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Abstract 

The Ratio Test, developed by Jean Le Rond d'Alembert, is a fundamental method for determining the convergence or 

divergence of an infinite series and is commonly used as a primary test for many series. However, due to its restricted range 

of applicability, several generalized forms of the Ratio Test have been introduced to extend its usefulness. In this paper, we 

combine two of the most effective and reliable generalized Ratio Tests to create more efficient convergence tests. To this 

end, we show that if a positive valued function, f, is defined for all numbers greater than or equal to one, and if the improper 

integral of the reciprocal of f, over the interval from one to infinity, diverges, then f has a close relationship with a sister 

function φ. We then show that these paired functions satisfy a remarkable relationship that completely characterizes all 

monotonically decreasing sequence of terms whose sum diverge. We demonstrate through several examples the ea se with 

which φ can be found if f is known and vice-versa. Next, we combine the generalized Ratio Tests of Dini and Ermakoff by 

focusing on a ‘thin’ subsequence of the terms of a large category of infinite series to develop other convergence and 

divergence tests. Furthermore, we refine these tests to produce practical and easier to apply convergence and divergence 

tests. Lastly, we demonstrate that for many infinite series, one can factor their terms into the product of the reciprocal of  f 

and L. We then show that the limit superior and limit inferior of an expression based on L determines the convergence or 

divergence of the original series. 

Keywords 

Series, Convergence, Divergence 

 

1. Introduction 

In this paper, we shall show how one can combine the ratio 

tests of Dini and Ermakoff (see [1], pages 37-45) to develop 

other tests which can lead to a rapid determination of con-

vergence and divergence for certain infinite series. 

Dini’s test for convergence and divergence states that: 

If ∑ 𝐷𝑛
−1∞

𝑛=1  is a divergent series and if 𝑇𝑛 = 𝐷𝑛
𝑎𝑛

𝑎𝑛+1
−

𝐷𝑛+1, then ∑ 𝑎𝑛
∞
𝑛=1  is convergent if 𝑙𝑖𝑚𝑇𝑛 > 0 and diver-

gent if 𝑙𝑖𝑚̅̅̅̅̅𝑇𝑛 < 0 (see [1], page 37). 

Ermakoff’s tests state that: If 𝑓(𝑥) and 𝜑(𝑥) satisfy the 

following conditions: 

𝑓(𝑥) is strictly increasing on ,1, ∞), 

𝑓(𝑛) = 𝑎𝑛 > 0 , where 𝑛𝜖𝑍+, and 

𝜑(𝑥)  is an increasing function that satisfies 𝜑(𝑥) > 𝑥 , 

then: 

∑ 𝑎𝑛
∞
𝑛=1  converges if: 
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𝑙𝑖𝑚̅̅̅̅̅ .
𝜑′(𝑥)𝑓(𝜑(𝑥))

𝑓(𝑥)
< 1/ and diverges if 𝑙𝑖𝑚 .

𝜑′(𝑥)𝑓(𝜑(𝑥))

𝑓(𝑥)
>

1/ (see [2], page 44). 

If one rephrases Dini’s tests as a function of the limit in-

fimum and limit infimum (see [3]) of .
(𝛿+𝐷𝑛+1)𝑎𝑛+1

𝐷𝑛𝑎𝑛
/, where 

𝛿 ∈ 𝑅, it becomes apparent that it bears some resemblance to 

Ermakoff’s tests. 

The speculation that some advantage may be gained by com-

bining Ermakoff and Dini’s tests forms the basis of this paper. 

In the first section (Preliminaries) we give a characteriza-

tion of all diverging series via the equation 𝜑′(𝑥)𝑓(𝑥) =

𝑓(𝜑(𝑥)) (see [2, 4]). 

In the third section (Generalized Ratio Tests), we prove two 

convergence and divergence theorems. In the next section 

(Main Results), we provide refinements of these two key 

theorems, by focusing our attention on infinite series that are 

expressible in the form ∑
1

𝑓(𝑛)(𝐿(𝑛))𝛼
∞
𝑛=1 , where  𝛼 is a 

non-zero real number. 

A key result from the first section (Preliminaries), is used to 

devise this refinement scheme. In fact, we show that the 

problem of finding whether a series converges or diverges, for 

many infinite series, can be reduced to one of knowing a few 

basic divergent series and the 𝑙𝑖𝑚 or the 𝑙𝑖𝑚̅̅̅̅̅ of quantities of 

the form 𝐿(𝜑(𝑛)) − 𝐿(𝑛). 

We conclude our paper in the last section with a couple of 

examples illustrating the use of some of our results. 

Throughout this paper, 𝑓 will denote a continuous, posi-

tive valued, and a non-decreasing function on ,1, ∞). 

2. Preliminaries 

Definition 2.1 

We shall denote by 𝐷𝜏  the set of all functions 𝜑: ,1, ∞) →

𝑅, that satisfy: 

𝜑(𝑥) > 𝑥 and                 (1) 

𝜑′(𝑥) ≥ 1.                   (2) 

Definition 2.2 

We shall denote by 𝐷𝜙 the set of all functions 𝑓: ,1, ∞) →

𝑅+ satisfying: 

𝑓(𝑥) is strictly increasing on ,1, ∞), and 

∫
1

𝑓(𝑥)
𝑑𝑥 = ∞

∞

1 .                (3) 

Next, we shall continue with a couple of preliminary but 

important results which would lead us, ultimately, to the fact 

that: if 𝜑′ is an increasing function on ,1, ∞), then a function 

from either 𝐷𝜙  or 𝐷𝜏 has at least one corresponding function 

in the other set. Furthermore, these paired functions satisfy a 

remarkable relationship that completely characterizes all mon-

otonically decreasing sequence of terms whose sums diverge. 

Lemma 2.1 

Let 𝑓 ∈ 𝐷𝜙  and 𝜑 ∈ 𝐷𝜏 . Then the following conditions 

are equivalent: 

𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)),              (4) 

∫
1

𝑓(𝑡)
𝑑𝑡

𝜑(𝑥)

𝑥
 = ∫

1

𝑓(𝑡)
𝑑𝑡

𝜑(1)

1
, for all 𝑥 ≥ 1.    (5) 

Proof: 

To prove that (5) implies (4), differentiate both sides of (5) 

with respect to 𝑥 (see [5]). 

Next, suppose that (4) is true. Then, 

∫
1

𝑓(𝑡)
𝑑𝑡

𝑥

1  = ∫
𝜑′(𝑡)

𝑓(𝜑(𝑡))
𝑑𝑡

𝑥

1
= ∫

1

𝑓(𝑢)
𝑑𝑢

𝜑(𝑥)

𝜑(1)
,  

where 𝑢 = 𝜑(𝑡) (see [6]). 

Hence, 

∫
1

𝑓(𝑡)
𝑑𝑡

𝜑(1)

1
= ∫

1

𝑓(𝑡)
𝑑𝑡

𝜑(𝑥)

𝑥
, for all 𝑥 > 1. 

Theorem 2.1 

Let 𝑓 ∈ 𝐷𝜙 , then there exists at least one 𝜑 ∈ 𝐷𝜏  such that: 

𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)).          (6) 

Proof: 

Let 𝐹(𝑥) = ∫
1

𝑓(𝑡)
𝑑𝑡

𝑥

1
. Then 𝐹′(𝑥) exists, is non-zero, and 

𝐹−1(𝑥) exists (see [7, 8]).  

Let 𝜀 > 0 and define 𝜑(𝑥) as: 

𝜑(𝑥) = 𝐹−1(𝐹(𝑥) + 𝜀).          (7) 

The rest of the proof is routine. 

Theorem 2.2 

Let 𝜑 ∈ 𝐷𝜏 . If in addition 𝜑′ is an increasing function on 

,1, ∞), then there exists at least one 𝑓 ∈ 𝐷𝜙  such that the 

following conditions hold: 

𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)).           (8) 

∫
1

𝑓(𝑥)
𝑑𝑥 = ∞

∞

1 .             (9) 

Proof: 

Let 𝑓 be continuous, positive, and a non-decreasing func-

tion on ,1, 𝜑(1)- that satisfies: 

𝑓(𝜑(1)) = 𝜑′(1)𝑓(1). 

We shall then extend 𝑓 to ,1, ∞) via the equation 

𝑓(𝜑(𝑥)) = 𝜑′(𝑥)𝑓(𝑥). 

Clearly, 𝑓  satisfies condition (6). Therefore, by Lemma 

http://www.sciencepg.com/journal/pamj
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1.1.1, condition (7) also holds and ∫
1

𝑓(𝑥)
𝑑𝑥 = ∞

∞

1
, since 

∫
1

𝑓(𝑡)
𝑑𝑡

𝜑(1)

1
= ∫

1

𝑓(𝑡)
𝑑𝑡

𝜑(𝑥)

𝑥
. 

Our next result, which is an immediate consequence of 

Theorems 2.1 and 2.2, can be viewed as a characterization of 

all monotonically decreasing sequence of positive terms 

whose sums diverge. Note that the condition ∫
1

𝑓(𝑡)
𝑑𝑡 = ∞

∞

1
, 

is crucial in the proof of our next result. 

Theorem 2.3 

Suppose that *𝑎𝑛+𝑛=1
∞  is a sequence of monotonically de-

creasing sequence of positive terms. Then, there exists a con-

tinuous, positive valued, and a non-decreasing function 𝑓 on 

,1, ∞) that satisfies (𝑛) =
1

𝑎𝑛
 , for all 𝑛𝜖𝑍+, and at least one 

function 𝜑 ∈ 𝐷𝜏 such that 𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)). 

Theorem 1.1.3 is a direct consequence of Theorem 1.1. 

In the next section, we shall prove a convergence and a 

divergence result. 

For the remainder of this paper, 𝑓 ∈ 𝐷𝜙 , 𝜑 ∈ 𝐷𝜏 , and 𝑔 

will denote a non-increasing, almost everywhere continuous 

function on ,1, ∞). For such functions 𝑔, it follows from [9] 

(see page 138, problem number 8 and page 323, Theorem 

11.33) that ∫ 𝑔(𝑡)𝑑𝑡
∞

1
 is well defined. 

3. Generalized Ratio Tests 

Theorem 3.1 

Let 𝐷(𝑥) be a non-decreasing, positive function on ,1, ∞), 

such that ∑
1

𝐷(𝜑𝑛(1))
∞
𝑛=1  diverges. If 

𝜑′(𝑥)𝐷(𝜑(𝑥))𝑔(𝜑(𝑥))

𝐷(𝑥)𝑔(𝑥)
≥ 1, 

for all 𝑥 > 𝜉 > 1, then ∑ 𝑔(𝑛)∞
𝑛=1  diverges. 

Proof: 

If 
𝜑′(𝑥)𝐷(𝜑(𝑥))𝑔(𝜑(𝑥))

𝐷(𝑥)𝑔(𝑥)
≥ 1, for all 𝑥 > 𝜉 then 

∫ 𝜑′(𝑡)𝐷(𝜑(𝑡))𝑔(𝜑(𝑡))𝑑𝑡
𝑥

𝜉
≥ ∫ 𝐷(𝑡)𝑔(𝑡)𝑑𝑡

𝑥

𝜉
. 

That is, ∫ 𝐷(𝑢)𝑔(𝑢)𝑑𝑢 ≥
𝜑(𝑥)

𝜑(𝜉)
∫ 𝐷(𝑡)𝑔(𝑡)𝑑𝑡

𝑥

𝜉
. 

Therefore,  

∫ 𝐷(𝑢)𝑔(𝑢)𝑑𝑢 ≥
𝜑(𝑥)

𝑥
∫ 𝐷(𝑡)𝑔(𝑡)𝑑𝑡

𝜑(𝜉)

𝜉
 =𝛽 > 0. 

Since 𝐷(𝑥)  is a non-decreasing, positive function on 

,1, ∞), it follows that 

∫ 𝑔(𝑢)𝑑𝑢 ≥
𝜑(𝑥)

𝑥

1

𝐷(𝜑(𝑥))
∫ 𝐷(𝑢)𝑔(𝑢)𝑑𝑢 ≥

𝜑(𝑥)

𝑥

𝛽

𝐷(𝜑(𝑥))
. 

Thus, 

∫ 𝑔(𝑥)𝑑𝑥 ≥ 𝛽 ∑
1

𝐷(𝜑𝑛(1))

∞
𝑛=1 = ∞

∞

1
 and ∑ 𝑔(𝑛)∞

𝑛=1  di-

verges by the Integral Test (see [10]). 

Theorem 3.2 

Suppose that 𝐶(𝑥)  is a real-valued function on ,1, ∞) 

such that 𝑙𝑖𝑚𝐶(𝑥) > 𝜆 > 0. 

If 
𝜑′(𝑥)𝐶(𝜑(𝑥))𝑔(𝜑(𝑥))

𝐶(𝑥)𝑔(𝑥)
≤ 1 −

𝜆

𝐶(𝑥)
, for all 𝑥 > 𝜉 , then 

∑ 𝑔(𝑛)∞
𝑛=1  converges. 

Proof 

We can assume without loss of generality that for all 𝑥 > 𝜉, 

𝐶(𝑥) > 𝜆. Thus, 

∫ 𝜑′(𝑡)𝐶(𝜑(𝑡))𝑔(𝜑(𝑡))𝑑𝑡
𝑥

𝜉
≤ ∫ 𝐶(𝑡)𝑔(𝑡)𝑑𝑡 −

𝑥

𝜉

𝜆 ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝜉  . 

Hence, 

𝜆 ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝜉
≤ ∫ 𝐶(𝑡)𝑔(𝑡)𝑑𝑡 − ∫ 𝐶(𝑢)𝑔(𝑢)𝑑𝑢

𝜑(𝑥)

𝜑(𝜉)
 

𝑥

𝜉
  

Therefore, 

𝜆 ∫ 𝑔(𝑡)𝑑𝑡
𝑥

𝜉
≤ ∫ 𝑔(𝑡)𝐶(𝑡)𝑑𝑡 − ∫ 𝐶(𝑢)𝑔(𝑢)𝑑𝑢

𝜑(𝑥)

𝑥

𝜑(𝜉)

𝜉
  

≤  ∫ 𝐶(𝑡)𝑔(𝑡)𝑑𝑡 = 𝛽 < ∞ 
𝜑(𝜉)

𝜉
. 

Since 𝑥 is arbitrary, it follows that ∫ 𝑔(𝑥)𝑑𝑥
∞

1
 converges. 

Consequently, ∑ 𝑔(𝑛)∞
𝑛=1  converges (see [10, 11]). 

4. Main Results 

In this Section, we shall show how the results from 

Section 1.1 can be used, in conjunction with Theorems 2.1 

and 2.5, to attain practical tests to check for the conver-

gence or divergence of infinite series. We shall focus our 

attention on infinite series that can be written in the form 

∑
1

𝑓(𝑛)(𝐿(𝑛))𝛼
∞
𝑛=1 . 

Note that if 𝑔(𝑥) is positive and decreasing on ,1, ∞), 

lim𝑥→0 𝑔(𝑥) = 0 , then 𝑔(𝑥)  is expressible in the form 

𝑔(𝑥) =
1

𝑓(𝑥)(𝐿(𝑥))𝛼  where 𝑓 ∈ 𝐷𝜙 , 𝐿  is non-decreasing on 

,1, ∞), lim𝑛→∞ 𝐿(𝑥) = ∞, and 𝛼 ∈ 𝑅. 

Lemma 3.1 

If 𝛽 > 0 and 0 < 𝛼 < 1, then there exists a 𝑘 > 0 such 

that (1 − 𝛼)𝛽 ≤ 1 − 𝑘𝛼. 

Proof 

If 𝛽 ≥ 1 , then since 0 < 𝛼 < 1 , it follows that (1 −

𝛼)𝛽 ≤ (1 − 𝛼). 

So, assume that 0 < 𝛽 < 1. Then there exists positive in-

tegers m, n such that 
𝑚

𝑛
< 𝛽. 

Therefore, (1 − 𝛼)𝛽 ≤ (1 − 𝛼)
𝑚

𝑛 ≤ (1 − 𝛼)
1

𝑛. 

Now, let 𝑕(𝛼) = (1 − 𝑘𝛼)𝑛 − (1 − 𝛼), where 𝑘 =
1

𝑛+1
. 

Then, 𝑕(0) = 0 and 𝑕′(𝛼) = 1 − 𝑛𝑘(1 − 𝑘𝛼)𝑛−1. 

Thus, 𝑕′(𝛼) > 0  and 𝑕(𝛼) > 0  for all 𝛼𝜖(0, 1)  (see 

http://www.sciencepg.com/journal/pamj
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[12]). 

Consequently, if 𝛽 > 0 and 0 < 𝛼 < 1, then there exists 

𝑘 > 0 such that: 

(1 − 𝛼)𝛽 ≤ (1 − 𝛼)
𝑚

𝑛 ≤ (1 − 𝛼)
1

𝑛 ≤ 1 − 𝑘𝛼.  

Corollary 3.1 

Suppose that 𝑓 ∈ 𝐷𝜙  and 𝜑 ∈ 𝐷𝜏  satisfy: 𝜑′(𝑥)𝑓(𝑥) =

𝑓(𝜑(𝑥)). 

If (𝑥) =
1

𝑓(𝑥)(𝐿(𝑥))𝛼  , 𝛼 > 1, and 𝑙𝑖𝑚(𝐿(𝜑(𝑛) − 𝐿(𝑛)) ≥

𝜔 > 0, then ∑
1

𝑓(𝑥)(𝐿(𝑥))𝛼
∞
𝑛=1  converges. 

Proof 

Now, let 𝐶(𝑥) = 𝐿(𝑥). 

Then, 

𝜑′(𝑥)𝐶(𝜑(𝑥))𝑔(𝜑(𝑥))

𝐶(𝑥)𝑔(𝑥)
= .

𝐿(𝑥)

𝐿(𝜑(𝑥))
/

𝛼−1
. 

Since 𝑙𝑖𝑚(𝐿(𝜑(𝑛) − 𝐿(𝑛)) ≥ 𝜔 > 0,  it follows that 

lim𝑛→∞ 𝐿(𝑥) = ∞. 

Thus, 
𝐿(𝑥)

𝐿(𝜑(𝑥))
≤ 1 −

𝜔

𝐿(𝑥)+𝜔
≤ 1 −

𝜔

2𝐿(𝑥)
 for sufficiently large 𝑥. 

If 𝛽 ≥ 2, then for sufficiently large 𝑥, 

.
𝐿(𝑥)

𝐿(𝜑(𝑥))
/

𝛽−1

≤ .1 −
𝜔

2𝐿(𝑥)
 /

𝛽−1

≤ 1 −
𝜔

2𝐿(𝑥)
  

If 1 < 𝛽 < 2 , then 0 < 𝛽 − 1 < 1 , and for sufficiently 

large x, it follows from Lemma 3.1 and above that there exists 

a 𝑘 > 0 such that: 

.
𝐿(𝑥)

𝐿(𝜑(𝑥))
/

𝛽−1

≤ 1 −
𝑘𝜔

2𝐿(𝑥)
 = 1 −

𝜆

𝐶(𝑥)
,  

where 𝐿(𝑥) = 𝐶(𝑥) and 𝜆 =
𝑘𝑤

2
. 

It follows from Theorem 3.1 that ∑
1

𝑓(𝑥)(𝐿(𝑥))𝛼
∞
𝑛=1  con-

verges and hence, Corollary 3.1 holds. 

Corollary 3.2 

Let 𝑓 ∈ 𝐷𝜙  and 𝜑 ∈ 𝐷𝜏 satisfy: 𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)). 

If 𝑔(𝑥) =
1

𝑓(𝑥)(𝐿(𝑥))𝛼, 𝛼 ≤ 1, and 𝑙𝑖𝑚(𝐿(𝜑(𝑛) − 𝐿(𝑛)) <

∞, then ∑
1

𝑓(𝑥)(𝐿(𝑥))𝛼
∞
𝑛=1  diverges. 

Proof: 

Now, 𝐷(𝑥) = 𝐿(𝑥). 

Then, 

𝜑′(𝑥)𝐷(𝜑(𝑥))𝑔(𝜑(𝑥))

𝐷(𝑥)𝑔(𝑥)
= .

𝐿(𝜑(𝑥))

𝐿(𝑥)
/

1−𝛼

≥ 1.  

Since 𝑙𝑖𝑚(𝐿(𝜑(𝑛) − 𝐿(𝑛)) < ∞, it follows that for suffi-

ciently large 𝑥, 

0 < 𝐿(𝜑(𝑥)) − 𝐿(𝑥) ≤ 𝛽. 

Thus, 

∑
1

𝐷(𝜑𝑗(1))

∞
𝑗=0 ≥

1

𝛽
∑

1

𝐿(1)+𝑗𝛽
= ∞∞

𝑗=0 . 

Therefore, ∑
1

𝑓(𝑥)(𝐿(𝑥))𝛼
∞
𝑛=1  diverges by Theorem 3.2. 

5. Examples 

Next, we shall include a couple of examples of functions 

𝑓 ∈ 𝐷𝜙  and their corresponding functions 𝜑 ∈ 𝐷𝜏. 

Example 4.1 

Let 𝑓(𝑥)  =  1 . Then, 𝐹(𝑥) = ∫
1

𝑓(𝑡)
𝑑𝑡

𝑥

1
 =  𝑥 –  1  and 

𝐹−1(𝑥)  =  𝑥 +  1. Thus, 

𝑖𝑓  =  1, (𝑥)  =  𝐹−1(𝐹(𝑥)  +  1)  =  𝑥 +  1. 

Example 4.2 

𝐿𝑒𝑡 𝑓(𝑥)  =  𝑥. Then, 𝐹(𝑥)  =  ∫
1

𝑡
𝑑𝑡 = ln (𝑥)

𝑥

1
 Therefore, 

𝐹−1(𝑥) = 𝑒𝑥. Hence, for  =  𝐼𝑛2, 

(𝑥) = 𝐹−1(𝐹(𝑥) + ln(2)) = 𝑒ln (2𝑥) = 2𝑥. 

Example 4.3 

Let 𝑓(𝑥)  =  𝑥𝐼𝑛𝑥. Then, 

𝐹(𝑥) = ∫
1

𝑡𝑙𝑛𝑡
𝑑𝑡

𝑥

𝑒
 = ln (ln (𝑥) and 𝐹−1(𝑥) = 𝑒𝑒𝑥

. 

Hence, 𝑓𝑜𝑟  =  𝐼𝑛2,(𝑥)  =  𝑥2. 

We shall conclude this paper by demonstrating the ease 

with which Corollaries 3.2 and 3.3 can be used to determine 

the convergence and divergence of some well-known se-

ries. 

Example 4.4 

∑
1

𝑛𝑝
∞
𝑛=1  . 

Let 𝑓(𝑥)  =  1. Hence, (𝑥)  =  𝑥 +  1. Since 𝐿(𝑥) = 𝑥, 

𝐿(𝜑(𝑥)) − 𝐿(𝑥) = 1. 

Hence, ∑
1

𝑛𝑝
∞
𝑛=1  converges if  =  𝑝 >  1 and diverges if 

 =  𝑝 ≤ 11 (see [13]). 

Example 4.5 

∑
1

𝑛(𝑙𝑛(𝑛))𝑝
∞
𝑛=1 . Let 𝑓(𝑥)  =  𝑥 . Then, 𝐿(𝑥)  =  𝐼𝑛𝑥  and 

 =  𝑝. Since 

𝑓(𝑥)  =  𝑥,  (𝑥)  =  2𝑥 . Now, 𝐿((𝑥)) –  𝐿(𝑥)  =

 𝐼𝑛(2𝑥) –  𝐼𝑛(𝑥)  =  𝐼𝑛2. Hence, 

∑
1

𝑛(𝑙𝑛(𝑛))𝑝
∞
𝑛=1  converges if  =  𝑝 >  1, and diverges if 

 =  𝑝 ≤ 1 (see [14] and [15]) for the interested reader. 

6. Conclusion 

In this paper, we proved that all monotonically decreasing 

sequence of positive terms whose sum diverges can be char-

acterized by an equation satisfying 𝜑′(𝑥)𝑓(𝑥) = 𝑓(𝜑(𝑥)), 

where 𝜑′ is a non-decreasing function on ,1, ∞). 

We also showed how the tests of Dini and Ermakoff can be 

combined to establish other convergence and divergence 

theorems for certain infinite series. These new tests proved to 

http://www.sciencepg.com/journal/pamj
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be more malleable and easier to refine by focusing attention 

on series that are expressible in the form ∑
1

𝑓(𝑛)(𝐿(𝑛))𝛼
∞
𝑛=1 , 

where 𝛼 is a real number. 

In fact, we proved that the problem of finding whether a 

series converges or diverges can, in many cases, be reduced to 

one of knowing a few basic divergent series and the limit 

superior or the limit inferior of quantities of the form 

𝐿(𝜑(𝑛)) − 𝐿(𝑛). 

Abbreviations 

pp Pages 

𝑙𝑖𝑚  Limit Inferior 

𝑙𝑖𝑚̅̅̅̅̅  Limit Superior 
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