

The boundary pair (9, 17), in table 14, corresponds to en-

tries in both columns of Tables 11-13. However, for s = 28, 

the boundary pair becomes (11, 17), corresponding to entries 

only from the second column of Table 11. 

The evolution window of s∗, expressed by (80)-(81), does 

not extend beyond max(qi) + max(𝑞𝑗), because if 

s > max(qi) + max(𝑞𝑗) 

then each evolved pair, (q̃i, q̃j), of s is generated from the 

folded entries of the 𝑞𝑗 column of s∗, i.e. q̃i,j ≥ s∗/2, and 

not from each column of s∗/2 , i.e. one entry from each 

half-interval. This can be observed for s = 18, shown in Table 

15 
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Table 15. Pairs and 𝑐𝑑(𝑠) digits for 𝑠 = 18. 

s = 18 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 15 1 

2 5 13 0 

3 7 11 0 

4 9 9 3 

by examining the evolution of its entries outside of the 

evolution window, e.g. for s > max(qi) + max(qj) = 24 . 

Consider s = 30, shown in Table 16, where only one evolved 

pair, (15, 15), originates in the right half-interval column of s 

= 18. 

Table 16. Pairs and 𝑐𝑑(𝑠) digits for 𝑠 = 30. 

s = 30 

# 𝐪𝐢 𝐪𝐣 Value 

1 3 27 1 

2 5 25 1 

3 7 23 0 

4 9 21 3 

5 11 19 0 

6 13 17 0 

7 15 15 3 

For s = 30, the one remaining evolved pair is not of type 0, 

hence the distributional information embedded in c𝑑(18) 

does not suffice to guarantee at least one 0 digit in the evolved 

portion of c𝑑(30). 

In summary, the analysis in this section supports a novel 

hypothesis, expressed below, as a conjecture. 

Conjecture 3 (Goldbach Pair Evolution). The existence of 

at least one 0 digit in c𝑑(s + n), where 

2 ≤ n ≤
3s∗

2
− 3                (82) 

and n is even, is encoded in the distributional information, 

c𝑑(s) , of s  and is expressed in the evolution of its 

half-interval pairs, according to the propagation rules de-

scribed in Tables 8−10. 

The above conjecture was programmatically implemented 

using Microsoft’s Visual Basic for Applications (VBA) and 

tested on a personal computer system, for all even s ∈

[2, 2000]. A downloadable list of primes, available online, 

was used [19]. The cumulative runtime for all evolution sce-

narios was approximately 40 hours. 

6. Analytic Approximation 

Prior research has established a link between expressing the 

prime-counting function, π(s), and the bGC analytically [13]. 

The quantity 

T̂(n) = 1 − δ[∏ ((n/i) − ⌊n/i⌋)
⌊n 2⁄ ⌋
i=2 ]      (83) 

where n ≥ 4, δ(∙) denotes the Kronecker delta function, i.e. 

δ(0) = 1  and δ(x) = 0  for x ≠ 0 , and ⌊x⌋  is the integer 

part of x, is an algebraic representation of a primality test 

function, i.e. T̂(n) = 1 if n is prime and T̂(n) = 0 other-

wise. 

For any even s ≥ 6, an algebraic representation of the bGC 

is 

D(s) = 0                  (84) 

where 

D(s) = ∏ [P(i) + P(s − i)]s 2⁄
i=3

          (85) 

P(n) = 1 − T̂(n)              (86) 

since it is necessary and sufficient to have P(i) and P(s − i) 

equal to zero, for some i, i.e. P(i) + P(s − i) = 0 [13]. 

Similarly, an algebraic representation of the 

prime-counting function may be generated from (83), as fol-

lows 

π(s) = 2 + ∑ T̂(j)s
j=4             (87) 

where s ≥ 4 is even. 

The algebraic expressions (84) and (87) are nonlinear, 

non-smooth representations of the bGC and π(s)  respec-

tively. In Sections 6.1 and 6.2, transitional and rotational 

shifts are used to generate smooth approximations of T̂(n). 

6.1. Translational Shifts 

The Kronecker delta and integer part operators can be ap-

proximated using the un-normalized Gaussian distribution, 

given by 

Gσ(x) = exp(−
x2

2σ2).             (88) 

As the value of σ > 0 decreases, Gσ(∙) approximates the 

Kronecker delta function, i.e. 
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δ(x) ≅ exp(−
x2

2σ2) for σ ≪ x.        (89) 

The integer part operation is usually approximated by a series 

of translationally-shifted Heaviside (unit step) functions, where 

each function is approximated by integrating a shifted instance of 

the normalized Gaussian density function, Ĝσ(x), given by 

Ĝσ(x) =
1

σ√2π
exp(−

x2

2σ2)           (90) 

as follows 

⌊x⌋ ≅ ∑ ∫ Ĝσ(y − k)
𝑥

0
dy1≤𝑘≤𝑥 for σ ≪ x, k.    (91) 

or equivalently 

⌊x⌋ ≅ ∑ Φσ(x, k)1≤𝑘≤𝑥 for σ ≪ x.        (92) 

where 

Φσ(x, k) = ∫ Ĝσ(y − k)
𝑥

−∞
dy            (93) 

is the shifted cumulative function. 

An approximation of T̂(n) is obtained, by using (89) and 

(92), in (83), for 𝜎 ≪ n, by writing 

T̂(n) ≅ 1 −Gσ(∏ ((n/i) − ⌊n/i⌋)
⌊n 2⁄ ⌋
i=2 ).     (94) 

The integer-part operation, ⌊n 2⁄ ⌋ , can be omitted, as 

shown below 

T̂(n) ≅ 1 −Gσ (∏ F(n, i)2≤i≤
n

2




)          (95) 

where 

F(n, i) = (n/i) − ⌊n/i⌋             (96) 

includes an integer-part operation that needs to be approxi-

mated. By using (92), the above quantity is approximated by 

F(n, i) ≅ (n/i) − ∑ Φσ(n/i, k)1≤k≤n/i .     (97) 

Alternatively, the shifted Heavyside step function can be 

approximated by 

Φ̂λ(x, k) =
1

1+exp[−(x−k)/𝜆]
 for 𝜆 ≪ x, k.      (98) 

which does not require integration. The parameters σ and λ do 

not have to be independent for the approximating functions to 

work, and therefore it can be assumed that λ = σ, so that an 

alternative approximation for F(n, i) is 

F(n, i) ≅ (n/i) − ∑ Φ̂σ(n/i, k)1≤k≤n/i       (99) 

which can be evaluated without performing any integration. 

The type of approximation described above generates un-

controllable rounding errors, irrespectively of the value of σ. 

The root cause of this problem is that any such approximation 

of F(n, i) results in a numerical error if n/i ∈ ℤ. For ex-

ample, if n = 6 and i = 3, from (99) it follows that 

F(6,2) ≅ 3 − ∑ Φ̂σ(3, k)1≤k≤3 .       (100) 

From (98), by using a large enough λ = σ, the values of 

Φ̂σ(3,1) and Φ̂σ(3,2) are very close to 1, but Φ̂σ(3,3) =

1/2, independently of σ, generating an approximation error of 

0.5. A similar issue arises if, instead of (98), expression (92) is 

used to approximate the integer part operation, since (90) is 

symmetric around 0, i.e. Φσ(k, k) = 1 2⁄ . 

The numerical errors described above can be circumvented 

by observing that the argument of the delta function, in (83), 

may be approximated by a sum of shifted delta functions. 

Since (n/i) − ⌊n/i⌋ equals 0, if n/i ∈ ℤ, and some value in 

the open interval (0, 1), if n/i ∉ ℤ, it follows that T̂(n) may 

be expressed as a nested function of a shifted series of δ(∙), 

approximated by G̃(x), as shown below. 

Consider the expression 

T̃(n) ≃ ∑ G̃ (G̃(n/i))2≤i≤n/2         (101) 

where 

G̃(x) = ∑ Gσ(x − k)1≤k≤max(1,x 2⁄ )        (102) 

and σ ≪ n. From (101), if n is prime, every n/i  takes a 

non-integer value, therefore G̃(n/i) and T̂(n) are close to 0. 

If n is not prime, at least one of the values for n/i is an in-

teger > 1 and therefore G̃(n/i) is close to 1, and T̂(n) ob-

tains some nonzero value, explained below. 

Expression (101) may be used in conjunction with (84)-(86) 

to test the validity of the bGC. The following graph shows 

how such an approximation performs. Figure 3 shows the 

graph of T̃(j) + T̃(s − j), for s = 30, which equals 0, if (j, s 

– j) is a Goldbach pair, otherwise its value is equal to the 

number of factors of j and s – j, respectively, that are less than 

j and s – j. The value of 1/(2σ2) = 100. 

 
Figure 3. Smooth line graph of the approximation of �̃�(𝑗) + �̃�(𝑠 −

𝑗) for s = 30 and j = 3,…,27. 
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As expected, from the discussion in Section 5, the graph of 

Figure 3 is symmetric with respect to the mid-point, s/2 = 15, 

and touches the horizontal axis, i.e. has a value of zero, only 

on those (symmetric) prime values, for which Goldbach pairs 

exist, i.e. 7, 11, 13 and 17, 19, 23. Hence, the number of 

Goldbach pairs is equal to the number of times the graph 

touches the x axis to the left of the midpoint. Equivalently, 

given an even s ≥ 6, the roots of 𝑓(𝑗) = T̃(j) + T̃(s − j) are 

symmetric with respect to s/2 and correspond to the Goldbach 

primes of s. 

The nonzero values of the graph in Figure 3 are interpreted 

as follows: if 𝑓(m) is nonzero, its value corresponds to the 

sum of factors of m and s – m, that are smaller than m and s – 

m, respectively. For example, 𝑓(12) = 8 , since 12 has 4 

factors (2, 3, 4 and 6), and 18 = 30 − 12 has 4 factors (2, 3, 

6 and 9). For m = 3, 𝑓(3) = 2, and since 3 is prime, it has no 

factors less than its value; 27 has 2 factors: 3 and 9. Also, 

since 𝑓(j) is symmetric about s/2, it follows that 𝑓(m) =

𝑓(s − m), for m ∈ [3, s − 3]. 

A similar approach can be used to generate an approxima-

tion of the prime counting function, π(n), for n ≥ 6. Since 

T̃(n), given by (101), is close to zero, if n is prime, and non-

zero otherwise, it follows that π(n) may be approximated by 

π̂(n), where 

π(n) ≅  π̂(n) = 2 + ∑ Gσ(T̃(j))n
j=4        (103) 

or, more efficiently, through the recursion 

π̂(n + 1) = π̂(n) + Gσ (T̃(n + 1)).       (104) 

The graph in Figure 4 shows a comparison of the above 

approximation to π(n), for n ∈  [10, 100]. To further reduce 

numerical errors induced in the approximations (103)-(104) 

for higher values of n, the value of σ decreases, as the value of 

n increases, i.e. 1/(2σ2) = 5 ∙ n , generating a maximum 

error of |π(n) − π̂(n)| < 4 ∙ 10−12. For higher values of n, σ 

can be further optimized, to result in low approximation errors 

without numerical overflows. 

 
Figure 4. Graph of the approximation, �̂�(𝑛), of the prime-counting 

function, 𝜋(𝑛), for 𝑛 ∈  [10, 100]. The line graph corresponds to 

the values of �̂�(𝑛) and the bars to 𝜋(𝑛). The approximation error is 

< 4 ∙ 10−12. 

6.2. Rotational Shifts 

Rotational-shift approximations have some advantages 

compared to those based on translational-shift ones. They are 

not as prone to numerical errors due to overflow as transla-

tional-shift approximations. They allow for additional func-

tional representations, such as trigonometric functions and 

Fourier series. Rotational-shift approximations also enable a 

comparison to the harmonic approximation of the prime 

counting function, π(n), generated by adding the spectral 

contributions of the non-trivial zeroes of the Riemann zeta 

function [20]. 

Consider the expression 

F̂(n) = ∏ [μw ∙ sin (
n

i
∙ π)]2≤i≤n/2        (105) 

where μw > 0 is a scaling parameter, described below, and n 

≥ 4. If n is prime, then F̂(n) ≠ 0, otherwise F̂(n) = 0. By 

using (105), the prime counting function π(n) can be ex-

pressed by 

π(n) = ∑ [1 − δ (F̂(k))]2≤k≤n        (106) 

and approximated by 

π(n) ≅ π̃(n) = ∑ [1 − Gσ(F̂(k))]2≤k≤n      (107) 

where use of a small value for σ > 0 lowers the numerical 

errors resulting from approximating δ(∙) with Gσ(∙). 

If μw = 1 and n is prime, as the value of n increases, the 

product |∏ [sin (
n

i
∙ π)]2≤i≤n/2 | ≪ 1 , and (105) leads to 

numerical errors. This is circumvented by using μw > 1, so 

that the contribution of a prime, n, to F̂(n) is amplified. 

From numerical simulations, for the approximations to work, 

the value of μw should be μw > log(
𝑛

𝑖
). If μw takes larger 

values, i.e. μw = n/i, the values of F̂(n), for larger primes, 

are also high, leading to numerical errors. In simulation tests, 

the scaling factor μw = [log(
𝑛

𝑖
)]

2

 was found to perform 

satisfactorily, i.e. (105) generates consistent separation be-

tween primes and non-primes, with insignificant numerical 

errors. 

In Figure 5, π̃(n), given by (107), with 1/(2σ2) = 50, is 

compared to the prime counting function, π(n), for n ∈

[10, 100]. 
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Figure 5. Graph of the approximation, �̂�(𝑛), of the prime-counting 

function, 𝜋(𝑛), for 𝑛 ∈  [10, 100]. The line graph corresponds to 

the values of �̂�(𝑛), and the bars to 𝜋(𝑛). The approximation error is 

effectively zero, i.e. < 10−30. 

7. Conclusions 

In the preceding five sections, an equal number of ap-

proaches, distinct but interrelated, have been used to discuss, 

analyze, and reformulate the bGC. From the union of char-

acteristic insights into the bGC, offered by each, a number of 

broader conclusions may be drawn. 

The projection approach, confirms and enhances the links 

between primes and optimization, reported in earlier research. 

It shows that, as discussed in Section 2, the set of primes, 

ℙ ⊂ ℤ, is a unique quantum projection of ℤ, in a dual sense: ℙ 

has the smallest possible cardinality and the lowest possible 

member values with which to algebraically represent, most 

efficiently, any member of ℤ. This unique combination of 

quantum economy and efficiency may be the most profound 

characteristic of primes; this has not been systematically 

explored from a wider range of mathematical and scientific 

perspectives. 

Integer optimization and number theory are closely related 

areas of mathematics. They are linked over different analyti-

cal approaches, as supported by findings in this paper and 

prior research. The fundamental mathematical properties of 

primes, related to arithmetic representational efficiency, ex-

pressed by the FTA (multiplicative representation) and the 

bGC (additive representation), is connected to unique solu-

tions of linear and nonlinear integer optimization problems. 

The bGC is a critical part of the larger optimal representa-

tion problem. Effectively, the bGC states that any positive 

integer, except 0 and 1, may be algebraically expressed by 

using the least possible number of operations, i.e. at most two 

addition operations, performed among the members of a rel-

atively sparse subset, ℙ ⊂ ℤ, having the fewest and smallest 

members. This unique and universal, additive and multipli-

cative, representational efficiency of primes renders the bGC 

and the FTA as fundamental blueprints of mathematics. 

Viewed from this perspective, the approaches described in 

this paper, help highlight, connect and analyze fundamental 

aspects of the bGC and its powerful, ubiquitous and 

far-reaching properties, not only into the field of number 

theory and mathematics, but also to other scientific areas, 

where the efficiency of number representation is of critical 

importance, such as cryptography and computer science. 

The prime symmetry of Goldbach primes is especially in-

teresting, since primes, in general, are not distributed using 

repeating or symmetrical patterns. This paper, and in partic-

ular, Section 5, contributes to a body of research focused on 

gaining a deeper understanding of how Goldbach prime 

symmetry affects the values, distribution and relationships of 

the members of this unique, sparse subset of integers, the 

prime numbers. Ultimately, such an understanding informs 

how mathematically quantifiable and scientifically measura-

ble concepts with universal scope, such as sym-

metry/asymmetry and order/disorder are perceived, modeled 

and analyzed, both scientifically and philosophically. 

The fundamental building blocks of computer science and 

computer technology have been Boolean algebra, binary logic 

and high-density, integrated, digital microprocessor archi-

tecture, which evolved from rudimentary analog, transis-

tor-based processors. This digital revolution, and the associ-

ated rapid technological development it brought with it, is 

based on a mathematical representation and logic system that 

exclusively uses 0 and 1, two non-negative integers that are 

not members of ℙ. Binary computer systems have greatly 

advanced our technological capabilities in every single area of 

science and technology. However, their computational inef-

ficiency, as evidenced by their high-energy consumption 

requirements, is starting to become a concern, especially with 

the development of large data centers, data mining and pro-

cessing facilities, and rapid AI technology advancements. 

Transitioning out of an exclusively binary, linear computa-

tional architecture, and more into a prime-based, quantum 

computing architecture, might present a more viable pathway 

for achieving computational efficiencies of scale in the future. 

Such a capability is needed to efficiently and effectively 

tackle vastly more complex problems, such as climate change, 

the nature of space, gravity, dark matter and energy, quantum 

physics and artificial intelligence. 

Abbreviations 

AI Artificial Intelligence 

bGC Binary Goldbach Conjecture 

bGC+ Strong Binary Goldbach Conjecture 

FTA Fundamental Theorem of Arithmetic 

HPF Hybrid Prime Factorization 

tGC Tertiary Goldbach Conjecture 

RH Riemann Hypothesis 

VBA Visual Basic for Applications 

Author Contributions 

Ioannis Papadakis is the sole author. The author read and 

approved the final manuscript. 

http://www.sciencepg.com/journal/mcs


Mathematics and Computer Science  http://www.sciencepg.com/journal/mcs 

 

113 

Conflicts of Interest 

The author declares no conflicts of interest. 

References 

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of 

Numbers, Oxford University Press New York NY, USA; 2008 

(6th edition), p. 23. 

[2] E. W. Weisstein, Goldbach Conjecture. MathWorld-A Wolfram 

Web Resource. [Online]. Available  

https://mathworld.wolfram.com/GoldbachConjecture.html 

[3] C. K. Caldwell, The Prime Pages Goldbach's conjecture. 

[Online]. Available  

https://t5k.org/glossary/page.php?sort=GoldbachConjecture 

[4] C. K. Caldwell, The Prime Pages Prime Conjectures and Open 

Questions. [Online]. Available  

https://t5k.org/notes/conjectures/ 

[5] T. Oliveira e Silva, S. Herzog and S. Pardi, Empirical verifi-

cation of the even Goldbach conjecture and computation of 

prime gaps up to 4∙1018. Mathematics of Computation, 83 

(2014), 2033-2060, November 2013. Available  

https://www.ams.org/journals/mcom/2014-83-288/S0025-571

8-2013-02787-1/S0025-5718-2013-02787-1.pdf 

[6] H. Montgomery and R. Vaughan, The exceptional set of 

Goldbach's problem. Acta Arithmetica 27.1 (1975) 353-370. 

http://eudml.org/doc/205349 

[7] H. A. Helfgott, The ternary Goldbach conjecture is true. (2013) 

arXiv 1312.7748. [Online]. Available  

https://arxiv.org/abs/1312.7748 

[8] H. A. Helfgott, The ternary Goldbach Problem, Ann. of Math. 

Studies (in publication). Available  

https://webusers.imj-prg.fr/~harald.helfgott/anglais/publicatio

ns.html 

[9] J. Derbyshire, Prime Obsession Bernhard Riemann and the 

Greatest Unsolved Problem in Mathematics; Plume Washing-

ton, DC, USA; 2004. 

[10] H. M. Edwards, Riemann’s Zeta Function, New York NY, USA 

Academic Press, 1964 (Dover edition reprint, 2001), pp. 1-54. 

[11] B. Mazur and W. Stein, Prime Numbers and the Riemann 

Hypothesis, UK Cambridge University Press, 2017 (3rd print-

ing). 

[12] M. Cully-Hugill and A. W. Dudek, An explicit mean-value 

estimate for the Prime Number Theorem in intervals. Journal 

of the Australian Mathematical Society (2023), pp. 1–15.  

https://doi.org/10.1017/S1446788723000113 

[13] I. N. M. Papadakis, On the Universal Encoding Optimality of 

Primes. Mathematics 2021, 9 (24), 3155.  

https://doi.org/10.3390/math9243155 

[14] I. N. M. Papadakis, Algebraic Representation of Primes by 

Hybrid Factorization. Math. Comput. Sci. 2024, 9(1), 12-25.  

https://doi.org/10.11648/j.mcs.20240901.12 

[15] I. Papadakis, Representation and Generation of Prime and 

Coprime Numbers by Using Structured Algebraic Sums. Math. 

Comput. Sci. 2024, 9(3), 57-63.  

https://doi.org/10.11648/j.mcs.20240903.12 

[16] W. K. Nicholson, Linear Algebra with Applications, Lyryx 

Open Edition, p. 306 (Corollary 5.4.4). [Online]. Available 

https://lyryx.com/wp-content/uploads/2018/01/Nicholson-Ope

nLAWA-2018A.pdf 

[17] Wikipedia, Overdetermined system. [Online]. Available 

https://en.wikipedia.org/w/index.php?title=Overdetermined_s

ystem&oldid=1235933306 

[18] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill 

New York, NY, USA; 1976 (3rd edition), p. 228. [Online]. 

Available: 

https://www.gbv.de/dms/ilmenau/toc/254172466.PDF 

[19] C. K. Caldwell, The Prime Pages The first fifty million primes. 

[Online]. Available https://t5k.org/lists/small/millions/ 

[20] H. Riesel and G. Göhl, Some Calculations Related to Rie-

mann’s Prime Number Theorem. Mathematics of Computation 

1970, vol. 24, no. 112, 969-983.  

https://doi.org/10.2307/2004630 

Research Field 

Ioannis Papadakis: Number Theory, Goldbach Conjecture, Op-

timization, Information Theory, Adaptive and Self-organizing Sys-

tems 

 

http://www.sciencepg.com/journal/mcs

