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Abstract 

The increasing incidence of malware presents significant obstacles to cybersecurity, necessitating sophisticated and effective 

techniques for detection and categorization. This paper presents a novel method that improves the precision and efficacy of 

malware classification by utilizing multi-processing and Bag-of-Words (BoW) vectorization. The suggested technique utilizes 

feature vectors to depict malware samples, leveraging the parallel processing capabilities of contemporary computer systems to 

expedite classification operations. This solution centers on a bespoke HexVectorizer that transforms hexadecimal strings 

obtained from malware binaries into feature vectors. The approach employs a balanced subset of the Microsoft Malware 

Classification dataset, meticulously preprocessed for dependable evaluation to assure thorough analysis. Python's 

multiprocessing module is utilized to meet the computing requirements of extensive datasets, facilitating the parallelization of 

vectorization processes and markedly enhancing processing performance. The classification system is centered on XGBoost's 

XGBClassifier, recognized for its superior performance and accuracy in addressing malware detection and classification issues. 

The experimental findings validate the efficacy of the suggested technique in real-time malware detection, confirming its 

relevance to diverse cybersecurity contexts. This paper offers an exhaustive elucidation of the implementation procedure, 

accompanied by thorough performance assessments. The results highlight the method's promise as a scalable and efficient 

approach for tackling the increasing issues of malware classification in cybersecurity. This research greatly advances the creation 

of resilient and efficient malware detection systems by integrating sophisticated vectorization techniques with cutting-edge 

machine learning algorithms, therefore fulfilling essential requirements in a dynamic threat environment. 

Keywords 

Bag-of-Words (BoW), Cybersecurity, Multiprocessing, Malware Classification, Machine Learning 

 

 
 

http://www.sciencepg.com/journal/net
http://www.sciencepg.com/journal/131/archive/1311201
http://www.sciencepg.com/
https://orcid.org/0009-0002-9667-9857
https://orcid.org/0009-0007-7512-1893
https://orcid.org/0009-0008-0594-4189


Advances in Networks http://www.sciencepg.com/journal/net 

 

20 

1. Introduction 

The rapid spread of malware is a persistent and major 

problem in cybersecurity. There is a pressing need for novel 

methods to effectively detect and categorize malware, as 

malevolent actors are always developing more complex ways 

to avoid detection and corrupt systems. This research pro-

poses a unique malware classification methodology integrat-

ing Bag-of-Words (BoW) vectorization techniques and mul-

tiprocessing. This research is motivated by the need to defend 

digital infrastructure against an ever-evolving array of 

cyber-attacks. 

Given the vast number and diversity of malware variants, 

conventional signature-based detection algorithms have found 

it challenging to remain current. These strategies are less 

successful against new, unknown, or polymorphic threats 

because they depend on well-known malware patterns and 

traits that have already been recognized. Thus, it is necessary 

to investigate substitute tactics that may offer stronger and 

more flexible defenses. The proposed methodology seeks to 

improve the malware classification accuracy and efficiency 

by utilizing the parallel processing power of contemporary 

computer architectures and BoW vectorization to represent 

malware samples as feature vectors. 

This research aims to address the main issue of the ina-

bility of standard malware detection algorithms to handle a 

large and continuously increasing number of malware var-

iants. Because signature-based techniques rely on preexist-

ing knowledge, they are becoming less successful in recog-

nizing novel and complex malware. More dynamic and 

scalable methods are required to adjust to the ever-changing 

threat landscape without incurring exorbitant computing 

expenses. 

How might integrating multiprocessing and Bag-of-Words 

(BoW) vectorization techniques enhance the effectiveness 

and precision of malware classification compared to conven-

tional signature-based methodologies. 

By combining multi-processing and Bag-of-Words (BoW) 

vectorization approaches, this research seeks to enhance the 

field of malware classification significantly. The main goal is 

to provide a solid framework that presents an extensive 

malware categorization approach that may change to ac-

commodate evolving cyber threats. This work aims to reduce 

computational costs by improving malware classification 

accuracy and efficiency by utilizing the parallel processing 

power of contemporary computer systems. 

This study presents a methodical procedure for gathering 

data, preprocessing, extracting features, and training a mal-

ware-specific model. This approach ensures that every stage is 

thoughtfully planned to maximize the classification system’s 

overall performance. Moreover, performance metric analysis 

and experimentation were used for empirical validation to 

demonstrate the effectiveness of the proposed methodology in 

practical settings. 

2. Literature Review 

Malware classification is a critical component of cyber-

security, and the aim is to identify and categorize malicious 

software to protect computer systems and networks. This 

section provides a comprehensive review of the existing 

literature, focusing on the role of multi-processing and 

Bag-of-Words (BoW) vectorization in malware analysis. 

Latent Support Measure Machines (latent SMM) enhance 

Bag-of-Words (BoW) data classification by estimating la-

tent vectors for words, capturing the semantic relationships 

and co-occurrence patterns that traditional Support Vector 

Machines (SVMs) miss. This approach leads to 

state-of-the-art accuracy in BoW text classification and 

demonstrates robustness in terms of hyperparameters. Ad-

ditionally, latent SMM is valuable for visualizing the rela-

tionships between words. In contrast, SVMs struggle to 

accurately reflect the co-occurrence of similar words be-

cause the kernel values between data points may not be 

properly defined [1]. AttentionXML proposes a label 

tree-based deep learning model for extreme multi-label text 

classification, featuring a multilabel attention mechanism 

that uses raw text input to capture the most relevant parts of 

the text for each label and a shallow, wide probabilistic label 

tree (PLT) for efficiently handling millions of labels, espe-

cially rare “tail labels.” Whereas traditional Bag-of-Words 

(BoW) methods overlook word context and deep semantic 

information, and deep learning methods often struggle with 

scalability and capturing subtext, AttentionXML outper-

forms all existing methods on six benchmark datasets, par-

ticularly for handling tail labels among label tree-based 

approaches [2]. A novel approach for malware classification 

leverages multi-processing and Bag-of-Words (BoW) vec-

torization to enhance efficiency. The method uses multi-

threading to process data in parallel across all CPU cores, 

thereby significantly optimizing the computation time. Em-

ploying bigram BoW and pixel intensity features improves 

accuracy and ensures efficient data processing through par-

allel execution [3]. Wang et al. proposed a new malware 

classification system that achieved 99.87% accuracy using 

the XGBoost algorithm. This system utilizes a fusion feature 

set that combines binary and assembly malware features 

through a forward feature stepwise selection technique based 

on the BIG2015 dataset. While small n-grams may fail to 

capture complex code patterns owing to code reuse in mal-

ware, the fusion feature set effectively addresses this issue. 

The LightGBM and CatBoost algorithms were also tested, 

achieving accuracies of 99.84% and 99.76%, respectively 

[4]. The authors present a hybrid XceptionCNN-LightGBM 

model for Windows Malware classification utilizing the 

Malimg malware dataset. This model integrates the Xcep-

tionCNN architecture with the LightGBM algorithm to en-

hance classification accuracy and performance. While the 

generic LightGBM algorithm achieved a classification ac-

curacy of 99% True Positive Rate (TPR), the proposed 

http://www.sciencepg.com/journal/net


Advances in Networks http://www.sciencepg.com/journal/net 

 

21 

XceptionCNN-LightGBM technique achieved a remarkable 

100% TPR, indicating superior performance. However, the 

authors acknowledge the need for further improvements in 

accuracy and performance, particularly when scaling up to 

larger sample sizes [5]. The article fails to address effective 

malware classification by multiprocessing and 

Bag-of-Words vectorization. It emphasizes URL-based 

malware detection via NLP approaches, notably imple-

menting the ROBERTa model for enhanced accuracy and 

minimal false-positive rates [6]. Employed multiprocessing 

and Bag-of-Words vectorization for effective malware cat-

egorization. Utilized multithreading to process data for op-

timization concurrently [7]. This study presents a hybrid 

model that combines XceptionCNN and LightGBM for 

malware classification, attaining a 100% True Positive Rate 

and decreased prediction durations. It omits the discussion 

of multiprocessing and Bag-of-Words vectorization for 

effective malware classification [8]. The authors concentrate 

on a machine learning methodology for malware classifica-

tion, including data analysis, feature engineering, and mod-

eling techniques. Nevertheless, it does not explicitly en-

compass multiprocessing or Bag-of-Words vectorization 

methodologies [9]. The study omits the topic of effective 

malware classification by multiprocessing and 

Bag-of-Words vectorization. The study emphasizes using 

byte sequences from executable files to identify and classify 

IoT malware with machine learning techniques such as SVM, 

KNN, and MLP [10]. The report fails to discuss effective 

malware classification via multiprocessing and 

Bag-of-Words vectorization. The framework employs ma-

chine learning methods for malware identification and clas-

sification, utilizing Cuckoo Sandbox for analysis and the 

Weka Framework for model construction [11]. The study 

does not address effective malware categorization by mul-

tiprocessing or bag-of-words vectorization. The study em-

phasizes the categorization of malware using extracted 

printable strings with several classification methods, at-

taining a classification accuracy of 97% without the afore-

mentioned methodologies [12]. The study emphasizes 

memory-efficient malware detection with a bag-of-words 

methodology, achieving a 95% reduction in memory con-

sumption during training. Nonetheless, it does not explicitly 

discuss multiprocessing methodologies for malware cate-

gorization [13]. The study omits the topic of effective 

malware classification by multiprocessing and 

Bag-of-Words vectorization. It emphasizes a hybrid meth-

odology integrating static and dynamic analytic capabilities 

with machine learning to forecast malware execution dura-

tion and family categorization [14]. 

3. Methodology 

Data preparation, feature extraction, parallel processing, and 

model training are important phases in the multiprocessing and 

Bag-of-Words (BoW) vectorization approach for malware 

classification. This section outlines each procedure to explain 

the methodology employed in this study thoroughly. 

3.1. Data Preprocessing 

3.1.1. Data Loading and Exploration 

The dataset was loaded from. Byte files, each containing a 

hexadecimal representation of the malware binaries. Initial 

exploratory data analysis (EDA) was conducted to understand 

the distribution and characteristics of the data, including in-

specting the malware families and the size of the malware. 

Bytes files. 

3.1.2. Data Balancing 

The dataset was imbalanced, with some malware families 

being more represented than others. To address this, the au-

thors sampled the dataset to create a balanced subset, ensuring 

each malware family has an equal number of samples. This 

step is crucial to prevent the model from being biased towards 

more prevalent families. 

3.2. Feature Extraction 

3.2.1. Hexadecimal String Extraction 

The hexadecimal strings were extracted from. Byte files by 

removing non-hexadecimal characters and memory addresses. 

This results in clean sequences of hex values that represent 

malware binary content. 

3.2.2. Custom HexVectorizer 

A custom HexVectorizer class was developed to transform 

hex strings into feature vectors. This class leverages Scikit 

learnaˆs CountVectorizer to tokenize the hex values and 

convert them into a sparse matrix of token counts. The 

HexVectorizer processes the hex values in blocks (e.g., two 

bytes at a time) to build a Bag-of-Words (BoW) model. 

3.2.3. Including Additional Features 

In addition to the BoW vectors, here is the file size for each. 

Byte file is included as an additional feature. This helps to 

capture the differences in file sizes across various malware 

families, potentially improving the classification accuracy. 

3.3. Parallel Processing (Multiprocessing) for 

Feature Extraction 

Owing to the large size of the dataset, the feature extraction 

is computationally intensive. To address this, the authrs im-

plemented multi-processing using Python’s multi-processing 

library. The data are split into chunks, and the parallelize 

function distributes these chunks across multiple CPU cores 

for concurrent processing, thereby significantly reducing the 

time required for vectorization. 
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Figure 1. Parallel Processing Using a Pool of Processes. 

3.4. Model Training 

3.4.1. XGBoost Classifier Selection 

The XGBClassifier from the XGBoost library was selected 

for its strong performance and scalability. XGBoost is rec-

ognized for its efficiency and precision in dealing with 

structured data, making it ideal for classification tasks. 

3.4.2. Hyperparameter Tuning 

 
Figure 2. Process of Training an XGBoost Classifier. 

 
Figure 3. Grid Search for Hyperparameter Tuning. 

To optimize the performance of the model, hyperparameter 

tuning was performed using GridSearch CV. Through cross- 

validation, parameters such as the learning rate, maximum 

depth, and number of estimators were fine-tuned. 

3.4.3. Model Training 

The XGBClassifier was trained on the prepared training 

dataset using the optimized hyperparameters. 

model = XGBClassifier(**best params) model.fit(X train, 

y train) 

 
Figure 4. Cross-Validation for Model Evaluation. 

3.5. Model Evaluation 

3.5.1. Cross-Validation 

Cross-validation was performed to evaluate the perfor-

mance of the model. The dataset was divided into training and 

validation sets multiple times to ensure robustness and gen-

eralizability of the model. 

3.5.2. Performance Metrics 

The model's accuracy, precision, recall, and F1-score were 

calculated to provide a comprehensive evaluation of its per-

formance [15]. These metrics assess the model's effectiveness 
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in correctly classifying the malware samples. 

3.5.3. Comparison with Baseline Models 

The performance of the XGBClassifier was compared with 

baseline models, such as logistic regression and random forest. 

This comparison demonstrated the superiority of XGBoost in 

handling malware classification tasks. 

This methodology outlines a systematic approach to mal-

ware classification, from pre-processing and feature extrac-

tion to parallel processing and model training. The authors 

provide a robust and scalable solution for large-scale malware 

detection and classification by combining traditional ma-

chine-learning techniques with advanced computational 

strategies. 

4. Results and Discussions 

The problem at hand involves a dataset of known malware 

files contained within train.7z and test.7z zip files, encompassing 

nine different malware families. The class labels for these mal-

ware files are provided in a separate trainLabels.csv CSV file. 

Each malware file in the training and test sets is uniquely identi-

fied by a 20-character hash value serving as the file name, and 

each file belongs to a specific malware family denoted by an 

integer class label. The malware families included in the dataset 

are Ramnit, Lollipop, Kelihos ver3, Vundo, Simda, Tracur, 

Kelihos ver1, Obfuscator. ACY, and Gatak. 

Each file’s raw data contains the hexadecimal representa-

tion of the binary content, with the PE header excluded to 

ensure sterility. Additionally, a metadata manifest (files with 

a.asm extension) is provided, containing various metadata 

information extracted from the binary, such as function calls 

and strings, generated using the IDA disassembler tool. 

To classify files into malware families, the following steps 

are taken 

1) Equal samples are randomly selected from each class, 

except Simda. 

2) Hexadecimal strings (length 2) are extracted from bytes 

files. 

3) A Bag-of-Words model is constructed using 

CountVectorizer from scikit-learn. 

4) A classification model is built using XGBClassifier 

from XGBoost. 

The objective of this solution is to select a balanced sample 

from the original dataset and improve the efficiency of the 

solution by parallelizing computationally intensive tasks and 

file operations given the substantial size of the dataset. 

The project structure was meticulously organized to 

streamline the handling, preprocessing, and analysis of the 

malware classification dataset. The main directories and files 

are as follows 

The code/ directory contains 

1) Microsoft Malware Classification (with Multipro-

cessing). ipynb: This Jupyter notebook contains the 

main code for the project. 

2) HexVectorizer.py: A Python script for the custom 

HexVectorizer used in feature extraction. 

3) Submission.csv: The final submission file containing the 

classification results. 

The input/ directory contains the following: 

malware-classification/: 

a. trainLabels.csv: The CSV file with class labels for the 

training dataset. 

b. train/: This folder contains multiple. byte files, each 

representing the hexadecimal content of a malware 

sample, such as 0ACDbR5M3ZhBJajygTuf. bytes. 

c. test/: This folder includes multiple. byte files for the test 

set, such as ITSUPtCmh7WdJcsYDwQ5.bytes. 

The Microsoft-malware-sample/ directory includes: 

1) trainLabels bal.csv: The CSV file with balanced class 

labels for the training dataset. 

2) The file containing the vectorized training dataset. 

3) test vec.csv: The file containing the vectorized test da-

taset. 

4.1. Balanced Subset from Original Dataset 

When working with a dataset, it's often important to create a 

balanced subset to ensure that analyses and insights drawn from 

the data are representative of the larger population. A balanced 

subset typically maintains proportions of various classes or cat-

egories present in the original dataset, which can be crucial for 

tasks like machine learning and statistical analysis. 

 
Figure 5. Workflow for Checking, Loading, and Processing Bal-

anced Malware Subset Data. 
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Figure 6. Malware Class-levels. 

4.2. High-Dimensional Data Visualization 

High-dimensional data visualization is a critical process in 

data analysis that helps to represent complex datasets with 

numerous variables in a more understandable and visually 

interpretable format. Data visualization techniques are de-

rived from certain aspects presented in the referenced paper 

[15]. 

 

 

 

 
Figure 7. Workflow for TSNE Transformation and Visualization of Malware Data. 

 
Figure 8. High-Dimensional Data Visualization. 
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4.3. Tuning 

To determine the optimal range for the hyperparameters 

mentioned above, plot the training and validation (or test) 

errors. Then, identify the optimal point where: 

1) The validation error is minimized. 

2) The gap between the training error and the validation 

error is smallest. 

4.3.1. Param: n Estimators 

Hyperparameter tuning (n estimators=range (1, 70, 10)) 

 
Figure 9. Param: n estimators. 

4.3.2. Param: max depth Hyperparameter Tuning (n 

Estimators=40, Max Depth=Range (1, 10)) 

 
Figure 10. Param: max depth. 

 

4.3.3. Param: Learning Rate 

 
Figure 11. Param: learning rate. 

4.3.4. Param: Reg Alpha 

 
Figure 12. Param: Param: reg alpha. 

4.3.5. Param: Reg Lambda 

 
Figure 13. Param: Param: reg lambda. 
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The project involved classifying malware files into their 

respective families using a combination of feature extraction, 

hyperparameter tuning, and model evaluation [15, 16]. 

1) Grid Search CV The model employs a Grid Search CV 

with the XGBClassifier to fine-tune the parameters. The 

best parameters identified were a learning rate of 0.4, a 

maximum depth of 4, and 45 estimators, achieving an 

accuracy of 0.9604. 

2) Model Testing Feature engineering is performed by 

loading a vectorized test dataset or generating feature 

vectors from byte files. The test dataset was vectorized 

and saved for future use. 

 
Figure 14. Steps of the Feature Engineering Process for the Test Dataset. 

Predictions Finally, the authors generated predictions 

Using the trained model and saved the results. Here’s the process: 

1) Generate Predictions 

2) Prepare the Output Data 

3) Save the Predictions to CSV 

 
Figure 15. The Steps Involved in Generating and Saving the Predictions. 

5. Conclusions 

The increasing incidence of malware presents significant 

obstacles to cybersecurity, necessitating sophisticated and 

effective techniques for detection and categorization. This 

paper presents a novel method that improves the precision and 

efficacy of malware classification by utilizing mul-

ti-processing and Bag-of-Words (BoW) vectorisation. The 

proposed technique utilizes feature vectors to characterize 

malware samples, using the parallel processing capabilities of 
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contemporary computer systems to enhance classification 

speed. This solution centers on a proprietary HexVectorizer 

that transforms hexadecimal strings obtained from malware 

binaries into feature vectors. The approach employs a bal-

anced subset of the Microsoft Malware Classification dataset, 

meticulously preprocessed for dependable evaluation to as-

sure thorough analysis. Python's multiprocessing module is 

utilized to meet the computing requirements of extensive 

datasets, facilitating the parallelization of vectorization pro-

cesses and markedly enhancing processing performance. The 

classification system is centered on XGBoost's XGBClassifier, 

which is recognized for its superior performance and accuracy 

in addressing malware detection and classification issues. 

Experimental findings validate the proposed method's effi-

cacy in real-time malware detection, confirming its relevance 

to diverse cybersecurity contexts. 

This article thoroughly elucidates the implementation pro-

cess, accompanied by meticulous performance assessments. 

The results highlight the method's capacity as a scalable and 

efficient approach for tackling the increasing issues of malware 

classification in cybersecurity. This research greatly advances 

the creation of resilient and efficient malware detection systems 

by integrating sophisticated vectorization techniques with cut-

ting-edge machine learning algorithms, fulfilling essential 

requirements in a dynamic threat environment. 
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