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Abstract 

The nilpotentcy class for the Frobenius was determined based on the structure theorem. The socle of the groups were observed to 

be regular normal and elementary abelian such features were the conditions for the nilpotency classes, as they were the basis on 

which the socle of these groups constructed were nilpotent of some classes or order. The socle of the nilpotent groups whose 

structures is in conformity with D were classified based on the classification scheme for the finite primitive groups in relation to 

socle type. The socle type described in the classification scheme was in condition (1) was in line with the structure of D, as such 

it pave way in determining the socle with nilpotency class having same or similar structure with D. Further investigations showed 

that Frobenious group's were 2-transitive and the structure of D gave the conditions it being regular elementary abelian and so is 

nilpotent. It was observed the stabiliser of the groups in a finite primitive groups were paramount in the determination of the socle 

of the groups, as such much attention was given to the stabilizer of each group under consideration in a quest to determine the 

socle and the nilpotency class. The other conditions for the classification of finite primitive groups based of the socle type were 

not given much attention as it could give the needed condition for the existence of nilpotency class of the groups, as groups of 

such types were either almost simple, diagonal, product or twisted wreath product type. Therefore finite primitive group's under 

those conditions which could not give the expected nilpotency class and order were not give much attention. The degree of 

homogeneity was not given much priority as the article intended to discuss only the socle type and it nilpotency class or order. 

Keywords 

Frobenius, Groups, Socle, Nilpotency, Finite, Abelian, Regular 

 

1. Introduction 

The structure of a finite Frobenius group was as a result of 

the work carried out on primitive groups by [11] and was 

further investigated by Burnside [2]. He showed that a finite 

Frobenius group has proper nontrivial characteristic sub-

groups. Therefore, this idea played a key role in the study of 

finite 2-transitivee permutation groups as in the work (2 (The 

proof of the work of [11] was geared toward the use of char-

acter theory. The major work on this group was carried out by 

[2]. He gave the outline of the structure for finite Frobenius 

but in the real sense, the structure of the Frobenius group was 

described by Frobenius in paper [11], Zassenhaus and 

Thompson as stated in [10]. 

Let   be a finite Frobenius group and with point stabilizer 

such that; 

(D) 𝐾 = * 𝑥𝜖 | 𝑥 = 1 or 𝑓𝑖𝑥(𝑥) = ∅ +  
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Then   is a subgroup of   and is nilpotent, also for any 

prime,  , for which the Sylow p- subgroup of   has a point 

stabilizer which is cyclic. Throughout we denote   as the 

Frobenius subgroup. 

The statement for the structure of finite Frobenius groups as 

given in D was due to work of the work of Frobenius in [11] 

which was later generalised in the work of [18]. It follows that 

a permutation group which is a Frobenius group based on the 

above conditions has a regular abelian subgroup and the point 

stabilizer has only one element of order 2. He further state that 

if H is a primitive group but not regular and, also 
 

 
-transitive, 

then   is normal in  , 

Therefore, every finite primitive group has a unique min-

imal normal subgroup which is regular abelian and simple and 

also isomorphic to each other. Also [13] worked on finite p- 

groups with a Frobenius group of automorphism, whose 

kernel is a cyclic p- group. In his work, he defined a Frobenius 

group as a finite normal subgroup which is non-trivial. We 

intend in this paper to determine the socle of primitive with a 

subgroup satisfying the condition defined in D, with a view to 

determine subgroup generated by minimal normal subgroups 

with a structure satisfying   that is the socle of the group. 

The classification scheme for finite primitive based on the 

O'Nan-Scott theorem rest basically on the socle type of the 

finite primitive groups. The notion of k- homogeneity was 

carried out by [12] for k<5 where the geometric approach was 

employed. Further investigation were due to the work of [8] 

and [16] in which the set were partitioned into tabloids. The 

notion of the 0-miinimal structures in the work of [16] was as 

a result of [5] on aspects of infinite permutation groups. 

2. Preliminary Result 

Theorem 2.1: Let   be a finite group which is not regular 

and   a subgroup with    a point stabilizer of    Therefore 

  can be written as  =      

Basically this theorem could be found in the work carried 

out in [3], [7] and notablly the work of [15]. 

Theorem 2.2: Let   be a finite Frobenius group and    be 

a point stabilizer and let D be defined, then the following hold. 

1.   is a subgroup of   which is normal and regular in  . 

2. For each odd prime,  , the Sylow p-subgroup of    is 

cyclic. 

3.   is nilpotent. 

The structure theorem for the Frobenius group is the nec-

essary and sufficient condition for a subgroup to have a 

structure of   of a Frobenius group. The subgroup are fix 

point free. Suppose   is transitive then   is a derangement 

except for the identity subgroup. With these we take the fol-

lowing. 

Remark 2.3: 

In the case that    is not soluble, then   has only one 

abelian composition factor which is   .  

The development of the structure theory were borne out of 

the idea of [9]. 

We now state a theorem which gives us a condition for the 

existence of a Frobenius group with a point stabilizer having 

only one element of even order. This assertion only satisfy the 

condition in which  =   exactly, since it is the only prime 

number which is also even. 

The next result is given in the relation to the concept of 

reugular abelean groups defined in [14]. 

Theorem 2.4: Let   be a finite Frobenius group of degree n, 

and   a subgroup. If    has even order then   is a regular 

normal abelian subgroup of   and    has exactly one ele-

ment of order 2. 

Proof: 

For    to have even order it imply that it have elements of 

order of two. Let   be the   conjugacy class containing 

these elements. Since the point stabilizers are disjoint, each of 

the point stabilizer contains at least one element from  and 

| |     Consider the cycle decomposition of an element 

   suth tht   has one cycle of length 1 and 
   

 
 cycle of 

length    Since no nontrivial elment of   has more than one 

fixe point, no two elements from   can contain the same 

  cycle. There are exactly 
 (   )

 
,   cycles in    ( ), 

and so we coclude that 
| |(   )

 
 

 (   )

 
 and hence | |     

But | |   , therefore | | =  ,             cycle occurs 

inone of the element of  . In particular, each point stabilizer 

contains exactly one element from  , and   contains all 

elements of order   in    

We suppose that      for any  ,     then we assume 

that 𝑓𝑖𝑥(  ) =   for if not then any  𝜖  we have 

𝑓𝑖𝑥(  ) =   which contrry to the definition in   and we 

may have  =  (  ) =  for any distinct   and  , and so 

eithr (    ) = (   ) is a   cycle in both   and  . But the 

case is not possible. Therefore   𝜖  as asserted. 

𝑓𝑖𝑥( )𝜖           ,  and since both have size   we 

onclude that   =   in particular 1𝜖  and 

fore ,           , and so  isa subgroup and further 

  𝑖  abelian  

The next result is due to the idea of a statement of result in 

[10]. In another development the study of regular abelian 

group's were captured in the work of [4] and [6] 

Theorem 2.5: Let   be a   transitive Frobenius group, 

and   a subgroup. Then suppose that either   is finite or the 

point stabilizer    is abelian, then   is regular normal abe-

lian subgroup of   in which each nontrivial element has 

same order. 

Proof: 

Suppose | | =   then | | =   for if   is   transitive 

then |  | divides   1 therefore   is a Frobenius group if 

for any   1  and     then   ( )    then 

|    ( )|    1. Therefore   has atleast one conjugate 

element in    On the other hand each conjugate element of   

is cearly a nontrivial element from   then we conclude that 

  ( ) =  . Thus we have shown that   is a subgroup and 
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ach element of   lies in the centre of  . Hence   is ele-

mentary abelian   group and so   is regular and normal. 

Further based on Theorem 2.4   is abelian also since   is 

Frobenius then for any  ,     and  ,  𝜖  then (  ) =

(  ), therefore, for any (  1), it imply   = 1, and so   

fixes both   and  . Conversely, if   is Frobenius then 

every element x𝑥,     imply 𝑥,       and so   is of 

prime degree, and so by Theorem 2.4,   is nilpotent. The 

statement also follows from Theorem 2.2, as such   is cyclic 

which by implication   is abelian. Further for any  ,     

there is  ,  𝜖  such that   =   =1 and so  =  . Hence 

the theorem. 

Theorem 2.6 [10]: Let   be a finite primitive group with 

abelain point stabilizer, then   is either, regular or of prime 

degree or a Frobenius group. 

Proof: Since   is a primitive group and not regular, then   

is a Frobenus group and has a subgroup which is a Sylow    

subgroup, which is regular and abelian. Therefore    is of 

the type  , and so   is nilpotent which also by Theorem 2.2, 

it shows condition 1 imply condition 3 thus   is Frobenius. 

Conversely, suppose   is Frobenius, it follows from The-

orem 2.1 that,   has a subgroup which is regular and abelian 

of prime degree, therefore the subgroup may be of type  . 

Hence   has    asc the only proper subgroup and so   is 

primitive. 

Next we define nilpotency of a finite primitive group as it is 

a requirement in the attainment of a Frobenius structure. 

Definition 2.7: A finite primitive group   is nilpotent if 

and only if   has an upper central and a lower central series. 

That is there is an integer     such that   ( ) = 1. 

Therefore we state categorically that if   is nilpotent and 

  is normal then     is nilpotent. Also if   is nilpotent 

then it imply   is soluble. The next result clearly gives con-

dition for the existencet of nilpotency classes. 

Theorem 2.8: Let   be a finite primate group with a 

nilpotent point stabilizer. Then   is soluble if the Sylow 

  subgroup of the point stabilizer is also nilpotent of class at 

most 2. 

Proof: Suppose   has a nilpotent point stabilizer, then 

   is cyclic and so the point stabilizer is an elementary   

abelain group. Therefore by Definition 2.6 and the condition 

that    is a normal subgroup of   it imply that   is soluble 

which follows immediately from Theorem 2.2. 

Conversely if   is of order say,     for   1 then   

contain a normal subgroup which a Sylow   subgroup. 

Therefore if can be deduce from Theorem 2.1 that    is 

nilpotent, and so by Theorem 2.2(2)    is nilpotent of class at 

most 2. 

The next result followed from the work of [4]. 

Theorem 2.9: Let   be a finite primitive group with a 

maximal subgroup   which is abelian, then   is solvable. 

Proof: If   is primitive then for any normal subgroup of  , 

say,  is maximal implying    , so we assume  =   

Therefore the composition series for   is of the form 

    1 and so   is a normal subgroup of  . Moreover 

since   is primitive it imply that   is abelian and so it is of 

order a power of  . 

Remark 2.10: the necessary and sufficient condition that a 

finite primitive group is nilpotent is   is a finite   group 

and abelian. 

Theorem 2.11: Let   is   group then   is nilpotent. 

Proof: Suppose | | = 1, the result is trivialy true. We as-

sume that | |   . Also assume inductively that the theorem 

holds for all   groups of order less than | | hence it iply 

   ( )  is nilpotent. Thus   is nilpotent if and only if 

   ( ) is cyclic. 

Therefore we take the statement of the following theorem 

whose proof will not be given here, it is based on the work 

carried out in [1]. 

Theorem 2.12 [1]: Let   be a primitive group. The fol-

lowing are equivalent. 

i.   is nilpotent. 

ii. Every subgroup of   is subnormal in   

iii. Whenever   a proper subgroup of is   then   is a 

proper subgroup of its normalizer in  . 

iv. Every maximal subgroup of   is normal in   

v.     ( ) 

vi. Every Sylow   subgroup of   is normal in   

vii.   is a direct product of groups of prime power order. 

The next theorem is as a result of the work of [17] in rela-

tion to the structure of  which ill help in determining the 

socle for   having a subgroup in the form of    

Theorem 2.13 {10]: Let G be a group which acts primi-

tively and on   with | | =  . Let  =    ( ) and    . 

Then H is of type T then   is affine and T is abelian of order 

p and  =           is a complement to which acts on H 

and is simple. 

We can say therefore, if   has a minimal normal subgroup 

𝐾 say, then for some prime   and some integer ( ,  ),   is 

a regular elementary abelian group of order    and 

   ( ) = 𝐾 =    (𝐾) . We observe further, if 𝐾  has the 

structure of   the    ( ) =  =   ( ) which is also an 

elementary abelian group of prime power    and also iso-

morphic to an affine group. This suffices to say   is a sub-

group and is nilpotent. Thus we can clearly state that socle are 

subgroups of normalizers subgroups. 

Theorem 2.1 [10] 4: Let G be a finite group, then    ( )  

  ( ) for each subnormal group   of  . 

Proof: 

The result is certainly true if  =    Therefore induction 

on |   | with     show that each minimal normal sub-

group K of G is contained in the normalizer of   ( ). 

Since it is subnormal, there exist      𝑖        . 

Then either 𝐾   , (𝐾,  ) = 𝐾 . Hence 𝐾    ( )  

  ( ) and the result is true. So suppose that 𝐾   . Then 

there exists a minimal normal subgroup of 𝑥   =  , and 

induction shows that 

K= { 𝑥   𝑥+   𝐿( )    ( ). 

http://www.sciencepg.com/journal/pamj


Pure and Applied Mathematics Journal http://www.sciencepg.com/journal/pamj 

 

82 

Since K is a minimal normal subgroup of G we have that 

𝐾 = *𝑥   𝑥| 𝑥   +  Implying 𝐾    ( ). 

3. Main Results 

Theorem 3.1: Let   be a finite group of order n and   a 

subgroup of order    for   1 then    ( ) is a regular 

abelian group of order a power of    

Proof: 

For   to regular imply   then by Theorem 2.6 show that 

  is either a Frobenius group or reguar if and only if   has an 

abelian stabilizer so let   be a subgroup of   with the 

structure as defined in  . If  =    then   is regular and 

abelian, also suppose   and maximal with  =    ( ) 

imply   is nilpotent. 

Conversely suppose   is nilpotent and   is normal in   

then every Sylow   subgroup of   is an elementary 

  abelian group of order a power of  . Therefore if   is 

maximal Theorem 2.13 imply    ( ) is regular and abelian 

of order  . 

Theorem 3.2: Let   be a finite nilpotent group with a reg-

ular normal subgroup   of prime order. Then    ( )  is 

nilpotent. 

Proof: Since   is niplotent it shows that the normal sub-

groups of   is abelian and there let   be a normal of   with 

the structure as defined in   then   is regular and abelian 

and is also maximal, otherwise there may be a chain of sub-

group with another proper subgroup say,   such that 

      * + for    , this shows that   is nilpo-

tent of class 3. But   is a maximal subgroup of   therefore 

it is nilpotent of class at most 2 by Theorem 2.7, and so, 

suppose  =    and that    ( ) =   then by theorem 2.12 

  is an elementary   abelian group swhich imply    ( ) 

is nilpotent. 

Theorem 3.3: Let   be a finite nilpotent group and   a 

subnormal group of  , therefore    ( ) is an elementary 

abelian   . group. 

Proof: suppose   is primitive of degree  , imply that 

| | =  =    , and   has Sylow subgroup by first sylows 

theorem. Let   be the subgroup of  , since   is primitive 

show that   is maximal and so by Theorem 3.3,  is of type 

  above consequently  =    ( ) which is also elementary 

   abelian. 

Conversely if   is an abelian   group, it imply that any 

chain of subgroup of   has a maximal subgroup   say, 

therefore by Theorem 2.7 it imply that  =    ( ) and so   

is nilpotent of class 2 and so by Theorem 3.3, the chain 

      * + has a subnormal group   in line with 

Theorem 2.14 and so  =  , hence   is nilpotent. 

4. Conclusion 

The regular subgroup of the type as defined in   and their 

nilpotency classes were obtained for Frobenius groups with 

regular normal abelian subgroups. These groups were of order 

a power of   in which most of the subgroups had the struc-

ture of  . The socle of   had a direct relation with the clas-

sification scheme foe finite simple groups based on the socle 

type as is in the work of [17]. The case for which   was of 

order   was determined for groups of even order. It showed 

that the socle of the groups having the structure of   were 

transitive and nilpotent. 

Abbreviations 

soc(G) Socle of the Group G 

fix(x) Fix of an Element x in G 

Supp(x) Support of the Element x in G 
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