
Advances in Networks

2025, Vol. 12, No. 1, pp. 19-28

https://doi.org/10.11648/j.net.20251201.12

*Corresponding author:

Received: 3 January 2025; Accepted: 20 January 2025; Published: 21 March 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Efficient Malware Classification Using Multiprocessing and

Bag-of-Words Vectorization

Avijit Chowdhury
1, *

, Touhidul Alam Seyam
2

, Moin Uddin Ahmed Babar
1
,

Chonchal Khan
3
, Saima Akter

4

1
Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram, Bangladesh

2
Department of Computer Science and Engineering, BGC Trust University, Chattogram, Bangladesh

3
Department of Computer Science and Engineering, Daffodil international University, Dhaka, Bangladesh

4
Department of Computer Science and Engineering, University of Science and Technology, Chittagong, Bangladesh

Abstract

The increasing incidence of malware presents significant obstacles to cybersecurity, necessitating sophisticated and effective

techniques for detection and categorization. This paper presents a novel method that improves the precision and efficacy of

malware classification by utilizing multi-processing and Bag-of-Words (BoW) vectorization. The suggested technique utilizes

feature vectors to depict malware samples, leveraging the parallel processing capabilities of contemporary computer systems to

expedite classification operations. This solution centers on a bespoke HexVectorizer that transforms hexadecimal strings

obtained from malware binaries into feature vectors. The approach employs a balanced subset of the Microsoft Malware

Classification dataset, meticulously preprocessed for dependable evaluation to assure thorough analysis. Python's

multiprocessing module is utilized to meet the computing requirements of extensive datasets, facilitating the parallelization of

vectorization processes and markedly enhancing processing performance. The classification system is centered on XGBoost's

XGBClassifier, recognized for its superior performance and accuracy in addressing malware detection and classification issues.

The experimental findings validate the efficacy of the suggested technique in real-time malware detection, confirming its

relevance to diverse cybersecurity contexts. This paper offers an exhaustive elucidation of the implementation procedure,

accompanied by thorough performance assessments. The results highlight the method's promise as a scalable and efficient

approach for tackling the increasing issues of malware classification in cybersecurity. This research greatly advances the creation

of resilient and efficient malware detection systems by integrating sophisticated vectorization techniques with cutting-edge

machine learning algorithms, therefore fulfilling essential requirements in a dynamic threat environment.

Keywords

Bag-of-Words (BoW), Cybersecurity, Multiprocessing, Malware Classification, Machine Learning

http://www.sciencepg.com/journal/net
http://www.sciencepg.com/journal/131/archive/1311201
http://www.sciencepg.com/
https://orcid.org/0009-0002-9667-9857
https://orcid.org/0009-0007-7512-1893
https://orcid.org/0009-0008-0594-4189

Advances in Networks http://www.sciencepg.com/journal/net

20

1. Introduction

The rapid spread of malware is a persistent and major

problem in cybersecurity. There is a pressing need for novel

methods to effectively detect and categorize malware, as

malevolent actors are always developing more complex ways

to avoid detection and corrupt systems. This research pro-

poses a unique malware classification methodology integrat-

ing Bag-of-Words (BoW) vectorization techniques and mul-

tiprocessing. This research is motivated by the need to defend

digital infrastructure against an ever-evolving array of

cyber-attacks.

Given the vast number and diversity of malware variants,

conventional signature-based detection algorithms have found

it challenging to remain current. These strategies are less

successful against new, unknown, or polymorphic threats

because they depend on well-known malware patterns and

traits that have already been recognized. Thus, it is necessary

to investigate substitute tactics that may offer stronger and

more flexible defenses. The proposed methodology seeks to

improve the malware classification accuracy and efficiency

by utilizing the parallel processing power of contemporary

computer architectures and BoW vectorization to represent

malware samples as feature vectors.

This research aims to address the main issue of the ina-

bility of standard malware detection algorithms to handle a

large and continuously increasing number of malware var-

iants. Because signature-based techniques rely on preexist-

ing knowledge, they are becoming less successful in recog-

nizing novel and complex malware. More dynamic and

scalable methods are required to adjust to the ever-changing

threat landscape without incurring exorbitant computing

expenses.

How might integrating multiprocessing and Bag-of-Words

(BoW) vectorization techniques enhance the effectiveness

and precision of malware classification compared to conven-

tional signature-based methodologies.

By combining multi-processing and Bag-of-Words (BoW)

vectorization approaches, this research seeks to enhance the

field of malware classification significantly. The main goal is

to provide a solid framework that presents an extensive

malware categorization approach that may change to ac-

commodate evolving cyber threats. This work aims to reduce

computational costs by improving malware classification

accuracy and efficiency by utilizing the parallel processing

power of contemporary computer systems.

This study presents a methodical procedure for gathering

data, preprocessing, extracting features, and training a mal-

ware-specific model. This approach ensures that every stage is

thoughtfully planned to maximize the classification system’s

overall performance. Moreover, performance metric analysis

and experimentation were used for empirical validation to

demonstrate the effectiveness of the proposed methodology in

practical settings.

2. Literature Review

Malware classification is a critical component of cyber-

security, and the aim is to identify and categorize malicious

software to protect computer systems and networks. This

section provides a comprehensive review of the existing

literature, focusing on the role of multi-processing and

Bag-of-Words (BoW) vectorization in malware analysis.

Latent Support Measure Machines (latent SMM) enhance

Bag-of-Words (BoW) data classification by estimating la-

tent vectors for words, capturing the semantic relationships

and co-occurrence patterns that traditional Support Vector

Machines (SVMs) miss. This approach leads to

state-of-the-art accuracy in BoW text classification and

demonstrates robustness in terms of hyperparameters. Ad-

ditionally, latent SMM is valuable for visualizing the rela-

tionships between words. In contrast, SVMs struggle to

accurately reflect the co-occurrence of similar words be-

cause the kernel values between data points may not be

properly defined [1]. AttentionXML proposes a label

tree-based deep learning model for extreme multi-label text

classification, featuring a multilabel attention mechanism

that uses raw text input to capture the most relevant parts of

the text for each label and a shallow, wide probabilistic label

tree (PLT) for efficiently handling millions of labels, espe-

cially rare “tail labels.” Whereas traditional Bag-of-Words

(BoW) methods overlook word context and deep semantic

information, and deep learning methods often struggle with

scalability and capturing subtext, AttentionXML outper-

forms all existing methods on six benchmark datasets, par-

ticularly for handling tail labels among label tree-based

approaches [2]. A novel approach for malware classification

leverages multi-processing and Bag-of-Words (BoW) vec-

torization to enhance efficiency. The method uses multi-

threading to process data in parallel across all CPU cores,

thereby significantly optimizing the computation time. Em-

ploying bigram BoW and pixel intensity features improves

accuracy and ensures efficient data processing through par-

allel execution [3]. Wang et al. proposed a new malware

classification system that achieved 99.87% accuracy using

the XGBoost algorithm. This system utilizes a fusion feature

set that combines binary and assembly malware features

through a forward feature stepwise selection technique based

on the BIG2015 dataset. While small n-grams may fail to

capture complex code patterns owing to code reuse in mal-

ware, the fusion feature set effectively addresses this issue.

The LightGBM and CatBoost algorithms were also tested,

achieving accuracies of 99.84% and 99.76%, respectively

[4]. The authors present a hybrid XceptionCNN-LightGBM

model for Windows Malware classification utilizing the

Malimg malware dataset. This model integrates the Xcep-

tionCNN architecture with the LightGBM algorithm to en-

hance classification accuracy and performance. While the

generic LightGBM algorithm achieved a classification ac-

curacy of 99% True Positive Rate (TPR), the proposed

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

21

XceptionCNN-LightGBM technique achieved a remarkable

100% TPR, indicating superior performance. However, the

authors acknowledge the need for further improvements in

accuracy and performance, particularly when scaling up to

larger sample sizes [5]. The article fails to address effective

malware classification by multiprocessing and

Bag-of-Words vectorization. It emphasizes URL-based

malware detection via NLP approaches, notably imple-

menting the ROBERTa model for enhanced accuracy and

minimal false-positive rates [6]. Employed multiprocessing

and Bag-of-Words vectorization for effective malware cat-

egorization. Utilized multithreading to process data for op-

timization concurrently [7]. This study presents a hybrid

model that combines XceptionCNN and LightGBM for

malware classification, attaining a 100% True Positive Rate

and decreased prediction durations. It omits the discussion

of multiprocessing and Bag-of-Words vectorization for

effective malware classification [8]. The authors concentrate

on a machine learning methodology for malware classifica-

tion, including data analysis, feature engineering, and mod-

eling techniques. Nevertheless, it does not explicitly en-

compass multiprocessing or Bag-of-Words vectorization

methodologies [9]. The study omits the topic of effective

malware classification by multiprocessing and

Bag-of-Words vectorization. The study emphasizes using

byte sequences from executable files to identify and classify

IoT malware with machine learning techniques such as SVM,

KNN, and MLP [10]. The report fails to discuss effective

malware classification via multiprocessing and

Bag-of-Words vectorization. The framework employs ma-

chine learning methods for malware identification and clas-

sification, utilizing Cuckoo Sandbox for analysis and the

Weka Framework for model construction [11]. The study

does not address effective malware categorization by mul-

tiprocessing or bag-of-words vectorization. The study em-

phasizes the categorization of malware using extracted

printable strings with several classification methods, at-

taining a classification accuracy of 97% without the afore-

mentioned methodologies [12]. The study emphasizes

memory-efficient malware detection with a bag-of-words

methodology, achieving a 95% reduction in memory con-

sumption during training. Nonetheless, it does not explicitly

discuss multiprocessing methodologies for malware cate-

gorization [13]. The study omits the topic of effective

malware classification by multiprocessing and

Bag-of-Words vectorization. It emphasizes a hybrid meth-

odology integrating static and dynamic analytic capabilities

with machine learning to forecast malware execution dura-

tion and family categorization [14].

3. Methodology

Data preparation, feature extraction, parallel processing, and

model training are important phases in the multiprocessing and

Bag-of-Words (BoW) vectorization approach for malware

classification. This section outlines each procedure to explain

the methodology employed in this study thoroughly.

3.1. Data Preprocessing

3.1.1. Data Loading and Exploration

The dataset was loaded from. Byte files, each containing a

hexadecimal representation of the malware binaries. Initial

exploratory data analysis (EDA) was conducted to understand

the distribution and characteristics of the data, including in-

specting the malware families and the size of the malware.

Bytes files.

3.1.2. Data Balancing

The dataset was imbalanced, with some malware families

being more represented than others. To address this, the au-

thors sampled the dataset to create a balanced subset, ensuring

each malware family has an equal number of samples. This

step is crucial to prevent the model from being biased towards

more prevalent families.

3.2. Feature Extraction

3.2.1. Hexadecimal String Extraction

The hexadecimal strings were extracted from. Byte files by

removing non-hexadecimal characters and memory addresses.

This results in clean sequences of hex values that represent

malware binary content.

3.2.2. Custom HexVectorizer

A custom HexVectorizer class was developed to transform

hex strings into feature vectors. This class leverages Scikit

learnaˆs CountVectorizer to tokenize the hex values and

convert them into a sparse matrix of token counts. The

HexVectorizer processes the hex values in blocks (e.g., two

bytes at a time) to build a Bag-of-Words (BoW) model.

3.2.3. Including Additional Features

In addition to the BoW vectors, here is the file size for each.

Byte file is included as an additional feature. This helps to

capture the differences in file sizes across various malware

families, potentially improving the classification accuracy.

3.3. Parallel Processing (Multiprocessing) for

Feature Extraction

Owing to the large size of the dataset, the feature extraction

is computationally intensive. To address this, the authrs im-

plemented multi-processing using Python’s multi-processing

library. The data are split into chunks, and the parallelize

function distributes these chunks across multiple CPU cores

for concurrent processing, thereby significantly reducing the

time required for vectorization.

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

22

Figure 1. Parallel Processing Using a Pool of Processes.

3.4. Model Training

3.4.1. XGBoost Classifier Selection

The XGBClassifier from the XGBoost library was selected

for its strong performance and scalability. XGBoost is rec-

ognized for its efficiency and precision in dealing with

structured data, making it ideal for classification tasks.

3.4.2. Hyperparameter Tuning

Figure 2. Process of Training an XGBoost Classifier.

Figure 3. Grid Search for Hyperparameter Tuning.

To optimize the performance of the model, hyperparameter

tuning was performed using GridSearch CV. Through cross-

validation, parameters such as the learning rate, maximum

depth, and number of estimators were fine-tuned.

3.4.3. Model Training

The XGBClassifier was trained on the prepared training

dataset using the optimized hyperparameters.

model = XGBClassifier(**best params) model.fit(X train,

y train)

Figure 4. Cross-Validation for Model Evaluation.

3.5. Model Evaluation

3.5.1. Cross-Validation

Cross-validation was performed to evaluate the perfor-

mance of the model. The dataset was divided into training and

validation sets multiple times to ensure robustness and gen-

eralizability of the model.

3.5.2. Performance Metrics

The model's accuracy, precision, recall, and F1-score were

calculated to provide a comprehensive evaluation of its per-

formance [15]. These metrics assess the model's effectiveness

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

23

in correctly classifying the malware samples.

3.5.3. Comparison with Baseline Models

The performance of the XGBClassifier was compared with

baseline models, such as logistic regression and random forest.

This comparison demonstrated the superiority of XGBoost in

handling malware classification tasks.

This methodology outlines a systematic approach to mal-

ware classification, from pre-processing and feature extrac-

tion to parallel processing and model training. The authors

provide a robust and scalable solution for large-scale malware

detection and classification by combining traditional ma-

chine-learning techniques with advanced computational

strategies.

4. Results and Discussions

The problem at hand involves a dataset of known malware

files contained within train.7z and test.7z zip files, encompassing

nine different malware families. The class labels for these mal-

ware files are provided in a separate trainLabels.csv CSV file.

Each malware file in the training and test sets is uniquely identi-

fied by a 20-character hash value serving as the file name, and

each file belongs to a specific malware family denoted by an

integer class label. The malware families included in the dataset

are Ramnit, Lollipop, Kelihos ver3, Vundo, Simda, Tracur,

Kelihos ver1, Obfuscator. ACY, and Gatak.

Each file’s raw data contains the hexadecimal representa-

tion of the binary content, with the PE header excluded to

ensure sterility. Additionally, a metadata manifest (files with

a.asm extension) is provided, containing various metadata

information extracted from the binary, such as function calls

and strings, generated using the IDA disassembler tool.

To classify files into malware families, the following steps

are taken

1) Equal samples are randomly selected from each class,

except Simda.

2) Hexadecimal strings (length 2) are extracted from bytes

files.

3) A Bag-of-Words model is constructed using

CountVectorizer from scikit-learn.

4) A classification model is built using XGBClassifier

from XGBoost.

The objective of this solution is to select a balanced sample

from the original dataset and improve the efficiency of the

solution by parallelizing computationally intensive tasks and

file operations given the substantial size of the dataset.

The project structure was meticulously organized to

streamline the handling, preprocessing, and analysis of the

malware classification dataset. The main directories and files

are as follows

The code/ directory contains

1) Microsoft Malware Classification (with Multipro-

cessing). ipynb: This Jupyter notebook contains the

main code for the project.

2) HexVectorizer.py: A Python script for the custom

HexVectorizer used in feature extraction.

3) Submission.csv: The final submission file containing the

classification results.

The input/ directory contains the following:

malware-classification/:

a. trainLabels.csv: The CSV file with class labels for the

training dataset.

b. train/: This folder contains multiple. byte files, each

representing the hexadecimal content of a malware

sample, such as 0ACDbR5M3ZhBJajygTuf. bytes.

c. test/: This folder includes multiple. byte files for the test

set, such as ITSUPtCmh7WdJcsYDwQ5.bytes.

The Microsoft-malware-sample/ directory includes:

1) trainLabels bal.csv: The CSV file with balanced class

labels for the training dataset.

2) The file containing the vectorized training dataset.

3) test vec.csv: The file containing the vectorized test da-

taset.

4.1. Balanced Subset from Original Dataset

When working with a dataset, it's often important to create a

balanced subset to ensure that analyses and insights drawn from

the data are representative of the larger population. A balanced

subset typically maintains proportions of various classes or cat-

egories present in the original dataset, which can be crucial for

tasks like machine learning and statistical analysis.

Figure 5. Workflow for Checking, Loading, and Processing Bal-

anced Malware Subset Data.

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

24

Figure 6. Malware Class-levels.

4.2. High-Dimensional Data Visualization

High-dimensional data visualization is a critical process in

data analysis that helps to represent complex datasets with

numerous variables in a more understandable and visually

interpretable format. Data visualization techniques are de-

rived from certain aspects presented in the referenced paper

[15].

Figure 7. Workflow for TSNE Transformation and Visualization of Malware Data.

Figure 8. High-Dimensional Data Visualization.

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

25

4.3. Tuning

To determine the optimal range for the hyperparameters

mentioned above, plot the training and validation (or test)

errors. Then, identify the optimal point where:

1) The validation error is minimized.

2) The gap between the training error and the validation

error is smallest.

4.3.1. Param: n Estimators

Hyperparameter tuning (n estimators=range (1, 70, 10))

Figure 9. Param: n estimators.

4.3.2. Param: max depth Hyperparameter Tuning (n

Estimators=40, Max Depth=Range (1, 10))

Figure 10. Param: max depth.

4.3.3. Param: Learning Rate

Figure 11. Param: learning rate.

4.3.4. Param: Reg Alpha

Figure 12. Param: Param: reg alpha.

4.3.5. Param: Reg Lambda

Figure 13. Param: Param: reg lambda.

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

26

The project involved classifying malware files into their

respective families using a combination of feature extraction,

hyperparameter tuning, and model evaluation [15, 16].

1) Grid Search CV The model employs a Grid Search CV

with the XGBClassifier to fine-tune the parameters. The

best parameters identified were a learning rate of 0.4, a

maximum depth of 4, and 45 estimators, achieving an

accuracy of 0.9604.

2) Model Testing Feature engineering is performed by

loading a vectorized test dataset or generating feature

vectors from byte files. The test dataset was vectorized

and saved for future use.

Figure 14. Steps of the Feature Engineering Process for the Test Dataset.

Predictions Finally, the authors generated predictions

Using the trained model and saved the results. Here’s the process:

1) Generate Predictions

2) Prepare the Output Data

3) Save the Predictions to CSV

Figure 15. The Steps Involved in Generating and Saving the Predictions.

5. Conclusions

The increasing incidence of malware presents significant

obstacles to cybersecurity, necessitating sophisticated and

effective techniques for detection and categorization. This

paper presents a novel method that improves the precision and

efficacy of malware classification by utilizing mul-

ti-processing and Bag-of-Words (BoW) vectorisation. The

proposed technique utilizes feature vectors to characterize

malware samples, using the parallel processing capabilities of

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

27

contemporary computer systems to enhance classification

speed. This solution centers on a proprietary HexVectorizer

that transforms hexadecimal strings obtained from malware

binaries into feature vectors. The approach employs a bal-

anced subset of the Microsoft Malware Classification dataset,

meticulously preprocessed for dependable evaluation to as-

sure thorough analysis. Python's multiprocessing module is

utilized to meet the computing requirements of extensive

datasets, facilitating the parallelization of vectorization pro-

cesses and markedly enhancing processing performance. The

classification system is centered on XGBoost's XGBClassifier,

which is recognized for its superior performance and accuracy

in addressing malware detection and classification issues.

Experimental findings validate the proposed method's effi-

cacy in real-time malware detection, confirming its relevance

to diverse cybersecurity contexts.

This article thoroughly elucidates the implementation pro-

cess, accompanied by meticulous performance assessments.

The results highlight the method's capacity as a scalable and

efficient approach for tackling the increasing issues of malware

classification in cybersecurity. This research greatly advances

the creation of resilient and efficient malware detection systems

by integrating sophisticated vectorization techniques with cut-

ting-edge machine learning algorithms, fulfilling essential

requirements in a dynamic threat environment.

Abbreviations

BOW Bag of Words

Funding

This research was entirely self-funded by the authors with

no external funding received.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Yoshikawa, Yuya, Tomoharu Iwata, and Hiroshi Sawada.

“Latent Support Measure Machines for Bag-of-Words Data

Classification.” Proceedings Article, 2014.

[2] Ronghui, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi

Mamitsuka, and Shanfeng Zhu. “AttentionXML: Label

Tree-based Attention-Aware Deep Model for High- Perfor-

mance Extreme Multi-Label Text Classification.” Proceedings

Article, 2019.

[3] Banerjee, Shobhan, Bibhuti Bhusan Dash, M. Rath, Tanmaya

Swain, and Tapaswini Samant. “Malware Classification using

Bigram BOW, Pixel Intensity Features, and Multiprocessing.”

Proceedings Article, 2022.

https://doi.org/10.1109/CONECCT55679.2022.9865764

[4] Chen, Zhiguo, and Xuanyu Ren. “An Efficient Boosting-

Based Windows Malware Family Classification System Using

Multi-Features Fusion.” Journal Article, Applied Sciences,

2023. https://doi.org/10.3390/app13064060

[5] Onoja, M. Nelson, Abayomi Jegede, N. V Blamah, Abinbola

Victor Olawale, and Temidayo Oluwatosin Omotehinwa.

“EEMDS: Efficient and Effective Malware Detection System

with Hybrid Model based on XceptionCNN and LightGBM

Algorithm.” Journal Article, 2022.

[6] Y. P. Kumar S, S. Mishra and R. K. Singh, "Unleashing the

Potential of Machine Learning and NLP Contextual Word Em-

bedding for URL-Based Malicious Traffic Classification," 2024

IEEE 99th Vehicular Technology Conference

(VTC2024-Spring), Singapore, Singapore, 2024, pp. 1-5,

https://doi.org/10.1109/VTC2024-Spring62846.2024.10683482

[7] S. Banerjee, B. B. Dash, M. K. Rath, T. Swain and T. Samant,

"Malware Classification using Bigram BOW, Pixel Intensity

Features, and Multiprocessing," 2022 IEEE International

Conference on Electronics, Computing and Communication

Technologies (CONECCT), Bangalore, India, 2022, pp. 1-5,

https://doi.org/10.1109/CONECCT55679.2022.9865764

[8] M. Onoja, A. Jegede, N. Blamah, O. V. Abimbola, and T. O.

Omotehinwa, “EEMDS: Efficient and Effective Malware De-

tection System with Hybrid Model based on XceptionCNN and

LightGBM Algorithm”, JCSI, vol. 1, no. 2, pp. 42–57, Oct.

2022, https://doi.org/10.33736/jcsi.4739.2022

[9] Houssem Hosni. Machine learning approach for malware

multiclass classification. BRAINS 2019 - 1st Blockchain,

Robotics, AI for Networking Security Conference, Mar 2019,

Rio de janeiro, Brazil. ffhal-02075139f.

[10] T. -L. Wan et al., "Efficient Detection and Classification of

Internet-of-Things Malware Based on Byte Sequences from

Executable Files," in IEEE Open Journal of the Computer So-

ciety, vol. 1, pp. 262-275, 2020,

https://doi.org/10.1109/OJCS.2020.3033974

[11] Kamalakanta Sethi. A novel malware analysis for malware

detection and classification using machine learning algorithms.

In Proceedings of the 10th International Conference on Secu-

rity of Information and Networks (SIN '17). Association for

Computing Machinery, New York, NY, USA, 107–113.

https://doi.org/10.1145/3136825.3136883

[12] R. Tian, L. Batten, R. Islam and S. Versteeg, "An automated clas-

sification system based on the strings of trojan and virus families,"

2009 4th International Conference on Malicious and Unwanted

Software (MALWARE), Montreal, QC, Canada, 2009, pp. 23-30,

https://doi.org/10.1109/MALWARE.2009.5403021

[13] Yueming, Wang, Meng, Zhang. 13. Memory-efficient detec-

tion of large-scale obfuscated malware. International Journal of

Wireless and Mobile Computing,

https://doi.org/10.1504/ijwmc.2024.136586

[14] Sean, Kilgallon, Leonardo, De, La, Rosa., John, Cavazos.

(2017). 14. Improving the effectiveness and efficiency of dy-

namic malware analysis with machine learning.

https://doi.org/10.1109/RWEEK.2017.8088644

http://www.sciencepg.com/journal/net

Advances in Networks http://www.sciencepg.com/journal/net

28

[15] A. Chowdhury, “Advancing Multi-Class Arc Welding Defect

Classification: DEEPTLWELD Intelligent System Utilizing

Computer Vision, Deep Learning, and Transfer Learning on

Radiographic X-ray Images for Bangladesh’s Manufacturing

Sector,” 2024 IEEE International Conference on Computing,

Applications and Systems (COMPAS), Cox’s Bazar, Bangla-

desh, 2024, pp. 1-6,

https://doi.org/10.1109/COMPAS60761.2024.10796006

[16] Hossain, Sazzad, et al. "Fine-tuning LLaMA 2 interference: a

comparative study of language implementations for optimal

efficiency." (2025).

https://doi.org/10.48550/arXiv.2502.01651

http://www.sciencepg.com/journal/net

