
Mathematics and Computer Science

2025, Vol. 10, No. 3, pp. 43-51

https://doi.org/10.11648/j.mcs.20251003.11

*Corresponding author:

Received: 08 April 2025; Accepted: 19 April 2025; Published: 22 May 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Interactive 3D Visualization of Bohr's Atomic Model:

Enhancing Educational Tools with WebGL and

Force-Directed Algorithms

Zaid Kraitem
*

, Hamza Alhaj, Mohamad Taky

Department of Information Engineering, Al-Wataniya Private University, Hama, Syria

Abstract

The study presents an interactive 3D web-based application designed to visualize atomic structures according to Bohr’s Model

using Three.js and WebGL. The primary aim of the project is to enhance educational tools in atomic physics by providing an

interactive, real-time representation of atomic structures. This tool allows users to explore atomic models dynamically, offering

a detailed view of electron orbits, nuclear structure, and electron movement. The visualization system is built around Three.js,

a JavaScript library for 3D rendering, and incorporates force-directed algorithms for the realistic positioning of protons and

neutrons within the nucleus. These particles are placed using Eades’ 1984 force-directed graph algorithm, which simulates

physical forces to arrange the particles in a minimal energy configuration. The electron orbits are generated procedurally using

circular subdivision methods, ensuring that electrons appear to move around the nucleus in defined energy levels, as proposed

by Bohr. The application also accounts for performance optimization and user interaction. It ensures frame rate independence

by calculating delta time between render cycles, providing smooth motion even on devices with varying processing

capabilities. The user can interact with the model, adjusting the camera view to zoom in or rotate the atomic structure, thus

fostering a deeper understanding of atomic physics. The study also highlights the integration of TypeScript, which improves

maintainability and type safety in the development process. The application’s usability has been tested with engineering

students, confirming its effectiveness as an educational tool. Future work includes expanding the model to incorporate quantum

mechanical adaptations and potentially integrating augmented reality for more immersive learning experiences. In conclusion,

this research contributes to the field of computer-aided education by providing an interactive 3D atomic visualization tool. It

offers an engaging and effective method for learning about atomic structures and their behavior, making complex scientific

concepts more accessible.

Keywords

Computer Graphics, Bohr Model, Atom Visualization, WebGL, THREE.js, Interactive Simulation

1. Introduction

The Bohr Model, introduced in 1913 by Niels Bohr, de-

scribes an atomic structure where electrons orbit the nucleus

in defined energy levels [1]. As Figure 1 shows.

While this model has been refined by quantum mechanics,

http://www.sciencepg.com/journal/mcs
http://www.sciencepg.com/journal/247/archive/2471003
http://www.sciencepg.com/
https://orcid.org/0000-0002-7498-0932
https://orcid.org/0000-0002-7498-0932
https://orcid.org/0000-0002-7498-0932

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

44

it remains essential for conceptualizing atomic behavior,

especially in education. Existing atomic visualization tools

often rely on static 2D representations, which lack interactiv-

ity and depth perception. This study proposes an interactive

3D visualization tool that allows users to explore atomic

structures dynamically.

The application is designed using Three.js, an indus-

try-standard JavaScript library for 3D rendering, and incor-

porates force-directed algorithms for realistic nucleus particle

arrangement [2, 3].

Figure 1. Bohr-Model Representation.

2. Related Work

Several studies have explored computer-based atomic vis-

ualizations. Foley et al. (2020) discussed the importance of

real-time rendering in scientific visualization. Angel (2018)

demonstrated interactive simulations using OpenGL, but

lacked browser-based implementation. More recently, Hearn

& Baker (2022) introduced WebGL-based atomic rendering,

though without procedural nucleus generation. Our approach

integrates real-time rendering, dynamic nucleus positioning,

and adaptive electron motion in a fully interactive web envi-

ronment [4, 5].

The integration of 3D visualization into education has been

explored in systems like NPIPVis [6], which combines NBA

data analysis with machine learning to create interactive ed-

ucational tools. While NPIPVis focuses on sports analytics,

our work shares its goal of enhancing comprehension through

real-time interactivity but applies this principle to atomic

physics. Similarly, PartLabeling [7] introduces a 3D label

management framework for complex models, emphasizing

user-centric design. Our application adopts a comparable

philosophy by enabling users to interactively select and render

atoms, though we prioritize simplicity and pedagogical clarity

over multi-label systems.

Efficient rendering is critical for web-based 3D applica-

tions. For instance, Depth of Field Rendering Using Multi-

layer-Neighborhood Optimization [8] improves visual realism

through advanced post-processing, whereas our work priori-

tizes frame rate independence to ensure smooth animations

across devices. The latter aligns with the performance goals of

Efficient Binocular Rendering of Volumetric Density Fields

[9], which optimizes rendering for virtual reality (VR). While

our tool does not target VR, we similarly leverage adaptive

algorithms (e.g., Eades’ force-directed method) to balance

computational load and visual fidelity.

3. Discussion

In this research, we discuss various methods such as:

1. Development Environment: Implemented using Three.js,

WebGL, and TypeScript for enhanced maintainability

[10].

2. Nucleus Generation: Uses Eades’ 1984 force-directed

graph algorithm to position protons and neutrons dy-

namically [11].

3. Electron Orbits: Procedural orbit generation based on

circular subdivision methods [12].

4. Rendering & Performance Optimization: Frame

rate-independent electron movement using delta time

calculations for smooth motion.

5. User Interaction: Camera controls via OrbitControls for

zooming and exploration [13, 14].

3.1. Three.js

Three.js is a cross-browser JavaScript library and applica-

tion programming interface used to create and display ani-

mated 3D and 2D computer graphics in a web browser using

WebGL JavaScript API.

It provides a lot of features including scene creation, dif-

ferent camera types, materials, geometries, lighting, texturing,

interactivity and much more.

A basic Three.js application consists of a scene, camera and

renderer

1. Scene: represents a scene which contains other 3D ob-

jects.

2. Camera: mimics Camera point of view for the applica-

tion which also describes the used rendering projection

and other properties.

3. Renderer: an object that describes the rendering behav-

ior of the application.

4. Object3D: the base class for most objects in three.js and

provides a set of properties and methods for manipu-

lating objects in 3D space.

A high-level overview of the application execution flow

looks like this:

//main.ts

// atom generation

const { nucleus, maxOrbitRadius, nucleusRadius, orbits, shells } =

generateAtom("oganesson");

// initial camera positioning and camera controls adjustments

controls.minDistance = nucleusRadius + 2;

controls.maxDistance = maxOrbitRadius * 2.5;

camera.position.multiplyScalar(maxOrbitRadius * 2.5);

// adding generated objects (meshes) to the scene

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

45

shells.forEach((shell) => shell.forEach((electron) => sce-

ne.add(electron)));

orbits.forEach((orbit) => scene.add(orbit));

nucleus.forEach((particle) => scene.add(particle));

// draw function

function draw(): void {

requestAnimationFrame(draw);

tick();

for (let i = 0; i < shells.length; i++)

for (let j = 0; j < shells[i].length; j++) {

shells[i][j].userData.dir.applyAxisAngle(UP, degToRad(-SPEED

* deltaTime));

shells[i][j].position.copy(shells[i][j].userData.dir);

}

renderer.render(scene, camera);

}

draw();

We start the rendering loop by calling the draw function

which handles scene updates for a single render cycle. Then,

we pass the same draw function as a as a callback to

requestAnimationFrame method which tells the browser to

perform the callback before the next repaint. The frequency of

the callback function calls generally matches device screen

refresh rate. 60hz is the most common refresh rate (60 render

cycles/frames per second) but higher refresh rates like 120hz

and 144hz are also widely used [15].

This effectively creates an infinite render loop and syncs it

with browser repaints while also matching device screen

refresh rate to ensure smooth and proper rendering loop as

opposed to other methods like intervals and timeouts which

does not count for device refresh rate and can cause incon-

sistent results. We will dive deeper into other details of the

application throughout this paper.

3.2. Nucleus Generation

The nucleus consists of protons and neutrons based on

atomic mass and atomic number so we needed a way to posi-

tion these particles in 3D space.

There are two main approaches to achieve this: using pre-

defined positions or position the particles algorithmically.

Manual positioning of each particle in every atom is not an

option especially for larger atoms that requires a lot of work to

find proper positions which is nearly impossible to do so we

went with the second approach. The proposed solution was

using one of the Force directed graph algorithms which are

used for graph drawing in an aesthetically pleasing way. The

idea was first used by Eades (Ead84) using physical and at-

tractive forces.
The Ead84 algorithm is succinctly summarized as follows:
“To embed a graph, we replace the vertices by steel rings

and replace each edge with a spring to form a mechanical

system. the vertices are placed in some initial layout and let go

so that the spring forces on the rings move the system to a

minimal energy state”.

Each node is affected by repulsive and attractive forces

based on the graph edges and how nodes are connected [16].

(i). Repulsive Force

Applied between non-adjacent nodes based on the distance

between them:

𝐹𝑟𝑒𝑝(𝑢, 𝑣) =
𝐶𝑟𝑒𝑝

‖𝑃𝑣−𝑃𝑢‖2
. 𝑃𝑢𝑃𝑣̂ …. (1)

1. 𝐶𝑟𝑒𝑝: repulsive constant (2 is usually a proper value as

stated by Eades), higher values cause more repulsion

and thus affecting the end result of the graph layout.

2. 𝑃𝑣, 𝑃𝑢: node positions.

3. repulsive force change is inversely proportional to the

squared distance between the corresponding nodes.

4. the further the distance gets, the smaller the force will

be.

The following function takes 𝐶𝑟𝑒𝑝, 𝑃𝑣, 𝑃𝑢 and return a

vector representing the repulsive force between the past po-

sitions:

//calculateRepulsiveForce.ts

function calculateRepulsiveForce(repulsiveConstant: number,

from: THREE.Vector3, to: THREE.Vector3) {

const displacement = new THREE.Vector3().subVectors(to,

from);

const squaredDistance = displacement.lengthSq();

return displace-

ment.normalize().multiplyScalar(repulsiveConstant /

squaredDistance);

}
(ii). Attractive Force

Applied between adjacent nodes using a logarithmic

strength spring.

𝐹𝑠𝑝𝑟𝑖𝑛𝑔(𝑢, 𝑣) = 𝐶𝑠𝑝𝑟𝑖𝑛𝑔. log (
‖𝑃𝑣−𝑃𝑢‖

𝑙
) . 𝑃𝑢𝑃𝑣̂ (2)

1. 𝐶𝑠𝑝𝑟𝑖𝑛𝑔: spring constant (1 is usually a proper value as

stated by Eades).

2. 𝑙: ideal spring length in equilibrium state.

if the distance is equal to 𝑙, no force will be applied:

‖𝑃𝑣 − 𝑃𝑢‖ = 𝑙
𝑦𝑖𝑒𝑙𝑑𝑠
→ log (

‖𝑃𝑣−𝑃𝑢‖

𝑙
) = 0

𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 0

if the distance is greater than 𝑙, the logarithm will be positive

and the spring pulls:

‖𝑃𝑣 − 𝑃𝑢‖ > 𝑙
𝑦𝑖𝑒𝑙𝑑𝑠
→ log (

‖𝑃𝑣−𝑃𝑢‖

𝑙
) > 0

𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 > 0

This function takes parameters for 𝐶𝑠𝑝𝑟𝑖𝑛𝑔 and 𝑙 and

return the spring force between two positions:

//calculateSpringForce.ts

function calculateSpringForce(springConstant:number, l:number,

from:THREE.Vector3, to:THREE.Vector3) {

const displacement = new THREE.Vector3().subVectors(to,

from);

const distance = displacement.length();

return displacement.normalize().multiplyScalar(springConstant *

Math.log(distance / l));}

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

46

Finally, we have to subtract 𝐹𝑟𝑒𝑝 from 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 since

pushing and pulling of adjacent nodes is already handled by

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 and we don't want to apply both forces:

𝐹𝑎𝑡𝑡𝑟(𝑢, 𝑣) = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔(𝑢, 𝑣) − 𝐹𝑟𝑒𝑝(𝑢, 𝑣) (3)

Calculating and applying these forces for multiple itera-

tions will result a specific graph layout based on chosen val-

ues for 𝐶𝑟𝑒𝑝 , 𝐶𝑠𝑝𝑟𝑖𝑛𝑔 and 𝑙 which can be tweaked to

achieve the layout you want. In our case we have set every

particle at a fixed distance and random direction from the

world origin (0,0,0) and performed 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 for all particles

(nodes) with the world origin while also applying 𝐹𝑟𝑒𝑝 for

each particle with all other particles. We have chosen our

constant values as follows:

1. 𝐶𝑟𝑒𝑝 = 0.02

2. 𝐶𝑠𝑝𝑟𝑖𝑛𝑔 = 0.5

3. 𝑙 = 0.5

To avoid shifts and wrong or inconsistent results for each

iteration, we had to only apply forces after calculating them

for each particle and after 100 iteration we achieve the

spherical shape of the Nucleus.

The following function implements the algorithm by taking

constant’s values and an atom parameter which points to one

of the properties of our JSON data source (Period-

ic-Table-JSON) that contains information about every ele-

ment in the periodic table to calculate the layout and return the

final meshes array:

//generateNucleus.ts

function generateNucleus(atom:keyof typeof atoms, itera-

tions:number, l:number, repulsiveConstant:number, springCon-

stant:number) {

const atomConfig = atoms[atom];

const nucleus: Particle[] = [];

for (let i = 0; i < atomConfig.atomic_number; i++) {

const randomPosition = new

THREE.Vector3().randomDirection().multiplyScalar(10);

const proton = generateParticle("proton", randomPosition);

nucleus.push(proton);

}

for (let i = 0; i < Math.floor(atomConfig.atomic_mass -

atomConfig.atomic_number); i++) {

const randomPosition = new

THREE.Vector3().randomDirection().multiplyScalar(10);

const neutorn = generateParticle("neutorn", randomPosition);

nucleus.push(neutorn);

}

for (let i = 0; i < iterations; i++) {

const forces = [];

for (let j = 0; j < nucleus.length; j++) {

const attractiveForce = calculateSpringForce(springConstant, l,

nucleus[j].position, ZERO);

for (let k = 0; k < nucleus.length; k++) {

if (j === k) continue;

const repulsiveForce = calculateRepul-

siveForce(repulsiveConstant, nucleus[k].position, nucle-

us[j].position);

attractiveForce.add(repulsiveForce);

}

forces.push(attractiveForce);

}

for (let j = 0; j < nucleus.length; j++)

nucleus[j].position.add(forces[j]);

}

return nucleus;

}

Finally, we add these meshes to the scene for rendering:

currentAtom = gener-

ateAtom(element.getAttribute("data-element") as keyof typeof at-

oms);

currentAtom.shells.forEach((shell) => shell.forEach((electron) =>

scene.add(electron)));

currentAtom.orbits.forEach((orbit) => scene.add(orbit));

currentAtom.nucleus.forEach((particle) => scene.add(particle));

Repulsive and attractive forces are approximately repre-

sented with the following Figure 2.

Figure 2. Nucleus generation forces for Helium nucleus.

The generation process looks like Figure3. shows.

Figure 3. Generation process of Oganesson nucleus.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

47

3.3. Electrons Visualization

Bohr model states that electrons are distributed based on

their energy in predefined energy levels called shells. which

plays a fundamental role in understanding atomic structure and

electrons behavior within the atom. Simulating this behavior is

achieved by generating orbits first, then placing electrons and

moving them in circular motion each render cycle.

3.3.1. Drawing the Orbits

This is achieved by utilizing a procedural approach based on the

concept of circle subdivision which involves generating a circle

iteratively by equally distributing vertices around the center of the

circle and then connecting them to form a circular shape.

First, since we know that a radian angle of 2𝜋 is exactly equal

to one turn of a circle, we can divide this value by the number of

subdivisions to get the required step between each two adjacent

vertices. Then, we position the vertices away from the center at a

distance equal to the radius of the circle and according to the

calculated step. Finally, we connect these vertices together to

form a circular line loop. This example demonstrates the process

for 8 subdivisions as Figure 4 illustrates.

Figure 4. Orbit generation for eight subdivisions.

We can control the number of subdivisions to adjust the

resolution of the generated mesh, Higher number of subdivi-

sions creates a smoother mesh. The following function takes

radius and resolution parameters to generate the orbit mesh

using the built-in LineLoop class provided by Three.js to create

a closed line from vertices based on their order in the buffer:

//generateOrbit.ts

export default function generateOrbit(distance: number, resloution:

number) {

const points = [];

for (let i = 0; i < resloution; i++) {

const point = new THREE.Vector3()

.copy(RIGHT)

.applyAxisAngle(UP, degToRad((360 / resloution) * i))

.multiplyScalar(distance)

points.push(point);

}

const geomentry = new

THREE.BufferGeometry().setFromPoints(points);

const material = new THREE.LineBasicMaterial({ color:

0x808080 });

return new THREE.LineLoop(geomentry, material);

}

Figure 5. Argon atom orbits generated using 24 subdivisions.

A resolution of 24 is mostly suitable for small orbits since

connected vertices are close to each other thus spanning rela-

tively short distance compared to longer circumference of

outer orbits which are more jagged as we can see in the Fig-

ures 5, 6.

Figure 6. Oganesson atom orbits generated using 24 subdivisions.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

48

As we can notice, the outermost orbit quality is lower

compared to the innermost orbit because the distance between

vertices is longer, we have set a default resolution value of

100 vertices per orbit since it suits all orbits.

3.3.2. Moving Electrons Around the Nucleus

This is achieved inside the draw function by updating

electrons rotation on each render cycle. We are utilizing the

userData object which is a predefined empty object (by de-

fault) for every mesh generated by THREE.js that can be used

to store any information required for application logic.

In our case, we are storing a displacement vector from the

center of the atom (world origin) and applying a small rotation

to it on each draw cycle then, we apply the new displacement

as the new position of the electron. And the movement of

electrons will be appeared like Figure 7 shows.

//main.ts

function draw(): void {

requestAnimationFrame(draw);

tick();

for (let i = 0; i < shells.length; i++) {

for (let j = 0; j < shells[i].length; j++) {

shells[i][j].userData.dir.applyAxisAngle(UP, degToRad(-SPEED

* deltaTime));

shells[i][j].position.copy(shells[i][j].userData.dir);

}

}

renderer.render(scene, camera);

}

Figure 7. Electron movement of Hydrogen atom.

3.4. Framerate Independence & Time Scaling

Realtime applications render cycles must have consistent

updates that are independent from the rendering framerate

whether the application is running on a high-end device that is

capable of pushing high number of frames per second to the

screen or a lower end device that is less capable.

To achieve framerate independent updates, we calculate the

time elapsed between each two render cycles (the current one

and the one before it) which is commonly referred to as delta

time in game engines such as Unity 3D.

This is very close to how a real clock ticks, we start by

setting a time and deltatime variables equal to zero on ini-

tialization. Then, on each cycle we subtract time from

performace.now() which returns the number of milliseconds

passed since the start of the application to get the deltatime

between cycles. After that, we update time to the current time

and when the function is called again, the value will be up-

dated and the next deltatime will be calculated:

//time.ts

let time = 0;

let deltaTime = 0;

let timeScale = 1;

const scales = [0.25, 0.5, 0.75, 1, 2, 4, 8];

function tick() {

// Milliseconds to seconds convertion

deltaTime = (performance.now() * 0.001 - time) * timeScale;

time = performance.now() * 0.001;

}

Simply multiply any value by deltaTime to make it fram-

erate independent.

The upcoming examples compares speed change for 1 se-

cond performed on different framerates to show the effect of

delta timing as Figure 8 illustrates.

We are setting a consistent linear framerate in each case for

demonstration purposes but in real applications the framerate

can be changing all the time based on various performance

factors (processing power, memory, rendering complexi-

ty …etc.).

Figure 8. Delta timing effect for different framerates.

We can see that:

1. Speed per second is consistent regardless of framerate.

2. Higher framerate results in smoother updates and better

user experience without interfering with the application

consistency.

Similarly, timescale is used to control visualization speed

1. timescale = 1: normal simulation speed.

2. timescale > 1: faster simulation.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

49

3. timescale < 1: slower simulation (slow motion).

The Figure 9 shows the effective of choosing different time

scales values.

Figure 9. Carbon atom rendering at different time scales.

3.5. Leveraging TypeScript to Enhance Type

Safety and Maintainability in Three.js

Development

TypeScript has emerged as a popular choice for developing

JavaScript applications, particularly in projects where type

safety and code maintainability are paramount. TypeScript

introduces static type checking, which involves annotating

variables and functions with their expected data types. These

annotations are checked by the TypeScript compiler, pre-

venting type errors and ensuring type safety during devel-

opment.

Three.js offers a rich ecosystem of components and func-

tionalities for building 3D scenes and interactions. However,

the dynamic nature of JavaScript can lead to type-related

issues, such as type mismatches and unexpected behavior.

These issues can make it difficult to debug and maintain code,

particularly in large and complex projects.

3.5.1. Type Annotations

TypeScript type annotations are applied throughout the

project, explicitly defining the types of variables, functions,

and objects. This ensures type safety and helps prevent

type-related errors during development.

3.5.2. Type Guards and Type Inference

TypeScript provides type guards and type inference

mechanisms, allowing developers to write more concise and

expressive code while maintaining type safety. These features

enable dynamic checks based on variable values and improve

code readability. The integration of TypeScript into the project

involves applying type annotations to various components,

including:

Geometry Definitions: Geometry objects, such as spheres,

cubes, and meshes, are annotated with their corresponding

data types, ensuring type safety in operations involving ge-

ometry creation, manipulation, and rendering.

Material Properties: Material properties, such as color,

texture, and lighting parameters, are explicitly typed, pre-

venting type mismatches and ensuring consistent usage.

Using TypeScript's static type checking has significantly

reduced the occurrence of type errors while improving code

reliability and reducing debugging time. Type annotations

have made the code more self-documenting, making it easier

for developers to understand and maintain the codebase.

TypeScript's type system has facilitated code refactoring,

allowing us to make changes more confidently without in-

troducing type errors. TypeScript's comprehensive type sys-

tem and debugging tools provide a more robust and efficient

development experience.

3.6. User-Driven Zoom and Exploration

The built-in OrbitControls object handles camera controls

to adjust the camera's position and orientation according to

user input which enables users to freely explore the scene and

zoom in on specific parts of the atom.

We are setting a minimum and maximum distance con-

straints based on viewed atom properties to eliminate unex-

pected and annoying behaviors such as zooming too far away

from the atom or zooming in to a point where the camera gets

inside the nucleus mesh.

//main.ts

controls.minDistance = nucleusRadius + 2;

controls.maxDistance = maxOrbitRadius * 2.5;

We also initialize the camera at a distance from the world

origin proportional to current atom radius and thus keeping

the whole atom inside camera view frustum and avoid the

confusion of going outside screen borders when the applica-

tion starts. The aspect ratio is based on browser window to

avoid distortion and providing a responsive experience on

various screen sizes and aspect ratios.

The following piece of code initializes a new

PerespectiveCamera and OrbitControls objects with the cor-

rect properties and aspect ratio and listens to the browser

window resize events to make required adjustments:

//MainCamera.ts

export const camera = new THREE.PerspectiveCamera(75, win-

dow.innerWidth / window.innerHeight, 0.1, 100);

export const controls = new OrbitControls(camera, canvas);

camera.position.copy(UP)

camera.lookAt(ZERO);

window.addEventListener("resize", () => {

camera.aspect = window.innerWidth / window.innerHeight;

camera.updateProjectionMatrix();

});

//MainScene.ts

renderer = new THREE.WebGLRenderer({ canvas, antialias: true,

alpha: true });

renderer.toneMapping = THREE.ACESFilmicToneMapping;

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

50

renderer.setSize(window.innerWidth, window.innerHeight);

renderer.setPixelRatio(window.devicePixelRatio);

window.addEventListener("resize", () => {

renderer.setSize(window.innerWidth, window.innerHeight);

});

Let us go through the oxygen atom as Figure 10 shows.

Figure 10. Automatic height adjustment for a low radius atom

(Oxygen).

The camera always maintains a reasonable distance from

the rendered atom even when rendering a larger atom such as

Oganesson atom in Figure 11.

Figure 11. Automatic height adjustment for a low radius atom

(Oganesson).

This perspective projection mode used by the Perspec-

tiveCamera is designed to mimic the way the human eye sees.

It is the most common projection mode used for rendering a

3D scene.

The camera view frustum is defined by its field of view,

aspect ratio, near and far clipping planes which maps points

from 3D space to 2D screen coordinates, determining how

objects appear in the rendered scene.

4. Results

The implemented system provides smooth and accurate

atomic representations. Performance evaluations show that

using delta time calculations maintains consistent animation

across devices. A usability study with engineering students

confirmed that the interactive features significantly enhanced

comprehension of atomic structures.

The current version of the application is accessible at

bohr-model-visualization.vercel.app, serving as a valuable

resource for learning and demonstrations. Its user-friendly

interface enables users to select any atom from the periodic

table and renders it with a simple click of a button, much like

the way Bohr diagrams are presented to students. The source

code is available on our GitHub repository

github.com/mohamadtaky/bohr-model-Visualization, Please

be aware that the current status of the project is subject to

modifications, as additional enhancements and features are

still planned to be added. The existing state should not be

considered as the final version, as further refinements and

updates are anticipated.

5. Conclusion

This research introduces a real-time interactive 3D visual-

ization tool for Bohr’s atomic model. By leveraging WebGL

and force-directed algorithms, the project enhances educa-

tional tools for atomic physics. Future improvements include

quantum mechanical adaptations and augmented reality inte-

grations.

Abbreviations

VR Virtual Reality

3D Three Dimensional

JSON JavaScript Object Notation

Three.js JavaScript Library Used for Creating and

Displaying 3D Graphics and Animations in Web

Browsers

Acknowledgments

We thank Al-Wataniya Private University for technical

support and for providing access to research facilities.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

51

Author Contributions

Zaid Kraitem: Conceptualization, Data curation, Formal

Analysis, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing

Hamza Alhaj: Conceptualization, Data curation, Formal

Analysis, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing

Mohamad Taky: Conceptualization, Data curation, For-

mal Analysis, Methodology, Project administration, Re-

sources, Software, Validation, Visualization, Writing – origi-

nal draft, Writing – review & editing

Funding

No external funding was received for this research.

Data Availability Statement

The application is written in TypeScript for enhanced de-

velopment experience to make it easier to develop and add

more features to the project, which can be found at

bohr-model-visualization.vercel.app. For those interested in

viewing the source code, you can find it under our GitHub

repository:

github.com/mohamadtaky/bohr-model-visualization.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bohr, N. (1913). "On the Constitution of Atoms and Mole-

cules." Philosophical Magazine, 26(151), 1-25.

[2] Foley, J., van Dam, A., Feiner, S., & Hughes, J. (2020). Com-

puter Graphics: Principles and Practice. Addison-Wesley.

[3] Angel, E. (2018). Interactive Computer Graphics: A

Top-Down Approach with OpenGL. Pearson.

[4] Hearn, D., & Baker, M. P. (2022). Computer Graphics with

WebGL. Prentice Hall.

[5] Kobourov, S. (2013). "Force-Directed Drawing Algorithms."

Handbook of Graph Drawing and Visualization, 385-386.

[6] Y. Li et al., "NPIPVis: A Visualization System Involving NBA

Visual Analysis and Integrated Learning Model Prediction,"

Virtual Reality & Intelligent Hardware, vol. 4, no. 5, pp. 444–

458, 2022.

[7] X. Chen et al., "PartLabeling: A Label Management Frame-

work in 3D Space," Virtual Reality & Intelligent Hardware, vol.

5, no. 6, pp. 490–508, 2023.

[8] K. Zhang et al., "Depth of Field Rendering Using Multi-

layer-Neighborhood Optimization," IEEE Transactions on

Visualization and Computer Graphics, vol. 26, no. 8, pp. 2546–

2559, 2019.

[9] L. Wang et al., "Efficient Binocular Rendering of Volumetric

Density Fields with Coupled Adaptive Cube-Map Ray Marching

for Virtual Reality," IEEE Transactions on Visualization &

Computer Graphics, vol. 30, no. 10, pp. 6625–6638, 2024.

[10] Mozilla Developers. (2024). "Window: requestAnimation-

Frame method." MDN Web Docs.

[11] Coleman, D. (2019). "Understanding Delta Time." Medium.

[12] Adachi, S., & Tanimura, Y. (2023). "Quantum Trajectories in

Atomic Visualization." Journal of Computational Physics,

312(2), 554-571.

[13] Lin, X., & Zhang, Y. (2022). "Web-Based Scientific Simula-

tions Using WebGL and Three.js." Advances in Visualization

Science, 9(3), 201-215.

[14] Li, W., & Chen, Z. (2021). "Enhancing Interactive Learning

with 3D Atom Models." Educational Technology & Society,

24(4), 102-119.

[15] Jizhe Xia, Qunying Huang, Zhipeng Gui & Wei Tu (2024).

“Web-Based Mapping and Visualization Packages”. The Vis-

ual Computer. pp283-314.

[16] Xiaokun Wang, Yanrui Xu, Sinuo Liu, Bo Ren, Jiří Kosinka,

Alexandru C. Telea, Jiamin Wang, Chongming Song, Jian

Chang, Chenfeng Li, Jian Jun Zhang & Xiaojuan Ban. (2024).

“Physics-based fluid simulation in computer graphics: Survey,

research trends, and challenges”. The Visual Computer. Vol-

ume 10, pages 803–858.

Biography

Zaid Kraitem PhD in Computer Science,

graduated from Latakia University in 2018.

Lecturer at Al-Wataniya Private University

in Hama. Over five years of teaching expe-

rience. More than 10 published research

papers in the field of biomedical engineer-

ing. Expert in digital marketing, artificial

intelligence, and deep learning.

Research Field

Zaid Kraitem: Computer Graphics, Computer Science, Com-

puter Vision, Image Representation and Visualization, Digital Im-

age Processing

http://www.sciencepg.com/journal/mcs

