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Abstract 

The study presents an interactive 3D web-based application designed to visualize atomic structures according to Bohr’s Model 

using Three.js and WebGL. The primary aim of the project is to enhance educational tools in atomic physics by providing an 

interactive, real-time representation of atomic structures. This tool allows users to explore atomic models dynamically, offering 

a detailed view of electron orbits, nuclear structure, and electron movement. The visualization system is built around Three.js, 

a JavaScript library for 3D rendering, and incorporates force-directed algorithms for the realistic positioning of protons and 

neutrons within the nucleus. These particles are placed using Eades’ 1984 force-directed graph algorithm, which simulates 

physical forces to arrange the particles in a minimal energy configuration. The electron orbits are generated procedurally using 

circular subdivision methods, ensuring that electrons appear to move around the nucleus in defined energy levels, as proposed 

by Bohr. The application also accounts for performance optimization and user interaction. It ensures frame rate independence 

by calculating delta time between render cycles, providing smooth motion even on devices with varying processing 

capabilities. The user can interact with the model, adjusting the camera view to zoom in or rotate the atomic structure, thus 

fostering a deeper understanding of atomic physics. The study also highlights the integration of TypeScript, which improves 

maintainability and type safety in the development process. The application’s usability has been tested with engineering 

students, confirming its effectiveness as an educational tool. Future work includes expanding the model to incorporate quantum 

mechanical adaptations and potentially integrating augmented reality for more immersive learning experiences. In conclusion, 

this research contributes to the field of computer-aided education by providing an interactive 3D atomic visualization tool. It 

offers an engaging and effective method for learning about atomic structures and their behavior, making complex scientific 

concepts more accessible. 
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1. Introduction 

The Bohr Model, introduced in 1913 by Niels Bohr, de-

scribes an atomic structure where electrons orbit the nucleus 

in defined energy levels [1]. As Figure 1 shows. 

While this model has been refined by quantum mechanics, 
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it remains essential for conceptualizing atomic behavior, 

especially in education. Existing atomic visualization tools 

often rely on static 2D representations, which lack interactiv-

ity and depth perception. This study proposes an interactive 

3D visualization tool that allows users to explore atomic 

structures dynamically. 

The application is designed using Three.js, an indus-

try-standard JavaScript library for 3D rendering, and incor-

porates force-directed algorithms for realistic nucleus particle 

arrangement [2, 3]. 

 
Figure 1. Bohr-Model Representation. 

2. Related Work 

Several studies have explored computer-based atomic vis-

ualizations. Foley et al. (2020) discussed the importance of 

real-time rendering in scientific visualization. Angel (2018) 

demonstrated interactive simulations using OpenGL, but 

lacked browser-based implementation. More recently, Hearn 

& Baker (2022) introduced WebGL-based atomic rendering, 

though without procedural nucleus generation. Our approach 

integrates real-time rendering, dynamic nucleus positioning, 

and adaptive electron motion in a fully interactive web envi-

ronment [4, 5]. 

The integration of 3D visualization into education has been 

explored in systems like NPIPVis [6], which combines NBA 

data analysis with machine learning to create interactive ed-

ucational tools. While NPIPVis focuses on sports analytics, 

our work shares its goal of enhancing comprehension through 

real-time interactivity but applies this principle to atomic 

physics. Similarly, PartLabeling [7] introduces a 3D label 

management framework for complex models, emphasizing 

user-centric design. Our application adopts a comparable 

philosophy by enabling users to interactively select and render 

atoms, though we prioritize simplicity and pedagogical clarity 

over multi-label systems. 

Efficient rendering is critical for web-based 3D applica-

tions. For instance, Depth of Field Rendering Using Multi-

layer-Neighborhood Optimization [8] improves visual realism 

through advanced post-processing, whereas our work priori-

tizes frame rate independence to ensure smooth animations 

across devices. The latter aligns with the performance goals of 

Efficient Binocular Rendering of Volumetric Density Fields 

[9], which optimizes rendering for virtual reality (VR). While 

our tool does not target VR, we similarly leverage adaptive 

algorithms (e.g., Eades’ force-directed method) to balance 

computational load and visual fidelity. 

3. Discussion 

In this research, we discuss various methods such as: 

1. Development Environment: Implemented using Three.js, 

WebGL, and TypeScript for enhanced maintainability 

[10]. 

2. Nucleus Generation: Uses Eades’ 1984 force-directed 

graph algorithm to position protons and neutrons dy-

namically [11]. 

3. Electron Orbits: Procedural orbit generation based on 

circular subdivision methods [12]. 

4. Rendering & Performance Optimization: Frame 

rate-independent electron movement using delta time 

calculations for smooth motion. 

5. User Interaction: Camera controls via OrbitControls for 

zooming and exploration [13, 14]. 

3.1. Three.js 

Three.js is a cross-browser JavaScript library and applica-

tion programming interface used to create and display ani-

mated 3D and 2D computer graphics in a web browser using 

WebGL JavaScript API. 

It provides a lot of features including scene creation, dif-

ferent camera types, materials, geometries, lighting, texturing, 

interactivity and much more. 

A basic Three.js application consists of a scene, camera and 

renderer 

1. Scene: represents a scene which contains other 3D ob-

jects. 

2. Camera: mimics Camera point of view for the applica-

tion which also describes the used rendering projection 

and other properties. 

3. Renderer: an object that describes the rendering behav-

ior of the application. 

4. Object3D: the base class for most objects in three.js and 

provides a set of properties and methods for manipu-

lating objects in 3D space. 

A high-level overview of the application execution flow 

looks like this: 

//main.ts 

// atom generation 

const { nucleus, maxOrbitRadius, nucleusRadius, orbits, shells } = 

generateAtom("oganesson"); 

// initial camera positioning and camera controls adjustments 

controls.minDistance = nucleusRadius + 2; 

controls.maxDistance = maxOrbitRadius * 2.5; 

camera.position.multiplyScalar(maxOrbitRadius * 2.5); 

// adding generated objects (meshes) to the scene 
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shells.forEach((shell) => shell.forEach((electron) => sce-

ne.add(electron))); 

orbits.forEach((orbit) => scene.add(orbit)); 

nucleus.forEach((particle) => scene.add(particle)); 

// draw function 

function draw(): void { 

requestAnimationFrame(draw); 

tick(); 

for (let i = 0; i < shells.length; i++) 

for (let j = 0; j < shells[i].length; j++) { 

shells[i][j].userData.dir.applyAxisAngle(UP, degToRad(-SPEED 

* deltaTime)); 

shells[i][j].position.copy(shells[i][j].userData.dir); 

} 

renderer.render(scene, camera); 

} 

draw(); 

We start the rendering loop by calling the draw function 

which handles scene updates for a single render cycle. Then, 

we pass the same draw function as a as a callback to 

requestAnimationFrame method which tells the browser to 

perform the callback before the next repaint. The frequency of 

the callback function calls generally matches device screen 

refresh rate. 60hz is the most common refresh rate (60 render 

cycles/frames per second) but higher refresh rates like 120hz 

and 144hz are also widely used [15]. 

This effectively creates an infinite render loop and syncs it 

with browser repaints while also matching device screen 

refresh rate to ensure smooth and proper rendering loop as 

opposed to other methods like intervals and timeouts which 

does not count for device refresh rate and can cause incon-

sistent results. We will dive deeper into other details of the 

application throughout this paper. 

3.2. Nucleus Generation 

The nucleus consists of protons and neutrons based on 

atomic mass and atomic number so we needed a way to posi-

tion these particles in 3D space. 

There are two main approaches to achieve this: using pre-

defined positions or position the particles algorithmically. 

Manual positioning of each particle in every atom is not an 

option especially for larger atoms that requires a lot of work to 

find proper positions which is nearly impossible to do so we 

went with the second approach. The proposed solution was 

using one of the Force directed graph algorithms which are 

used for graph drawing in an aesthetically pleasing way. The 

idea was first used by Eades (Ead84) using physical and at-

tractive forces. 
The Ead84 algorithm is succinctly summarized as follows: 
“To embed a graph, we replace the vertices by steel rings 

and replace each edge with a spring to form a mechanical 

system. the vertices are placed in some initial layout and let go 

so that the spring forces on the rings move the system to a 

minimal energy state”. 

Each node is affected by repulsive and attractive forces 

based on the graph edges and how nodes are connected [16]. 

(i). Repulsive Force 

Applied between non-adjacent nodes based on the distance 

between them: 

𝐹𝑟𝑒𝑝(𝑢, 𝑣) =  
𝐶𝑟𝑒𝑝

‖𝑃𝑣−𝑃𝑢‖2
. 𝑃𝑢𝑃𝑣̂ ….        (1) 

1. 𝐶𝑟𝑒𝑝: repulsive constant (2 is usually a proper value as 

stated by Eades), higher values cause more repulsion 

and thus affecting the end result of the graph layout. 

2. 𝑃𝑣, 𝑃𝑢: node positions. 

3. repulsive force change is inversely proportional to the 

squared distance between the corresponding nodes. 

4. the further the distance gets, the smaller the force will 

be. 

The following function takes 𝐶𝑟𝑒𝑝, 𝑃𝑣, 𝑃𝑢 and return a 

vector representing the repulsive force between the past po-

sitions: 

//calculateRepulsiveForce.ts 

function calculateRepulsiveForce(repulsiveConstant: number, 

from: THREE.Vector3, to: THREE.Vector3) { 

const displacement = new THREE.Vector3().subVectors(to, 

from); 

const squaredDistance = displacement.lengthSq(); 

return displace-

ment.normalize().multiplyScalar(repulsiveConstant / 

squaredDistance); 

} 
(ii). Attractive Force 

Applied between adjacent nodes using a logarithmic 

strength spring. 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔(𝑢, 𝑣) =  𝐶𝑠𝑝𝑟𝑖𝑛𝑔. log (
‖𝑃𝑣−𝑃𝑢‖

𝑙
) . 𝑃𝑢𝑃𝑣̂  (2) 

1. 𝐶𝑠𝑝𝑟𝑖𝑛𝑔: spring constant (1 is usually a proper value as 

stated by Eades). 

2. 𝑙: ideal spring length in equilibrium state. 

if the distance is equal to 𝑙, no force will be applied: 

‖𝑃𝑣 − 𝑃𝑢‖ = 𝑙
𝑦𝑖𝑒𝑙𝑑𝑠
→   log (

‖𝑃𝑣−𝑃𝑢‖

𝑙
) = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 0  

if the distance is greater than 𝑙, the logarithm will be positive 

and the spring pulls: 

‖𝑃𝑣 − 𝑃𝑢‖ > 𝑙
𝑦𝑖𝑒𝑙𝑑𝑠
→   log (

‖𝑃𝑣−𝑃𝑢‖

𝑙
) > 0

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹𝑠𝑝𝑟𝑖𝑛𝑔 > 0  

This function takes parameters for 𝐶𝑠𝑝𝑟𝑖𝑛𝑔  and 𝑙  and 

return the spring force between two positions: 

//calculateSpringForce.ts 

function calculateSpringForce(springConstant:number, l:number, 

from:THREE.Vector3, to:THREE.Vector3) { 

const displacement = new THREE.Vector3().subVectors(to, 

from); 

const distance = displacement.length(); 

return displacement.normalize().multiplyScalar(springConstant * 

Math.log(distance / l));} 
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Finally, we have to subtract 𝐹𝑟𝑒𝑝  from 𝐹𝑠𝑝𝑟𝑖𝑛𝑔  since 

pushing and pulling of adjacent nodes is already handled by 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 and we don't want to apply both forces: 

𝐹𝑎𝑡𝑡𝑟(𝑢, 𝑣) = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔(𝑢, 𝑣) − 𝐹𝑟𝑒𝑝(𝑢, 𝑣)     (3) 

Calculating and applying these forces for multiple itera-

tions will result a specific graph layout based on chosen val-

ues for 𝐶𝑟𝑒𝑝 , 𝐶𝑠𝑝𝑟𝑖𝑛𝑔  and 𝑙  which can be tweaked to 

achieve the layout you want. In our case we have set every 

particle at a fixed distance and random direction from the 

world origin (0,0,0) and performed 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 for all particles 

(nodes) with the world origin while also applying 𝐹𝑟𝑒𝑝 for 

each particle with all other particles. We have chosen our 

constant values as follows: 

1. 𝐶𝑟𝑒𝑝 = 0.02  

2. 𝐶𝑠𝑝𝑟𝑖𝑛𝑔 =  0.5  

3. 𝑙 = 0.5  

To avoid shifts and wrong or inconsistent results for each 

iteration, we had to only apply forces after calculating them 

for each particle and after 100 iteration we achieve the 

spherical shape of the Nucleus. 

The following function implements the algorithm by taking 

constant’s values and an atom parameter which points to one 

of the properties of our JSON data source (Period-

ic-Table-JSON) that contains information about every ele-

ment in the periodic table to calculate the layout and return the 

final meshes array: 

//generateNucleus.ts 

function generateNucleus(atom:keyof typeof atoms, itera-

tions:number, l:number, repulsiveConstant:number, springCon-

stant:number) { 

const atomConfig = atoms[atom]; 

const nucleus: Particle[] = []; 

for (let i = 0; i < atomConfig.atomic_number; i++) { 

const randomPosition = new 

THREE.Vector3().randomDirection().multiplyScalar(10); 

const proton = generateParticle("proton", randomPosition); 

nucleus.push(proton); 

} 

for (let i = 0; i < Math.floor(atomConfig.atomic_mass - 

atomConfig.atomic_number); i++) { 

const randomPosition = new 

THREE.Vector3().randomDirection().multiplyScalar(10); 

const neutorn = generateParticle("neutorn", randomPosition); 

nucleus.push(neutorn); 

} 

for (let i = 0; i < iterations; i++) { 

const forces = []; 

for (let j = 0; j < nucleus.length; j++) { 

const attractiveForce = calculateSpringForce(springConstant, l, 

nucleus[j].position, ZERO); 

for (let k = 0; k < nucleus.length; k++) { 

if (j === k) continue; 

const repulsiveForce = calculateRepul-

siveForce(repulsiveConstant, nucleus[k].position, nucle-

us[j].position); 

attractiveForce.add(repulsiveForce); 

} 

forces.push(attractiveForce); 

} 

for (let j = 0; j < nucleus.length; j++) 

nucleus[j].position.add(forces[j]); 

} 

return nucleus; 

} 

Finally, we add these meshes to the scene for rendering: 

currentAtom = gener-

ateAtom(element.getAttribute("data-element") as keyof typeof at-

oms); 

currentAtom.shells.forEach((shell) => shell.forEach((electron) => 

scene.add(electron))); 

currentAtom.orbits.forEach((orbit) => scene.add(orbit)); 

currentAtom.nucleus.forEach((particle) => scene.add(particle)); 

Repulsive and attractive forces are approximately repre-

sented with the following Figure 2. 

 
Figure 2. Nucleus generation forces for Helium nucleus. 

The generation process looks like Figure3. shows. 

 
Figure 3. Generation process of Oganesson nucleus. 
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3.3. Electrons Visualization 

Bohr model states that electrons are distributed based on 

their energy in predefined energy levels called shells. which 

plays a fundamental role in understanding atomic structure and 

electrons behavior within the atom. Simulating this behavior is 

achieved by generating orbits first, then placing electrons and 

moving them in circular motion each render cycle. 

3.3.1. Drawing the Orbits 

This is achieved by utilizing a procedural approach based on the 

concept of circle subdivision which involves generating a circle 

iteratively by equally distributing vertices around the center of the 

circle and then connecting them to form a circular shape. 

First, since we know that a radian angle of 2𝜋 is exactly equal 

to one turn of a circle, we can divide this value by the number of 

subdivisions to get the required step between each two adjacent 

vertices. Then, we position the vertices away from the center at a 

distance equal to the radius of the circle and according to the 

calculated step. Finally, we connect these vertices together to 

form a circular line loop. This example demonstrates the process 

for 8 subdivisions as Figure 4 illustrates. 

 
Figure 4. Orbit generation for eight subdivisions. 

We can control the number of subdivisions to adjust the 

resolution of the generated mesh, Higher number of subdivi-

sions creates a smoother mesh. The following function takes 

radius and resolution parameters to generate the orbit mesh 

using the built-in LineLoop class provided by Three.js to create 

a closed line from vertices based on their order in the buffer: 

//generateOrbit.ts 

export default function generateOrbit(distance: number, resloution: 

number) { 

const points = []; 

for (let i = 0; i < resloution; i++) { 

const point = new THREE.Vector3() 

.copy(RIGHT) 

.applyAxisAngle(UP, degToRad((360 / resloution) * i)) 

.multiplyScalar(distance) 

points.push(point); 

} 

const geomentry = new 

THREE.BufferGeometry().setFromPoints(points); 

const material = new THREE.LineBasicMaterial({ color: 

0x808080 }); 

return new THREE.LineLoop(geomentry, material); 

} 

 
Figure 5. Argon atom orbits generated using 24 subdivisions. 

A resolution of 24 is mostly suitable for small orbits since 

connected vertices are close to each other thus spanning rela-

tively short distance compared to longer circumference of 

outer orbits which are more jagged as we can see in the Fig-

ures 5, 6. 

 
Figure 6. Oganesson atom orbits generated using 24 subdivisions. 
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As we can notice, the outermost orbit quality is lower 

compared to the innermost orbit because the distance between 

vertices is longer, we have set a default resolution value of 

100 vertices per orbit since it suits all orbits. 

3.3.2. Moving Electrons Around the Nucleus 

This is achieved inside the draw function by updating 

electrons rotation on each render cycle. We are utilizing the 

userData object which is a predefined empty object (by de-

fault) for every mesh generated by THREE.js that can be used 

to store any information required for application logic. 

In our case, we are storing a displacement vector from the 

center of the atom (world origin) and applying a small rotation 

to it on each draw cycle then, we apply the new displacement 

as the new position of the electron. And the movement of 

electrons will be appeared like Figure 7 shows. 

//main.ts 

function draw(): void { 

requestAnimationFrame(draw); 

tick(); 

for (let i = 0; i < shells.length; i++) { 

for (let j = 0; j < shells[i].length; j++) { 

shells[i][j].userData.dir.applyAxisAngle(UP, degToRad(-SPEED 

* deltaTime)); 

shells[i][j].position.copy(shells[i][j].userData.dir); 

} 

} 

renderer.render(scene, camera); 

} 

 
Figure 7. Electron movement of Hydrogen atom. 

3.4. Framerate Independence & Time Scaling 

Realtime applications render cycles must have consistent 

updates that are independent from the rendering framerate 

whether the application is running on a high-end device that is 

capable of pushing high number of frames per second to the 

screen or a lower end device that is less capable. 

To achieve framerate independent updates, we calculate the 

time elapsed between each two render cycles (the current one 

and the one before it) which is commonly referred to as delta 

time in game engines such as Unity 3D. 

This is very close to how a real clock ticks, we start by 

setting a time and deltatime variables equal to zero on ini-

tialization. Then, on each cycle we subtract time from 

performace.now() which returns the number of milliseconds 

passed since the start of the application to get the deltatime 

between cycles. After that, we update time to the current time 

and when the function is called again, the value will be up-

dated and the next deltatime will be calculated: 

//time.ts 

let time = 0; 

let deltaTime = 0; 

let timeScale = 1; 

const scales = [0.25, 0.5, 0.75, 1, 2, 4, 8]; 

function tick() { 

// Milliseconds to seconds convertion 

deltaTime = (performance.now() * 0.001 - time) * timeScale; 

time = performance.now() * 0.001; 

} 

Simply multiply any value by deltaTime to make it fram-

erate independent. 

The upcoming examples compares speed change for 1 se-

cond performed on different framerates to show the effect of 

delta timing as Figure 8 illustrates. 

We are setting a consistent linear framerate in each case for 

demonstration purposes but in real applications the framerate 

can be changing all the time based on various performance 

factors (processing power, memory, rendering complexi-

ty …etc.). 

 
Figure 8. Delta timing effect for different framerates. 

We can see that: 

1. Speed per second is consistent regardless of framerate. 

2. Higher framerate results in smoother updates and better 

user experience without interfering with the application 

consistency. 

Similarly, timescale is used to control visualization speed 

1. timescale = 1: normal simulation speed. 

2. timescale > 1: faster simulation. 
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3. timescale < 1: slower simulation (slow motion). 

The Figure 9 shows the effective of choosing different time 

scales values. 

 
Figure 9. Carbon atom rendering at different time scales. 

3.5. Leveraging TypeScript to Enhance Type 

Safety and Maintainability in Three.js 

Development 

TypeScript has emerged as a popular choice for developing 

JavaScript applications, particularly in projects where type 

safety and code maintainability are paramount. TypeScript 

introduces static type checking, which involves annotating 

variables and functions with their expected data types. These 

annotations are checked by the TypeScript compiler, pre-

venting type errors and ensuring type safety during devel-

opment. 

Three.js offers a rich ecosystem of components and func-

tionalities for building 3D scenes and interactions. However, 

the dynamic nature of JavaScript can lead to type-related 

issues, such as type mismatches and unexpected behavior. 

These issues can make it difficult to debug and maintain code, 

particularly in large and complex projects. 

3.5.1. Type Annotations 

TypeScript type annotations are applied throughout the 

project, explicitly defining the types of variables, functions, 

and objects. This ensures type safety and helps prevent 

type-related errors during development. 

3.5.2. Type Guards and Type Inference 

TypeScript provides type guards and type inference 

mechanisms, allowing developers to write more concise and 

expressive code while maintaining type safety. These features 

enable dynamic checks based on variable values and improve 

code readability. The integration of TypeScript into the project 

involves applying type annotations to various components, 

including: 

Geometry Definitions: Geometry objects, such as spheres, 

cubes, and meshes, are annotated with their corresponding 

data types, ensuring type safety in operations involving ge-

ometry creation, manipulation, and rendering. 

Material Properties: Material properties, such as color, 

texture, and lighting parameters, are explicitly typed, pre-

venting type mismatches and ensuring consistent usage. 

Using TypeScript's static type checking has significantly 

reduced the occurrence of type errors while improving code 

reliability and reducing debugging time. Type annotations 

have made the code more self-documenting, making it easier 

for developers to understand and maintain the codebase. 

TypeScript's type system has facilitated code refactoring, 

allowing us to make changes more confidently without in-

troducing type errors. TypeScript's comprehensive type sys-

tem and debugging tools provide a more robust and efficient 

development experience. 

3.6. User-Driven Zoom and Exploration 

The built-in OrbitControls object handles camera controls 

to adjust the camera's position and orientation according to 

user input which enables users to freely explore the scene and 

zoom in on specific parts of the atom. 

We are setting a minimum and maximum distance con-

straints based on viewed atom properties to eliminate unex-

pected and annoying behaviors such as zooming too far away 

from the atom or zooming in to a point where the camera gets 

inside the nucleus mesh. 

//main.ts 

controls.minDistance = nucleusRadius + 2; 

controls.maxDistance = maxOrbitRadius * 2.5; 

We also initialize the camera at a distance from the world 

origin proportional to current atom radius and thus keeping 

the whole atom inside camera view frustum and avoid the 

confusion of going outside screen borders when the applica-

tion starts. The aspect ratio is based on browser window to 

avoid distortion and providing a responsive experience on 

various screen sizes and aspect ratios. 

The following piece of code initializes a new 

PerespectiveCamera and OrbitControls objects with the cor-

rect properties and aspect ratio and listens to the browser 

window resize events to make required adjustments: 

//MainCamera.ts 

export const camera = new THREE.PerspectiveCamera(75, win-

dow.innerWidth / window.innerHeight, 0.1, 100); 

export const controls = new OrbitControls(camera, canvas); 

camera.position.copy(UP) 

camera.lookAt(ZERO); 

window.addEventListener("resize", () => { 

camera.aspect = window.innerWidth / window.innerHeight; 

camera.updateProjectionMatrix(); 

}); 

//MainScene.ts 

renderer = new THREE.WebGLRenderer({ canvas, antialias: true, 

alpha: true }); 

renderer.toneMapping = THREE.ACESFilmicToneMapping; 
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renderer.setSize(window.innerWidth, window.innerHeight); 

renderer.setPixelRatio(window.devicePixelRatio); 

window.addEventListener("resize", () => { 

renderer.setSize(window.innerWidth, window.innerHeight); 

}); 

Let us go through the oxygen atom as Figure 10 shows. 

 
Figure 10. Automatic height adjustment for a low radius atom 

(Oxygen). 

The camera always maintains a reasonable distance from 

the rendered atom even when rendering a larger atom such as 

Oganesson atom in Figure 11. 

 
Figure 11. Automatic height adjustment for a low radius atom 

(Oganesson). 

This perspective projection mode used by the Perspec-

tiveCamera is designed to mimic the way the human eye sees. 

It is the most common projection mode used for rendering a 

3D scene. 

The camera view frustum is defined by its field of view, 

aspect ratio, near and far clipping planes which maps points 

from 3D space to 2D screen coordinates, determining how 

objects appear in the rendered scene. 

4. Results 

The implemented system provides smooth and accurate 

atomic representations. Performance evaluations show that 

using delta time calculations maintains consistent animation 

across devices. A usability study with engineering students 

confirmed that the interactive features significantly enhanced 

comprehension of atomic structures. 

The current version of the application is accessible at 

bohr-model-visualization.vercel.app, serving as a valuable 

resource for learning and demonstrations. Its user-friendly 

interface enables users to select any atom from the periodic 

table and renders it with a simple click of a button, much like 

the way Bohr diagrams are presented to students. The source 

code is available on our GitHub repository 

github.com/mohamadtaky/bohr-model-Visualization, Please 

be aware that the current status of the project is subject to 

modifications, as additional enhancements and features are 

still planned to be added. The existing state should not be 

considered as the final version, as further refinements and 

updates are anticipated. 

5. Conclusion 

This research introduces a real-time interactive 3D visual-

ization tool for Bohr’s atomic model. By leveraging WebGL 

and force-directed algorithms, the project enhances educa-

tional tools for atomic physics. Future improvements include 

quantum mechanical adaptations and augmented reality inte-

grations. 

Abbreviations 

VR Virtual Reality 

3D Three Dimensional 

JSON JavaScript Object Notation 

Three.js JavaScript Library Used for Creating and 

Displaying 3D Graphics and Animations in Web 

Browsers 
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