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Abstract: This article traces the genesis of a theorem that gives for the first time examples of the Galois group GS of the
maximal p-extension of Q, unramified outside a finite set of primes not containing an odd p, that are of cohomlogical dimension
2 if the primes in S satisfy a certain linking condition. Because the ramification is tame the pro-p-group GS has all of its derived
factors finite which is a strong finitenesss condition on GS . The paper starts with a question of Serre on one relator pro-p-groups
and then a detour to discrete groups where the notion of strong freeness for a sequence of homogeneous Lie elements is given
and a criterion for strong freeness is established. These notions are then carried over to pro-p-groups where the linking condtion
on the primes of S is translated into a cohomological criterion for a pro-p-group to have cohomological dimension 2. An analysis
is given of the work of Koch where he gives a weaker criterion for a pro-p-group to have have cohomological dimension 2. A
connecttion is made with this work of Koch and that of the author which would have been sufficient to prove the fact that GS

was of cohomological dimension 2 for certain sets S had it been applied to investigate whether the linking condition was true for
certain sets S. It is not known if the cohomological dimension of GS is 2 if S does not satisfy this linking condition.

Keywords: Pro-p-group, Cohomology, Galois Group, p-extension, Tame Ramification, Lie Algebra, Mild Group,
Mild Pro-p-group, Linking Number

1. Introduction
Let p be an odd prime and let GS be the Galois group of

the maximal p-extension of Q which is unramified outside of a
finiite set of primes S of cardinality m, not containing p. Not
much was known about these groups; all that was known was
that, by the Golod-Shafarevich Theorem, they were infinite if
m ≥ 4. These groups remain mysterious in general. In this
paper the evolution of Theorem 2.1, which was unexpected
by researchers in the field, is traced from its inception to its
discovery. The aim is to see why this discovery was not made
much earlier.

2. The Theorem

Let p be a odd prime and let S = {q1, . . . , qm} be a set of
primes qi ≡ 1 mod p. Let gi be a primitive root mod qi and let

the linking number `ij ∈ Fp be defined by

qi ≡ g
−`ij
j (mod qj).

If g is another primitive root mod qj then `ij is replaced by
cj`ij for some cj .

Theorem 2.1. Suppose that m is even and that
1. `ij = 0 if i, j are both odd,
2. `12`23 · · · `m−1,m`m1 − `21`32 · · · `m,m−1`1m 6= 0.

Then GS is of cohomological dimension 2.
Example 2.1. For S = {7, 19, 61, 163} and p = 3 the non-

zero `ij are

`12 = `21 = `14 = `23 = `24 = `34 = 1, `43 = `41 = −1.

Conditions (a) and (b) are satisfied, so cd(GS) = 2
and this gives the first example of a fab pro-p-group whose
cohomological dimension is 2. The most general statement
of Theorem 1 which covers the case m is odd is elegantly



60 John Labute: The Genesis of a Theorem in the Galois Theory of p-Extensions of Q with Restricted Tame Ramification

formulated by Alexander Schmidt:
Theorem 2.2. LetG be a finitely generated pro-p-group such

that H1(G,Z/pZ) is the direct sum of non-trivial subspaces
U, V and such that the cup product

H1(G,Z/pZ)⊗H1(G,Z/pZ)→ H2(G,Z/pZ)

1. is trivial on U ⊗ U and
2. maps U ⊗ V surjectively onto H2(G,Z/pZ),

then G is of cohomological dimension 2.

3. It All Began with a Question of Serre

In a 1963 Séminaire Bourbaki Lecture [2] Serre proposed
the following question where F is a finitely generated free pro-
p-group and F2 = F p[F, F ]. :

“Soit r ∈ F2, et soit Gr = F/(r). Peut-on étendre à Gr

les résultats démontrés par Lyndon [1] dans le cas discret? En
particulier, si r n’est pas une puissance p-ième, est-il vrai que
Gr est de dimension cohomologique 2?”

In the Fall of 1964 Serre was at Harvard and gave a course
on ”Lie Groups and Lie Algebras which gave an introduction
to the the work of Lazard on filtrations of groups in his course
”Groups and Lie Algebras”. In a private lecture he gave a
proof on the Elimination Theorem for groups and Lie algebras
which will play a decisive role in the proof of Theorem 1. This
work is very much influenced by the interplay between groups
and Lie algebras. Sometimes, a group theory question can
be solved if tthe corresponding Lie algebra question and the
result is strong enough, it can be pulled back to a proof of the
original group theory question. This is the case here, at least
partially so. The following is a sketch of an attempt to solve
his question with this in mind. Unfortunately the proof had
a gap which was discovered after the result was conveyed to
Serre. It was only when a detailed proof was attempted that it
was discovered that there was a natural boundary inherent in
the methodology. This was embarrassing having to tell Serre
this especially when he said he told Tate that his question had
been solved solved posiyively.

Let R = (r) and let M = R/[R,R] where [R,R] is
the subgroup of R generated by the commutators [x, y] =
x−1y−1xy with x, y ∈ R. Then by a result of Brumer [3]
we have cd(Gr) = 2 if and only if M , viewed as a module
over the completed algebra Zp[[G]] of G, is a free module of
rank 1 generated by the image of r in M . In [4] we showed
that this was true if r was not ”too close” to a p-th power. More
precisely, let (Fn) be the filtration of F defined by F1 = F and
Fn+1 = F p[F, Fn], also known as the descending p-central
series of F , and let e be largest with r ∈ Fe; we have e < ∞
if r 6= 1, since the intersection of the subgroups Fn is 1. We
show that cd(Gr) = 2 if r is not a p-th power mod Fe+1.

The filtration (Fn) has two important properties:
1. [Fn, Fm] ⊂ Fn+m,
2. F p

n ⊂ Fn+1.
Let grn(G) be the abelian group Gn/Gn+1, which is

denoted additively. A Lie bracket is introduced on gr(G) =
⊕grn(G) using the commutator operation as follows: let

ξn ∈ grn(G), ηm ∈ grm(G) be the the images of xn ∈
Gn, ym ∈ Gm respectiively. Then, letting [ξn, ηm] be the
image in grn+m of [xn, ym] ∈ Gn+m, one gets a Lie bracket
on the graded Fp-module gr(G). The p-th power operator on
G induces the structure of a graded Fp[π]-algebra on gr(G);
namely, if x ∈ Fn and ξ is its image in grn(G) then πξ is the
image of xp in grn+1(G). If F = F (x1, . . . , xd) is the free
group on x1, . . . , xd and ξi is the image of xi in gr1(F ) then
L = gr(F ) is the free Lie algebra over Fp[π] on ξ1, . . . , ξd.

Let ρ be the image of r in gre(F ); this element is called the
initial form of r. Then ρ not a multiple of π is the same as
saying r is not a p-th power modulo Fe+1. Let r be the ideal
of L generated by ρ and let m = r/[r, r]. Let g = L/r and let
Ug be the enveloping algebra of g. Then m is a Ug module via
the adjoint representation. Then the corresponding Lie algebra
question would be to show that r/[r, r] was a free Ug module
of rank 1 generated by the image of ρ. The proof of this this
required a proof that g was torsion free as an Fp[π] module
which would entail the same is true for Ug and hence by the
Birkhoff-Witt Theorem that Ug has no zero divisors. It would
be then a straightforward exercise using the exact sequence

r/[r, r]→ Ig → Ug → Fp[π]→ 0

where Ig ∼= Ud
g is the augmentation ideal of Ug. This yields

the resolution by free Ug modules

0→ r/[r, r]→ Ig → Ug → Fp[π]→ 0

showing that cd(g) = 2.
To show that this lifts to G = F/R one has to show that

gr(G) = L/(ρ) or, equivalently that gr(R) = (ρ) where
Rn = F ∩ Fn. The proof of this utilizes suitable Lazard
filtrations of F and iterative applications of Birkhoff-Witt; it
is much too lengthy to be even sketched here. The same goes
for the proof of L/(ρ) being torsion free if ρ is not a multiple
of π. The details can be found in the work of the author [4].

This proof generalizes to the case of several relators in the
work of the author [11] but the linear independence of the
initial forms of the relators over Fp[π] is not enough to prove
the result. One needs to assume that Ug is a torsion free Fp[π]
module and that r/[r, r] is a free Ug module on the images
of the initial forms of the relators. Such relators are called
strongly free. A pro-p-group with a strongly free presentation
is called mild.

As it turned out, the question of Serre had a negative answer;
for example, in the case r = xp[xp, y] as was shown by
Guildenhuys [6] since xp = 1 in Gr and r is not a p-th power
in F . One still does not have a criterion for deciding whether
the group Gr has finite or infinite cohomological dimension.

4. A Fortitutitous Detour to Discrete
Groups

In this section F will be a free discrete group of rank m.
We let (Fn) be the filtration of F defined by F1 = F, Fn+1 =
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[F, Fn], also known as the descending central series of F . The
graded Lie algebra gr(F ) is defined as above. It is a free Lie
algebra over Z. Let r ∈ F and let G = F/(r). Suppose
r ∈ Fe, r /∈ Fe+1 with e ≥ 2. Let ρ be the image of r in
gre(F ), the initial form of r. If ρ is not a proper multiple then
Waldinger in [5] showed that grn(G) is a free Z module for
e ≤ n ≤ 3e and gave formulae for the ranks as a partial answer
to a question of Magnus who asked if gr(G) was torsion free
for G = F/(r1, . . . , d) if the initial forms of the ri were
linearly independent.

In the work of the author [7] it is shown that in fact gr(G) =
gr(F )/(ρ) is a free Z module if ρ is not a proper multiple and
that the Poincaré series of its enveloping algebra was

1

1−mt+ te
=
∏
n≥1

1

(1− tn)gn

where gn is the rank of grn(G). A straightforward calculation
yields the formula

ngn =
∑
d|n

µ(n/d)[
∑

0≤i≤n/d

(−1)i 1

d+ i− ei

(
d+ i− ei

i

)
md−ei].

In particular gn depends only on n, e and m.
In the work of the author [11], these results were extended

to the case of several relators provided that their initial forms
ρ1, . . . , ρd satisfied the following two conditions

1. The enveloping algebra U of gr(F )/(ρ1, . . . , ρd) is a
torsion free Z module;

2. If r = (ρ1, . . . , ρd) then r/[r, r] is a free U module with
basis the the images of ρ1, . . . , ρd.

Such a sequence is also called strongly free. A method
for constructing such sequences is given using the Elimination
Theorem for Lie algebras. This method would prove decisive
in the proof of Theorem 2.1.

Theorem 4.1 (Elimination Theorem). Let K be a
commutative ring and let L = L(X) be the free Lie algebra
over K on the set X . Let S be a subset of X and let s
be the ideal of L(X) generated by X − S. Let W be the
enveloping algebra of L(S) and let M(S) be the submonoid
of W generated by S.Then s is the free Lie algebra over k on
the elements

T = {ad(m)(x) | x ∈ X − S, m ∈M(S)}.

Corollary 4.2. The W module s/[s, s] is a free module over
W with basis the image of T .

Theorem 4.3 (Criterion for Strong Freeness). Let ρ1, . . . , ρd
be elements of s such that the elements

T1 = {ad(m)(ρj)|m ∈ S, 0 ≤ j ≤ d}

are part of a basis of s. Then ρ1, . . . ρn is a strongly free
sequence.

Proof The ideal r of L generated by ρ1, . . . , ρd is generated
as an ideal of s by the set T1. Since T1 is part of a basis of s
the Corollary to the Elimination Theorem says that r/[r, r] is
a free module over the enveloping algebra V of s/r with basis
the image of T1. The exact sequence

0→ s/r→ U/r→ L(S)→ 0

splits which implies that

U = V ⊗W =
⊕

m∈M(S)

V m.

This implies that U is a freeK module. To show that r/[r, r]
is a free modulue let ρi be the image of ρi in r/[r, r] and
suppose that ∑

i

uiρi = 0 with ui ∈ U.

Then ui =
∑

j vijmj with ui ∈ U , vij ∈ V which implies
that ∑

i

uiρi =
∑
i,j

vijad(mj)(ρj) = 0.

But this implies vij = 0 since r/[r, r] is a free V module
with basis T1.

The Lie algebras L/r constructed in this way are of
cohomological dimension ≤ 2.

An important example of this is

[ξ1, ξ2], [ξ2, ξ3], [ξ3, ξ4], . . . , [ξm−1, ξm],

where X = {x1, . . . , xm} and S = {x1, x3, x5, . . . } so
X − T = {x2, x4, x6, . . .}.

In the work of Anick [12], he gave the name mild group to
a discrete group with defining relators whose initial forms are
strongly free and gave many examples using his criterion of
combinatorial freeness to prove mildness. The most important
of these is the fundamental group G of the complement of a
pure braid link L in S3 which is obtained from a pure braid
by identifying the top and bottom of each strand. If m is the
number of strands of the braid then G has the presentation
G = F/(r1, . . . , rm−1), where ri = [xi, yi] with

yi = xai
i

m∏
j=1

x
aij

j mod [F, F ].

so that

ri =

n∏
j=1

[xi, xj ]
aij mod [F, [F, F ]].
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The matrix (aij) is a symmetric matrix with zero diagonal
because aij is the linking number between the i-th and j-th
unknot of the link. We assume that the matrix aij has no zero
rows so that the image ρi in gr2(F ) is non-zero. Then

ρi =

m∑
j=1

aij [ξi, ξj ],

where ξi is the image of xi in gr2(F ). Anick uses a weighted
graph associated to the matrix (aij) to give a criterion for
the strong freeness of the sequence ρ1, . . . , ρm−1; note that∑
ρi = 0. This graph, which Anick calls a linking diagram,

has as vertices the set {ξ1, . . . , ξm} with ξi, ξj being joined
if aij 6= 0; in this case, the weight being aij . The graph is
connected mod p if and only if there is a spanning subtree
whose vertices are not congruent to zero modulo p where p
can be any prime.

Anick then shows that if the linking diagram of the matrix
(aij), or of the link L, is connected mod p then the sequence
ρ1, . . . , ρi is strongly free mod p and strongly free if it is
connected mod p for any prime p.

5. Back to Pro-p-groups
In [9] Koch uses Lazard filtrations of the

completed group algebra Fp[[F ]] to show that if G =
F (x1, . . . , xm)/(r1, . . . , rd) then cd(G) = 2 if the initial
forms of the relators form a strongly free sequence of Lie
elements in the free Lie subalgebra L of gr(F ) on ξ, . . . , ξm,
the initial forms of x1, . . . , xm. The Fp-algebra A = gr(F )
is the free associative algebra over Fp on the elements
ξ1, . . . , ξm. For Koch, strong freeness means that, if R is the
ideal of A generated by ρ1, . . . , ρd and I is the augmentation
ideal of A, then A/IR is a free A/R module on the images of
the ρi. But B = A/R is the enveloping algebra of g = L/r,
where r is the ideal of L generated by the ρi and R/IR is
isomorphic to r/[r, r], the isomorphism being induced by the
inclusion r ⊂ R. So his definition is the same as the one given
above but this connection was not made in his work [9].

Koch also gives a criterion for strong freeness. To describe
it, let

ρi =

d∑
j=1

aijξj

where aij = ∂jρi ∈ A (Fox derivative). The free
commutative, associative Fp-algebra Ã on ξ1, . . . , ξm is
naturally a quotient of A; we identify ξ with its image in
Ã. Koch’s Criterion is that the rank of the d×m matrix
MK = (ãij) be equal to d. If Koch’s Criterion holds, one
has d < m because of the relations

j=d∑
j=1

∂jρiξj = 0, 1 ≤ i ≤ m

which shows that the columns of MK are linearly dependent.
For the relators ρ1 = [ξ1, ξ2], ρ2 = [ξ2, ξ3], ρ3 = [ξ3, ξ4]

where m = 4

MK =

−ξ2 ξ1 0 0
0 −ξ3 ξ2 0
0 0 −ξ4 ξ3


which is of rank 3 and so the relators are strongly free.

In the work of Koch [8], using local and global classfield
theory, he gives a presentation for the Galois group GS of
the maximal p-extension of Q which is unramified outside
a finite set S of primes which is analogous to that of the
fundamental group of the complement of a tame link in S3.
If S = {q1, . . . , qm} with qi ≡ 1 mod p, he shows that
GS = F (x1, . . . , xm)/(r1, . . . , rm where

ri = xqi−1i

∏
j 6=i

[xi, xj ]
`ij mod F3

where for j ≤ m, `ij is the image in Z/pZ is any integer r
with

qi ≡ g−rj mod qj

where gi is a primitive root mod qi.
If S = {q1, . . . , qm, p} the presentation is the same except

for one additional variable xm+1 but with `ij defined as before
for i, j ≤ m while for i ≤ m, j = m+ 1, `ij is defined by

qi ≡ (1 + p)−`ij mod p.

In both cases there is a linking diagram associated to the
matrix (`ij). There is a striking similarity between the latter
presentation and that of the complement of a pure braid link in
S3. In the Galois case one has cd(GS) = 2 which is proven in
the work of Brumer [3]; but this is not always the case for the
link group.

The first presentation is strikingly different since `ij 6= `ji
in general, the group has the same number of generators as
relators and G is fab. If ρi be the image of ri in gr2(F )

ρi = ciπξi +
∑
j 6=i

`ij [ξ, ξj ]

where ci = (qi − 1)/p. Reducing mod π,

ρi =
∑
j 6=i

`ij [ξ, ξj ]

in the free lie algebra over Fp on the ξi, where ξi is the image of
xi in gr1(F ). The relators (ρi) are strongly free iff the relators
(ρi) are strongly free.

At this point in time there was not even one example of a
pro-p-group G with G/[G,G] finite and cd(G) = 2. Even
worse the Galois group in question has all of its derived factors
finite because by class field theory, the maximal abelian p-
extension of a number field which is unramified outside a finite
set of primes not divisible by p is of finite degree since the
ramification is tame for such primes. In this case the sentiment
was that such a group must have torsion, so could not have
finite cohomological dimension.
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6. The Lightening Bolt Hits

While on leave at Western University in London, Ontario in
the Fall of 2004, after discussing with Jan Minác̆ criteria for
strong freeness of the relators in the Koch presentation for GS

with p ∈ S, it suddenly became apparent while reviewing the
criteria for strong freeness of the author [11] that, if m was
even and ≥ 4, one could prove that the relators

ρ1 = [ξ1, ξ2], ρ2 = [ξ2, ξ3] . . . ρm−1 = [ξm−1, ξm], ρm = [ξm, ξ1]

are strongly free by the Elimination Theorem with K = Fp

and S = {ξi|i odd}. Note in this case, the linking diagram is
a circuit. This meant that one could prove that the relators

xp1[x1, x2], x
p
2[x2, x3], . . . , x

p
m−1[xm−1, xm], xpm[xm, x1]

are also strongly free giving the first example of a pro-p-group
G of cohomological dimension 2 with G/[G,G] finite.

Motivated by this a search was made for circuits in the
linking diagram of the Galois group of the maximal p-
extension unramified outside S = {q1, . . . , qm} with m = 4,
p = 3. For q1 = 7, q2 = 19, q3 = 61, q4 = 163 and
corresponding primitive roots 2, 2, 2, 3, the following circuit

[ξ1, ξ2], [ξ2, ξ3], [ξ3, ξ4], [ξ4, ξ1]

was found in the linking diagram of its presentation (mod π)

ρ1 = [ξ1, ξ2] + [ξ1, ξ4]

ρ2 = [ξ2, ξ1] + [ξ2, ξ3] + [ξ2, ξ4]

ρ3 = [ξ3, ξ4]

ρ4 = −[ξ4, ξ1]− [ξ4, ξ3].

To prove that theses relators are strongly free it is enough,
by the criterion for strong freeness, to prove that they are part
of a basis of s = (ξ2, ξ4). But because the Lie agebras are
graded over Fp, it is enough to prove the linear independence
of their images ρi in s/[s, s] are linearly independent. Since the
ρi lie in the subspace T spanned by the linearly independent
elements

[ξ1, ξ2], [ξ2, ξ3], [ξ3, ξ4], [ξ4, ξ1].

one just has to prove that the rank of the matrix of the ρi with
respect to this basis is 4. But this matrix

ML =


1 0 0 −1
−1 1 0 1
0 0 0 1
−1 0 1 0


whose determinant is 1 which gives the result.

The proof in the general case of Theorem 2.1 is quite similar.
The Koch presentation of GS has d = m and the relators are

ri = xqi−1i

∏
j 6=i

[xi, xj ]
`ijwi

with wi in the third term of the descending p-central series of
F . This implies that the initial forms of the relators modulo
πare

ρi =
∑
j 6=i

`ij [ξi, ξj ].

If the conditions of Theorem 1 are satisfied, that ρ1, . . . , ρm
is a strongly free sequence follows from Corollary 7 if we take
S to be the ξi with i even. Indeed, if one indexes the columns
of the the matrix ML by (1, 2), (2, 3), . . . , (m− 1,m), (1,m)
one gets

ML =



`12 0 0 · · · 0 `1m
−`21 `23 0 · · · 0 0
0 −`32 `34 · · · 0 0
0 0 −`43 · · · 0 0
...

...
...

...
...

0 0 0 · · · `m,m−1 0
0 0 0 · · · −`m,m−1 −`m1


,

whose determinant is `12`23 · · · `m−1,m`m1 − `21`32 · · ·
`m,m−1`1m.

7. Uravelling the Statement of
Theorem 2.2

Let G be a finitely generated pro-p-group. The cohomology
group Hi(G,Z/pZ) will be denoted by Hi(G); it is a vector
space over the finite field Fp. The pro-p-group G is said to be
of cohomological dimension n if Hn(G) 6= 0 and Hi(G) = 0
for i > n. The cohomological dimension of G is said to be
infinite if no such n exists. The cohomological dimension of
G is denoted by cd(G). The cohomological dimension of a
free pro-p-group is 1. In [4] we show that If dimH2(G) = 1
and the cup-product

H1(G)⊗H1(G)→ H2(G)

is a non-degenerate bilinear form then cd(G) = 2. This is the
case when G is the Galois group of the maximal p-extension
of Qp(ζp), where Qp is the p-adic number field and ζp is a
primitive p-th root of unity.

If F = F (x1, . . . , d) is the free pro-p-group on x1, ...., xd
and

1→ R→ F → G→ 1

is a presentation of G there is an exact sequence

0→ H1(G)→ H1(F )→ H1(R)F → H2(G)→ H2(F ),

where H1(G) is the dual of G/Gp[G,G]. Here [G,G] is the
closed subgroup of G generated by the commutators [x, y] =
x−1y−1xy with x, y in G. This implies that dimH1(G) is
the minimal number of generators of G. If dimH1(F ) =
dimH1(G) the presentation is called minimal, in which case
H2(G) = H1(R)F = H1(R/Rp[R,F ]). We let ξi be the
image of xi in F/F p[F, F ] = G/Gp[G,G] and χ1, . . . , χd ∈
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H1(G) = H1(F ) the basis of H1(F ) = H1(G) dual to
ξ1, . . . , ξd. Thus, for a minimal presentation, dimH2(G) is
the minimal number of elements of R that generate R as a
closed normal subgroup of R. The presentation is minimal if
and only if R ≤ F p[F, F ].

Let r1, . . . , rm be elements of F p[F, F ], let R =
(r1 . . . , rm) be the closed normal subgroup of F generated by
r1, . . . , rm and let G = F/R. We have

rk =

d∏
j=1

x
pckj

j

∏
1≤i<j≤d

[xi, xj ]
aijksk

with sk ∈ [F, [F, F ]] and ckj , aijk ∈ Zp. Let rk be the image
of rk in R/Rp[R,F ] = H2(G)∗, the dual of H2(G). Then
r1, . . . , rm generate H2(G)∗ so that m ≥ dimH2(G) which
is ≥ 1 if G is not a free pro-p-group. An important basic fact
is that rk(χi∪χj) = aijk, the image of aijk in Fp = Zp/pZp.
Dualizing the cup product mapping

φ : H1(G)⊗H1(G)→ H2(G),

gives, when p 6= 2, a mapping

φ∗ : H2(G)∗ →
2∧
W =

⊕
1≤i<j≤d

Fpξi ∧ ξj

whereW = F/F p[F, F ]. Then 〈χi∪χj , rk〉 = ρk(χi∪χj) =
aijk, But χi∪χj = φ(χi⊗χj) so that aijk = 〈χi⊗χj , φ

∗(rk)〉
which implies that

φ∗(rk) =
∑

1≤1<j≤d

aijkξi ∧ ξj .

If H1(G) is the direct sum of non-trivial subspaces U, V
then, after a possible change of basis,

U =
⊕
i∈A

Fpχi V =
⊕
i∈B

Fpχi,

where A,B is a partition of {1, . . . , d}. If ψ is the restriction
of φ to U ⊗ V , then ψ maps U ⊗ V surjectiively onto H2(G)
if and only if

ψ∗ : H2(G)∗ → Z =
⊕

i∈A, j∈B
Fpξi ∧ ξj .

is injective; note that

ψ∗(rk) =
∑

i∈A, j∈B
aijkξi ∧ ξj .

If σ is the projection of
∧2

W onto Z then ψ∗ = σφ∗ so
that ψ∗ is injective if and only if φ∗ is injective, the latter
being equivalent to m being equal to the rank of the matrix
ML whose columns are indexed by the pairs (i, j) with i ∈
A, j ∈ B and whose entry in the k-th row and (i, j)-th column
is aijk. Thus, to prove Theorem 2.2, one has to prove that

cd(G) = 2 if the following two conditions
(a) aijk = 0 when i, j ∈ A,
(b) the rank of ML is m,
hold for the elements

ρk =
∑

1≤1<j≤d

aijk[ξi, ξj ],

where
∧2

W can be identified wiih the space of degree 2
elements of L with ξi ∧ ξj corresponding to [ξi, ξj ]. But, by
the criterion for strong freeness, the sequence ρ1, . . . , ρm is
strongly free and hence cd(G) = 2. Note that that rankML =
m implies dimH2(G) = m.

8. Conclusion
It appears that the apparent lack of an important application

of the criteria for strong freeness found in Labute [11] and
the the sentiment that a pro-p-group whose derived factors
are finite could not be of cohomological dimension 2 was
responsible for the delay in the discovery of Theorem 1.
Schmidt [14] extended Theorem 1 to the case of global fields
using Theorem 2.. Minác̆ and the author [16] extended these
to the case p = 2. Forré [15] gave an independent treatment
which covered the case p = 2. In J. Gartner [17], using higher
Masssey products, extended Theorem 2 to obtain mild pro-p-
groups defined by relators of arbitrary degree. There is a large
body of research on mild pro-p groups to which references can
be found in the bibliography of Minńc̆ et al [18].
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