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Abstract 

Available neural network-based models for predicting the oil flow rate (qo) in the Niger Delta are not simplified and are 

developed from limited data sources. The reproducibility of these models is not feasible as the models‟ details are not 

published. This study developed simplified and reproducible three, five, and six-input variables neural-based models for 

estimating qo using 283 datasets from 21 wells across fields in the Niger Delta. The neural-based models were developed using 

maximum-minimum (max.-min.) normalized and clip-normalized datasets. The performances and the generalizability of the 

developed models with published datasets were determined using some statistical indices: coefficient of determination (R
2
), 

mean square error (MSE), root mean square error (RMSE), average relative error (ARE) and average absolute relative error 

(AARE). The results indicate that the 3-input-based neural models had overall R
2
, MSE, and RMSE values of 0.9689, 

9.6185x10
-4 

and 0.0310, respectively, for the max.-min. normalizing method and R
2
 of 0.9663, MSE of 5.7986x10

-3
 and RMSE 

of 0.0762 for the clip scaling approach. The 5-input-based models resulted in R
2
 of 0.9865, MSE of 5.7790×10

-4
 and RMSE of 

0.0240 for the max.-min. scaling method and R
2
 of 0.9720, MSE of 3.7243x10

-3
 and RMSE of 0.0610 for the clip scaling 

approach. Also, the 6-input-based models had R
2
 of 0.9809, MSE of 8.7520x10

-4
 and RMSE of 0.0296 for the max.-min. 

normalizing approach and R
2
 of 0.9791, MSE of 3.8859 x 10

-3
 and RMSE of 0.0623 for the clip scaling method. Furthermore, 

the generality performance of the simplified neural-based models resulted in R
2
, RMSE, ARE, and AAPRE of 0.9644, 205.78, 

0.0248, and 0.1275, respectively, for the 3-input-based neural model and R
2
 of 0.9264, RMSE of 2089.93, ARE of 0.1656 and 

AARE of 0.2267 for the 6-input-based neural model. The neural-based models predicted qo were more comparable to the test 

datasets than some existing correlations, as the predicted qo result was the lowest error indices. Besides, the overall relative 

importance of the neural-based models‟ input variables on qo prediction is S>GLR>Pwh>T/Tsc>γo>BS&W>γg. The simplified 

neural-based models performed better than some empirical correlations from the assessment indicators. Therefore, the models 

should apply as tools for oil flow rate prediction in the Niger Delta fields, as the necessary details to implement the models are 

made visible. 
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1. Introduction 

The oil and gas production system has several distinct but 

interconnected components. These components include a 

porous medium that accumulates the oil or gas or both, a 

conduit(s)/well(s) intentionally drilled in the vertical or devi-

ated configuration through the porous medium, a casing to 

stabilize the well(s), a tubing through which the fluids pass 

to the surface, a choke to regulate the flow of these fluids, a 

surface line and a separator to separate the reservoir contents 

into different phases based on their densities. One factor that 

links and is common to all the enumerated components is the 

fluid flow in the flowlines. If the field is subsea, that is, off-

shore, the flowline links with the inlet separator via a riser 

[1]. If a typical oil and gas production system is unpacked, 

Figure 1 depicts the interaction interfaces of the system. 

Pwh

Choke

Separator

Psep

Pwf

Casing

Tubing

Packer

Pws Pr

Surface line

 
Figure 1. A simple representation of oil and gas production system [2]. 

Oil and gas metering, or the measuring of fluid flow rate, 

is a crucial component used as a standard to judge the eco-

nomic viability of oil wells [3]. Again, understanding the 

flow rates of gas, oil, and water from various wells enables 

operators to make crucial decisions regarding rate allocation, 

production optimization, and future performance projection 

[1]. Beiranvand et al. [4] submit that when oil and gas flow 

rate predictions are inaccurate, they may lead to challenges 

such as sand production, formation damage, excessive pres-

sures at the separator, and water coning or gas cusping [5]. 

Crude oil measurements are done critically at two points: 

first, at the wellhead to allow for the separation of basic sed-

iment and water (BS&W) and then at the custody transfer 

point where the crude is measured preparatory for export [6]. 

Therefore, accurately quantifying the flow rate of reservoir 

streams provides enormous hurdles to production and sub-

surface engineers. The issue is that the multiphase flow me-

ters do not present reliable production rate calculations for 

any fiscal purposes [3]. Then, one would ask what is chal-

lenging in detecting multiphase fluid flow rates in the field. 

First, the equation for multiphase flow is complex because 

the choke throat's changing pressure, temperature, gas-liquid 

ratio, and other fluid variables affect the fluid's properties. 

Second, multiphase flow is highly challenging because of 

these fluids' vastly varying densities and viscosities [7]. 

Fluid flow through chokes may be critical or sub-critical 

[8]. According to Nasriani and Kalantari [9], when the fluid 

approaches sonic velocity, the difference between down-

stream and upstream pressures is less than 0.588, and critical 

flow occurs in the system. The mass flow rate in this flow is 

determined by the pressure upstream of the bottleneck - 

choke. Hong and Griston [10] reported that the flow condi-

tions are typically present in producing oil and gas wells and 

are also favoured for some reservoir flooding-enhanced oil 

recovery methods [11]. Choubineh et al. [12] maintained that 

critical-flow conditions are selected to achieve steady flow 

rates and prevent frequent changes in equipment perfor-

mance for wellhead chokes. 

On the other hand, when the mass flow of the fluid is low-

er than the sonic velocity, sub-critical flow conditions devel-

op [4]. For the flow conditions, the mass flow rate depends 

on the pressure drop across any obstructions or restrictions 

(such as chokes) in the stream. Therefore, variations in the 

conditions upstream and downstream of the choke combine 

to affect flow rates. Thus, all the downstream-upstream pres-

sure ratios test data less than 0.5 indicate sub-critical flow 
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conditions. 

Numerous critical and subcritical multiphase flow correla-

tions have been available [13]. The empirical correlations in 

the literature include Gilbert [14], Baxendell [15], Ros [16], 

Achong [17], Omana et al. [18], Pilehvari [19], Owolabi et al. 

[20], Al-Towailib and Al-Marhoun [21], Beiranvand et al. 

[4], Khorzoughi et al. [22], Okon et al. [23], Choubineh et al. 

[12], Ghorbani et al. [24], Alrumah and Alenezi [25], Joshua 

et al. [26], among others. According to Alarifi [27], the em-

pirical correlations are distinct for particular fields or hydro-

carbon types. Therefore, the application of these correlations 

across all oilfields is limited. On the other hand, some au-

thors have applied the advantage of artificial intelligence (AI) 

or machine learning (ML) model, that is, the ability to accu-

rately predict oil flow rates with minimal data points, to 

overcome the limitations of empirical correlations. So far, 

several works have been reported in the literature by Berneti 

and Shahbazian [28], Mirzaei-Paiaman and Salavati [29], Al-

Khalifa and Al-Marhoun [30], Zangl et al. [31], Al-Ajmi et 

al. [32], Okon and Appah [33], Choubineh et al. [12], Al-

Qutami et al. [34], Al-Kadem et al. [35], Khan et al. [36], 

Ibrahim et al. [37], Alarifi [27], etc. Regrettably, most of 

these presented models need to be simplified in terms of ar-

chitecture to apply. Again, Alarifi [27] observed that most 

AI-based models are developed based on data gathered from 

a few wells or one field. Therefore, their validity must be 

improved using large datasets and various possible scenarios. 

These observations are problematic because the unavailabil-

ity of the models‟ details would limit the reproducibility and 

validation of the models. For the Niger Delta fields, Okon 

and Appah [33] and Okorugbo et al. [38] have reported neu-

ral-based models' performance for predicting oil flow rate. 

These works are with the earlier-mentioned limitations. 

Therefore, it is expedient to develop simplified neural-based 

models(s) that are reproducible for oil flow rate prediction, 

keeping the stated drawbacks in mind, thus, the focus of this 

paper. 

1.1. Overview of Neural Network 

Artificial neural networks (ANNs) are computational sys-

tems inspired by biological processes that learn and use that 

information to predict the outcomes of complicated systems 

[39]. The neurons are the neural network's fundamental 

building block. According to Behnoud and Hosseini [40], 

these neurons link to create a network that can handle com-

plex problems. ANN has three layers: input, hidden, and 

output layers, and the number of input parameters determines 

the number of neurons in the input layer [33]. Initially, com-

putations in ANN involved connection weights (Wi1, Wi2, 

Wi3,…….WiN) assigned to the inputs (x1, x2, x3,……xN). The 

individual connection weights of the input neurons are mul-

tiplied by their respective input variables. The weighted sum 

of the inputs and connection weights is combined with the 

threshold or bias (bi), and the summation gives the neuron‟s 

output. The purpose of the bias is to change the input to the 

activation function by either increasing it or decreasing it [3]. 

The output is computed and sent to another neuron through a 

transfer or activation function. It is good practice to use the 

sigmoid transfer function for the hidden layer and the linear 

activation function (purelin) for the output layer [41]. A typ-

ical architecture that depicts the flow processes in a neural 

network is visible in Figure 2. 

 
Figure 2. A typical ANN architecture [45, 46]. 
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The network training is the beginning of modelling with 

ANN. Data are processed from the input layer through the 

hidden layer(s) and finally to the output layer. The predicted 

datasets and the actual data relate in the output layer. The 

difference between these datasets is fed back into the model, 

which updates the weights between each connection (or node) 

and the biases of each layer. This process is known as an 

epoch. In this manner, training will continue for the entire 

dataset until the average error (mean square error, MSE) is 

reduced to a predefined limit [42]. The number of neurons in 

the hidden layer affects network performance as fewer neu-

rons lead to under-fitting, while too many neurons result in 

over-fitting. Therefore, optimizing the design of neurons is 

necessary [43, 44]. The several sorts of ANN include Feed-

forward back-propagation neural networks (FFBP), Modular 

neural networks, Radial basis function (RBF), Recurrent 

neural networks (RNN), Convolution neural networks 

(CNN), Multilayer Perceptron (MLP), Deep neural network 

(DNN), among others. 

1.2. Overview of Some Existing Neural Network 

Models for Oil Flow Rate Prediction 

Correlations to estimate flow rate from the wellhead or 

through choke have received attention in the literature. Sev-

eral empirical correlations have been developed for critical 

and subcritical flow conditions [27, 47]. For the critical flow 

condition, Gilbert [14] presented pioneering work using 

wellhead pressure (Pwh), choke (bean) size (S) and gas-liquid 

ratio (GLR) [48]. Afterward, other authors like Baxendell 

[15], Ros [16], Achong [17] and [19] updated Gilbert‟s [14] 

correlation constants. Also, Beiranvand et al. [4], Khor-

zoughi et al. [22], and Choubineh et al. [12] modified Gil-

bert‟s correlation to include basic sediments and water 

(BS&W), well-flowing temperature (T), oil gravity (γo) and 

gas gravity (γg) for liquid flow rate estimation. According to 

Alarifi [27], empirical correlation accuracy is very low com-

pared to the actual field flow rate datasets. This observation 

is because of the assumptions applied to developing these 

correlations. Also, Agwu et al. [3] criticized the flexibility 

and replicability of these correlations and then supported the 

use of artificial intelligence (AI) models for flow rate predic-

tion. A comprehensive review of the AI-based models for 

liquid flow rate prediction is visible in Barjouei et al. [49] 

and Agwu et al. [3]. An extract of the neural network and its 

variant models for flow rate prediction is in Table 1. The 

table indicates that most available ANN models for flow rate 

prediction are developed using datasets from the Iran oil-

fields. Regrettably, some of these models are not applicable 

as their structures are too complex for incorporation into 

computer programs (software). Earlier, Okon et al. [23] 

opined that the performance of these models is limited by the 

quantity and data source upon which the models are devel-

oped. Again, Table 1 further revealed that Okon and Appah 

[33] and Okorugbo et al. [38] works are the only available 

neural-based model for predicting the oil flow rate in the 

Niger Delta region. Unfortunately, reproducing these models 

is doubtful, as the authors did not publish the models‟ details: 

training algorithm, transfer (activation) functions, weights 

and biases. Therefore, their implementation in any petroleum 

engineering package is limited or not visible. Hence, the 

need to develop simplified neural-based models for oil flow 

rate prediction in the Niger Delta is necessary. 

Table 1. Some existing works on artificial neural networks and their hybrids for oil flow rate prediction. 

# Author(s) 
Datasets Source 

/ Points 

Artificial Intelli-

gence Approach 

Input Varia-

bles 

Output 

Variable 

Model Perfor-

mance 

Model / Architec-

ture Pitfall 

1 

Berneti and 

Shahbazian 

[28] 

Source: Iran 

Oilfield 

Datasets: 31 oil 

wells 

ANN and ICA 

Architecture: 

2-7-1 

Pwh, T oq  

MSE = 0.0123 

RMSE = 0.1109 

R2 = 0.9703 

R = 0.9850 
The models‟ struc-

tures are simple and 

applicable for de-

velopment. 

2 

Mirzaei-

Paiaman and 

Salavati [29] 

Source: Iran 

Oilfield 

Datasets: 134 

ANN 

Architecture: 

3-4-1 

Pwh, S, GOR oq  

AARE = 2.110 

ARE = -0.330 

R2 = 0.9998 

R = 0.9999 

3 
Ahmadi et al. 

[50] 

Source: Iran 

Oilfields 

Datasets: 50 oil 

wells; 1600 

ANN 

Architecture: 

N/A 
Pwh, T oq  

MSE = 0.0913 

RMSE = 0.3022 

R2 = 0.9391 

R = 0.9691 

Models‟ structures 

are not provided to 

assess their sim-

plicity and applica-

bility. 
ANN-ICA MSE = 0.0030 
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# Author(s) 
Datasets Source 

/ Points 

Artificial Intelli-

gence Approach 

Input Varia-

bles 

Output 

Variable 

Model Perfor-

mance 

Model / Architec-

ture Pitfall 

Architecture: 

N/A 

RMSE = 0.0551 

R2 = 0.9951 

R = 0.9976 

4 

Al-Khalifa and 

Al-Marhoun 

[30] 

Source: Middle 

East fields 

Datasets: 4031 

ANN 

Architecture: 

6-9-5-8-1 

Pwh, T, S, 

GOR, o , 

g  

Lq  

MSE = 110.25 

RMSE = 10.50 

R2 = 0.9860 

R = 0.9930 

The model archi-

tecture is complex 

and not applicable. 

5 
Zangl et al. 

[31] 

Source: N/A 

Datasets: 258 

ANN 

Architecture: 

N/A 

Pwh, glq , 

glP , flP  
oq  

R2 = 0.9308 

R = 0.9648 
Models‟ structures 

are not provided to 

assess their sim-

plicity and applica-

bility. 6 
Gorjaei et al. 

[51] 

Source: Iran 

Oilfields 

Datasets: 276 

PSO-LSSVM 

Architecture: 

N/A 

S, Pwh, GLR oq  

AARE = 0.70 

R2 = 0.9935 

R = 0.9967 

7 

Hasanvand 

and Berneti 

[52] 

Source: Iran 

Oilfields 

Datasets: 600 

ANN 

Architecture: 

2-7-1 

T, flP  
ocq  

MSE = 0.0094 

RMSE = 0.097 

R2 = 0.9874 

R = 0.9937 

The model archi-

tecture is simple 

and applicable for 

development. 

8 
Al-Ajmi et al. 

[32] 

Source: N/A 

Datasets: 174 

ANN 

Architecture: 

N/A 

Pwh, S, T, 

GOR, WCT Lq  

MAPE = 15.15 

R2 = 0.890 

R = 0.9434 

Model architecture 

is not provided to 

assess its simplicity 

and application. 

9 
Okon and 

Appah [33] 

Source: Niger 

Delta Oilfields 

Datasets: 64 

ANN 

Architecture: 

3-6-5-1 

Pwh, S, GLR 

oq  

AARE = 0.1920 

R2 = 0.9653 

R = 0.9825 
Models‟ structures 

(two hidden layers) 

could be more 

complex. 
ANN 

Architecture: 

5-6-6-1 

Pwh, S, GLR, 

T, BS&W 

AARE = 0.1045 

R2 = 0.9951 

R = 0.9976 

10 
Baghban et al. 

[53] 

Source: Iran 

Oilfields 

Datasets: 100 

SVM 

Architecture: 

N/A 

Pwh, S, GOR Lq  
R2 = 0.9998 

R = 0.9999 

Models‟ structures 

are not provided to 

assess their sim-

plicity and applica-

bility. 

11 
Buhulaigah et 

al. [54] 

Source: Middle 

East Oilfields 

Datasets: 174 

ANN 

Architecture: 

N/A 

Pwh, Le, S, 

RP , k, Ln , 

OHD  

oq  
R2 = 0.9140 

R = 0.9560 

12 
Choubineh et 

al. [12] 

Source: Iran 

Oilfields 

Datasets: 113 

ANN-TLBO 

Architecture: 

N/A 

Pwh, S, GLR, 

T, o , g  cLq  

AARE = 6.50 

ARE = 2.09 

R2 = 0.9810 

R = 0.9905 

13 
Al-Qutami et 

al. [34] 

Source: N/A 

Datasets: 238 

NN ensemble and 

ASA 

Architecture: 

N/A 

T, Pwh, BHP, 

S Lq  

MAPE = 4.70 

MSE = 0.0034 

RMSE = 0.0585 

14 
Khan et al. 

[55] 

Source: N/A 

Datasets: 1500 

ANN 

Architecture: 

5-6-1 

Pwh, S, T, 

API  oq  

AARE = 2.50 

R2 = 0.9940 

R = 0.9970 

Models‟ structures 

have a single hid-

den layer that is 
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# Author(s) 
Datasets Source 

/ Points 

Artificial Intelli-

gence Approach 

Input Varia-

bles 

Output 

Variable 

Model Perfor-

mance 

Model / Architec-

ture Pitfall 

15 
Al-Kadem et 

al. [35] 

Source: N/A 

Datasets: 1854 

ANN 

Architecture: 

3-10-1 

Pwh, S, GOR oq  

AARE = 3.70 

R2 = 0.80 

R = 0.8944 

simple to apply. 

16 
Ghorbani et al. 

[56] 

Source: Iran 

Oilfields 

Datasets: 182 

GA 

Architecture: 

N/A 

Pwh, S, GLR, 

BS&W Lq  

AARE = 7.33 

ARE = -2.890 

R2 = 0.9970 

R = 0.9985 

Models‟ structures 

are not provided to 

assess their sim-

plicity and applica-

bility. 
17 

Khan et al. 

[36] 

Source: Asian 

Oilfields 

Datasets: 1400 

ANN 

Architecture: 

N/A 

S, Pwh, T, 

API  oq  

AARE = 2.5618 

R2 = 0.9934 

R = 0.9967 

18 
Al-Rumah et 

al. [57] 

Source: Existing 

works 

Datasets: 1111 

ANN 

Architecture: 

3-39-23-1 

Pwh, S, GLR Lq  

AARE = 0.2206 

R2 = 0.9292 

R = 0.9640 

Model architecture 

is too complex to 

be applicable 

19 
Marfo and 

Kporxah [58] 

Source: Ghana 

Oilfields 

Datasets: 1600 

ANN 

Architecture: 

4-2-1 

gq , THP, 

FBHP, t 
oq  

MAPE = 3.18 

R2 = 0.9966 

R = 0.9983 

Model architecture 

is simple for appli-

cation. 

20 
Ibrahim et al. 

[37] 

Source: Middle 

East Oilfields 

Datasets: 548 

wells 

SVM 

Architecture: 

N/A 
Pwh, S, GOR oq  

AAPE = 1.40 

R2 = 0.930 

R = 0.9644 
The AI models‟ 

structures are not 

visible for assess-

ment. 
RF 

Architecture: 

N/A 

AAPE = 0.75 

R2 = 0.940 

R = 0.9695 

21 
Okorugbo et 

al. [38] 

Source: Niger 

Delta Oilfields 

Datasets: 1595 

from 7 fields 

ANN 

Architecture: 

N/A Pwh, S, GLR, 

GOR, o , T, 

T/Tsc, BS&W 

oq  

AARE = 28.44 

APE = 7.64 

R2 = 0.8774 

R = 0.9367 
Models‟ structures 

are not provided to 

assess their sim-

plicity and applica-

bility. 

ANN-PSO 

Architecture: 

N/A 

AARE = 35.83 

APE = 12.20 

R2 = 0.8318 

R = 0.9120 

22 Alarifi [27] 

Source: N/A 

Datasets: 1595 

from 7 fields 

ANN 

Architecture: 

N/A 

S, Pwh, T, 

GLR, GOR, 

WCT 
oq  

MAPE = 19.33 

R2 = 0.8649 

R = 0.930 

23 Azim [59] 

Source: Egypt 

Oilfields 

Datasets: 350 

from 12 fields 

ANN 

Architecture: 

6-10-1 

WHT, GLR, 

WCT, BHT, 

H, At 
oq  

MSE = 0.020 

RMSE = 0.1414 

R2 = 0.9630 

R = 0.9813 

Model architecture 

is a single hidden 

layer with less 

complexity for 

application. 

*N/A = not available 
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2. Methods 

2.1. Data Collection and Preparation 

This study collected 283 datasets from 21 producing wells 

across different oilfields in the Niger Delta and used them to 

develop neural network-based models for oil flow rate predic-

tion. The datasets include wellhead pressure (Pwh), bean (choke) 

size (S), gas-liquid ratio (GLR), oil gravity ( o ), basic sedi-

ments and water (BS&W), well-flowing temperature (T), gas 

gravity (γg), as the input data, and oil flow rate ( oq ) as the out-

put datasets. The gathered datasets were as required for Gilbert 

[14], Khorzoughi et al. [22] and Choubineh et al. [12] models‟ 

parameters for the estimation of oil well flow rate. These oil 

flow rate models are in Equations 1 to 3; 

Gilbert [14] model: 

C
wh

B

P S
q A

GLR
                               (1) 

Khorzoughi et al. [22] model: 

 
&

1
100

D E
F C

wh
sc

B

BS W TP S
T

q A
GLR

   
   

  


          (2) 

Choubineh et al. [12] model: 

   
F

EDC
wh o g

sc

B

TP S
T

q A
GLR

   
 
 


               (3) 

where A denotes the proportionality constant and the varia-

bles B to F are exponential constants of the indicated varia-

ble in the models. These datasets' statistical parameters (i.e., 

maximum, minimum, range, average and standard deviation 

values) before and after data preprocessing are in Tables 2 

and 3, respectively. Two scaling approaches, namely the 

maximum-minimum method (in Equation 4) and clip method 

(in Equation 5), were used to minimize the differences (i.e., 

range) between the datasets. Maximum-minimum approach 

normalized the datasets to values between 0 and 1, while the 

clip method scaled the datasets to values between -1 and 1. 

min

max min

i
scaled

y y
y

y y





                       (4) 

min

max min

2 1i
scaled

y y
y

y y

 
  

 
                   (5) 

where scaledy  represents the scaled values for input or output 

parameters, iy  is the values of the not-scaled parameters, 

miny  and maxy  denote the minimum and maximum values of 

the not-scaled parameters, respectively. According to Okon 

and Ansa [46] and Okon et al. [60], scaling the datasets for 

the neural network training is necessary for the following 

reasons: adequate adjustment of the network connecting 

weights for optimum prediction and reducing the sensitivity 

of the sigmoidal (i.e., transfer or activation) function to large 

datasets values. 

Table 2. Statistical description of the datasets for the development of the neural-based models before data preprocessing. 

Parameters Maximum Minimum Range Average Std. Dev. 

Wellhead Pressure, 
wh

P  3600.0 53.65 3546.35 977.136 831.215 

Bean (Choke) Size, S  114.0 14.0 100.0 48.532 26.285 

Gas-Liquid Ratio, GLR  32851.7 20.175 32831.5 2851.31 5205.32 

Oil Gravity, 
o
  0.9433 0.643 0.3003 0.8612 0.0564 

Basic Sediments and Water, &BS W  0.9750 0.0005 0.9745 0.7626 0.2104 

Well Flowing Temperature, T  192.0 48.0 144.0 97.627 31.606 

Gas Gravity, 
g

  0.9399 0.5227 0.4172 0.7410 0.0974 

Oil Flow Rate, 
o

q  14417.0 183.0 14234.0 2616.11 2933.33 
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Table 3. Statistical description of the datasets for developing the neural-based models after data preprocessing. 

Parameters Maximum Minimum Range Average Std. Dev. 

Wellhead Pressure, 
wh

P  3300.0 95.0 3205.0 956.318 737.64 

Bean (Choke) Size, S  74.0 14.0 60.0 33.753 14.815 

Gas-Liquid Ratio, GLR  28597.0 29.0 28568.0 2435.81 5025.79 

Oil Gravity, 
o
  0.9433 0.7339 0.2094 0.8361 0.0443 

Basic Sediments and Water, &BS W  0.9430 0.0005 0.9425 0.7442 0.2053 

Well Flowing Temperature, T  186.0 48.0 138.0 99.747 29.736 

Gas Gravity, 
g

  0.9399 0.5227 0.4172 0.7410 0.0974 

Oil Flow Rate, 
o

q  14417.0 183.0 14234.0 2616.11 2933.33 

 

2.2. Neural Network Models Development 

The neural fitting tool (nftool) in MATLAB (Matrix La-

boratory) software 2020a was used to develop the neural 

network for predicting oil well flow rate ( oq ). The scaled 

datasets from Equations 4 and 5 were grouped based on 

Gilbert [14], Khorzoughi et al. [22] and Choubineh et al. 

[12] models‟ input requirements. That is, Pwh, S and GLR 

(3-input) for Gilbert‟s model, Pwh, S, GLR, T/Tsc and 

BS&W (5-input) for the Khorzoughi et al.‟s model, and Pwh, 

S, GLR, T/Tsc, o  and γg (6-input) for the Choubineh et 

al.‟s model. These scaled data (i.e., inputs and output) were 

imported from Microsoft Excel to the MATLAB workspace, 

named accordingly, and saved. Afterward, the nftool envi-

ronment was active from the command window, and the 

data files in the workspace moved to the nftool environ-

ment for neural network development and training. The 

neural network training to determine the number of hidden 

layer neurons was a trial-and-error approach. The networks 

learned the input and output datasets using the Leverberg-

Marquardt algorithm based on the feed-forward back-

propagation (FFBP) approach. The network generates the 

initial weights and biases using its random number genera-

tor. Thus, the input datasets, output data, weights, biases, 

and neurons at the hidden layer are combined to create the 

network. The outcomes of the network training (70% of the 

datasets), validation (15% of the datasets) and testing (15% 

of the datasets), based on the mean square error (MSE) and 

correlation coefficient (R) values, determine the network 

performance. For more details on the networks‟ stopping 

criteria and weight adjustment, readers can obtain from 

published works by Mahmoudi and Mahmoudi [61], Okon 

et al. [62] and Okon and Ansa [46]. Figures 3 to 5 depict 

the different neural network architectures obtained for the 

various oil flow rate models. Thus, the basic settings of the 

trained neural networks‟ parameters are in Table 4. The 

summary of the neural network learning processes is as 

follows [63]: 

1) read the input datasets and the expected output; 

2) calculate the network output by performing weighted 

sums and transfer functions; 

3) compare the network predictions with the expected out-

put (target); 

4) compute and update fitness (MSE) value based on the 

comparison; 

5) repeat steps (ii) and (iii) until all training points are ex-

hausted; 

6) adjust weights appropriately to maximize fitness; and 

7) repeat steps (i) to (vi) until an acceptable fitness value 

is established. 

Thus, the stages involved in executing this study are repre-

sented in the flowchart in Figure 6. 

 
Figure 3. Neural network architecture for a 3-input-based model. 

 

http://www.sciencepg.com/journal/pse


Petroleum Science and Engineering http://www.sciencepg.com/journal/pse 

 

78 

 
Figure 4. Neural network architecture for a 5-input-based model. 

 

Figure 5. Neural network architecture for a 6-input-based model. 

Data Gathering /
Collection

Data Preprocessing:
Data Cleaning / Removal of Outliers

Data Normalization:
Maximum-minimum and

Clip methods

Data Export and Loading Input 
and Target Datasets in

Matlab Software

Data Partitioning and 
Network Topology

 Creation

Initialize Parameters:
Weights and Biases,

Activation Functions, etc.

Select Network Learning Algorithm:
Levenberg-Marquardt

Network Training, Testing 
and Validation

Are the Network 
Performance Criteria 

(i.e. MSE and R values)
met?

Extract the Network Weights and Biases

Save the Network for Generalization 
Evaluation

End

 Yes

No

 
Figure 6. Flowchart of the processes involved in performing the study. 
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Table 4. Basic settings of the neural networks training hyperparam-

eters. 

Hyperparameters Values 

Training Datasets 199 (70% of the datasets) 

Validation Datasets 42 (15% of the datasets) 

Testing Datasets 42 (15% of the datasets) 

Hidden Layer 1 

Hidden Layer Neurons 5, 6, 8 

Hidden Layer Activation Function tansig 

Output Layer Activation Function purelin 

Learning Algorithm Levenberg-Marquardt 

Number of Epochs 1000 

Rate of Learning 0.7 

Architecture Selection Trial-and-error 

Target Goal MSE 10-7 

Minimum Performance Gradient 10-7 

3. Results and Discussion 

3.1. The Neural Networks Performance 

The neural networks developed for oil flow rate prediction 

are feed-forward back-propagation networks with input, hid-

den, and output layers. Their architectures indicated that the 

best predictions were with 3-5-1 for the 3-input-based model, 

5-6-1 for the 5-input-based model and 6-8-1 for the 6-input-

based model. This outcome implies that the 3-input-based 

network has three neurons at the input layer, five at the hid-

den layer, and one at the output layer. The 5-input-based 

network has five input neurons, six hidden neurons and a 

neuron at the input layer. Again, the 6-input-based network 

has six input neurons, eight hidden neurons, and one at the 

output layer. Therefore, the developed networks presented in 

Figures 3 to 5 are multiple-inputs single-output (MISO) neu-

ral networks. Table 5 depicts the performance indices: mean 

square error (MSE) and coefficient of determination (R
2
) 

values of the various networks during the training, validation 

and testing stages of the network development. As shown in 

Table 4, the 3-input-based network had overall MSE and R
2
 

values of 9.6185  10
-4

 and 0.9921 for the maximum-

minimum normalization approach and 5.7986×10
-3

 and 

0.9915 for the clip normalization method. Also, the 5-input-

based network resulted in overall MSE and R
2
 values of 

5.7790 10
-4

 and 0.9966 for the maximum-minimum scaling 

approach and 3.7243×10
-3

 and 0.9929 for the clip scaling 

method. The 6-input-based network had overall MSE and R
2
 

values of 8.7523×10
-4

 and 0.9952 for the maximum-

minimum data normalization method and 3.8859 10
-3

 and 

0.9947 for the clip normalization approach. The network 

performance indices showed that the maximum-minimum 

normalization approach performed slightly better than the 

clip counterparts. This observation is because of the sig-

moidal (i.e., transfer) function, which ranged between 0 and 

1, as with the maximum-minimum scaling method. 

Furthermore, the overall performance of the various networks 

showed that their predictions were close to the actual oil flow 

rate ( oq ) data. The observation is because the MSE and R
2
 val-

ues are within acceptable limits for any model/network perfor-

mance. Therefore, the networks can predict the fields‟ oq  with 

a 99.0% certainty based on the R
2
 values obtained. Again, the 

closeness of the network predicted oq  with the actual oq  da-

tasets is visible on the diagonal trend of the output (i.e., network 

predictions) and target (field datasets) for the overall perfor-

mance, as in Figures 7 to 9. According to Al-Bulushi et al. [64] 

and Okon et al. [62], when the experimental (or field) and pre-

dicted data points aligned along a unit slope, it implies a good 

agreement between them, as observed in Figures 7 to 9. 

 
Figure 7. Comparison of the normalization approaches overall performance for the 3-input-based network. 
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Figure 8. Comparison of the normalization approaches overall performance for the 5-input-based network. 

 
Figure 9. Comparison of the normalization approaches overall performance for the 6-input-based network. 

Table 5. Performance indices of the neural networks during training, validation and testing. 

 Models Indices 

Maximum-minimum Method Clip Method 

Training Validation Testing Overall Training Validation Testing Overall 

i. 
3-input-

based 

model 

MSE 1.3421x10-3 9.6157x10-4 1.5935x10-3 9.6158x10-4 5.5103x10-3 5.7986x10-3 6.5508x10-4 5.7986x10-3 

R2 0.9918 0.9950 0.9905 0.9921 0.9929 0.9926 0.9884 0.9915 

ii. 

5-input-

based 

model 

MSE 5.8034x10-4 5.7790x10-4 4.7800x10-4 5.779x10-4 5.1033x10-3 3.7243x10-3 4.2300x10-3 3.7243x10-3 

R2 0.9971 0.9942 0.9932 0.9966 0.9929 0.9922 0.9945 0.9929 

iii. 

6-input-

based 

model 

MSE 8.2605x10-4 8.7523x10-4 7.2486 x10-4 8.7523x10-4 3.0894 x10-3 6.9058 x10-3 2.4769 x10-4 3.8859x10-3 

R2 0.9949 0.9962 0.9955 0.9952 0.9953 0.9923 0.9955 0.9947 

 

Generally, the computations of the neural network varia-

bles (i.e., inputs, weights, biases and output) in vector form 

are related, as represented in Equation 6 [65];  .ANN out kj in ij i i k

j

y f Lw f Iw x b b
 
   
 
 
             (6) 
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where ANNy  is the network predicted output (in normalized 

form), outf  denotes the output neuron activation function (i.e., 

purelin), kjLw  represents the hidden layer neurons‟ weights 

from the jth neuron to the kth output layer neuron, inf  is the 

transfer function (tansig) at the hidden neuron, ijIw  is the in-

put layer weights from the ith neuron to the jth hidden layer 

neuron, and ix  represents an input variable. Then, ib  and kb  

represent the hidden and output layers nodes‟ biases, respec-

tively. Therefore, based on the established architectures for the 

neural network-based models for oq  prediction, their compu-

tation notations are presented in Equations 7 to 9; 3-input-

based model: 

 
5 3

1 2 3

1 1

( ) ano ANN wh i ij ki
i j

q purelin t sig P j Sj GLRj b Lw b

 

          
  

                                 (7) 

5-input-based model: 

6 5

1 2 3 4 5

1 1

( ) an &o ANN wh i ij k
sc ii j

Tq purelin t sig P j Sj GLRj j BS Wj b Lw b
T

 

     
           

     
            (8) 

6-input-based model: 

8 6

1 2 3 4 5 6

1 1

( ) ano ANN wh o g i ij k
sc ii j

Tq purelin t sig P j Sj GLRj j j j b Lw b
T

 
 

     
            

     
              (9) 

where ( )o ANNq  is the neural network predicted oil flow rate 

in normalized form. The variables 1j , 2j , 3j , 4j , 5j  and 

6j  are the weights of the network inputs: whP , S , GLR , 

sc

T
T

, &BS W , o  and g  to the hidden layer neuron; 

ijLw  represents the hidden layer weights that connect the 

output layer neuron; ib  and kb  are biases at the hidden and 

output neurons, respectively. Then, purelin and tansig are 

activation functions at the output and hidden layers‟ neurons. 

The weights and biases of the various neural network-based 

models for oil flow rate prediction are in Tables 6 to 11. 

Table 6. Weights and biases of the 3-input-based model using max.-min. scaling method. 

 Input layer weights Hidden biases and weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  

i
b  

1
Lw  

k
b  

1 -0.5385402 -1.0111643 -0.3697213 1.974864 -1.1109503 -0.1585362 

2 -1.2660117 5.7652163 2.0999111 -3.1918448 0.8373804  

3 0.29895761 1.3578018 -1.9698251 -2.8393038 5.1375123  

4 0.24131335 2.1912495 -0.5929832 -2.0673442 -2.6497395  

5 1.01553212 -1.3477269 1.15601166 3.3939060 3.6110957  
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Table 7. Weights and biases of the 3-input-based model using the clip scaling method. 

 Input layer weights Hidden biases and weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  

i
b  

1
Lw  

k
b  

1 -1.9102399 0.1173669 -0.9406521 2.8339813 0.16789125 1.188847 

2 2.1891470 -0.4798915 -3.5388877 -1.4183450 0.38368504  

3 0.7112502 2.47403781 -3.539615 -1.3528274 -0.28206409  

4 -1.0860498 -0.7007909 4.3089994 4.66603469 -2.55714526  

5 1.6228026 -2.7474310 -2.0315176 -2.3284541 -0.37376004  

Table 8. Weights and biases of the 5-input-based model using max.-min. scaling method. 

 Input weights Hidden biases Hidden weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  (

sc

T
T

)
4

j  ( &BS W )
5

j  
i

b  
1

Lw  
k

b  

1 3.4900924 -7.731092 -6.4360719 2.09776475 6.6313152 -11.863917 -2.3205470 0.3472364 

2 3.4423928 -7.372197 -6.3975091 2.06356456 6.4071733 -11.511381 2.3664439  

3 0.0299627 1.7319449 -0.2676342 -0.56557378 -0.4638709 1.4411783 0.17676961  

4 0.8098289 1.0948423 -3.4110332 0.727664266 0.0829497 -4.0252434 1.6790642  

5 -7.188589 5.6356843 6.7863179 7.263317569 -0.5029194 -4.1082139 4.9673305  

6 -5.888010 4.8817139 0.50369342 6.2700012 -0.30080753 -8.6339629 -5.3101384  

Table 9. Weights and biases of the 5-input-based model using the clip scaling method. 

 Input weights Hidden biases Hidden weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  (

sc

T
T

)
4

j  ( &BS W )
5

j  
i

b  
1

Lw  
k

b  

1 0.9010532 0.6868277 -3.3368676 0.3989323 -0.0023792 -3.695982 1.7599079 0.662883 

2 -0.994761 2.1941044 0.4255441 -3.6930451 1.69289456 3.0435556 0.1249966  

3 2.7616773 -2.832146 -2.1586329 -0.6128486 3.78528638 -2.1373435 0.0529069  

4 0.4204269 0.0523971 -1.1852713 -0.3920006 0.44395427 -0.655956 -0.2171184  

5 1.1663272 0.6718416 -2.0633890 -0.1329151 -0.1273617 0.2522338 0.133396  

6 -0.269904 -2.297810 1.6909864 0.3070311 -1.4469666 1.7310819 -0.0644734  
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Table 10. Weights and biases of the 6-input-based model using max.-min. scaling method. 

 Input weights Hidden biases Hidden weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  (

sc

T
T

)
4

j  (
o

 )
5

j  (
g

 )
6

j  
i

b  
1

Lw  
k

b  

1 0.047515 0.130103 0.44245 -2.030657 0.581165 -0.089446 1.970767 0.4357025 0.235916 

2 -1.011681 0.891035 0.020582 -1.195120 -1.019611 -0.161630 1.139384 0.0776338  

3 0.316439 0.309080 -0.488147 1.140003 -0.367717 0.6344811 -0.450963 0.3284348  

4 -0.316973 -0.908201 0.045713 0.607017 -1.051208 -1.110216 -0.172092 -0.1304821  

5 0.632287 0.294746 -0.235050 -0.862207 -0.594977 -0.928184 0.637973 0.2560455  

6 0.594650 0.439590 -0.827425 -1.193106 0.6061402 0.1739179 1.484508 -0.260832  

7 -0.626795 0.869463 -0.980515 0.176416 -0.468085 -0.577010 -1.364878 -0.036701  

8 -0.560974 -0.483019 1.727690 -0.821655 -0.648451 -0.043607 2.329126 -1.3554218  

Table 11. Weights and biases of the 6-input-based model using the clip scaling method. 

 Input weights Hidden biases Hidden weights Output bias 

i  (
wh

P )
1
j  ( S )

2
j  ( GLR )

3
j  (

sc

T
T

)
4

j  (
o

 )
5

j  (
g

 )
6

j  
i

b  
1

Lw  
k

b  

1 -0.802896 1.032175 0.523643 1.267974 0.494186 -0.555345 2.146365 0.071464 -0.65368 

2 
-

0.5326472 
0.391553 0.265645 -1.635991 0.504839 -0.119175 -0.794149 -0.523327  

3 -0.000600 -0.864577 0.055065 0.576637 -0.537443 -0.721054 0.014171 -0.769143  

4 0.688203 2.37251 -1.50568 2.36764 0.877263 0.617937 0.603996 -0.068565  

5 0.523447 0.539761 -0.702578 2.091369 1.525157 0.449091 -1.461013 0.493293  

6 -0.832304 -0.934466 0.977342 -0.880203 -0.200528 0.809025 -1.422903 0.385712  

7 -1.877361 -0.722014 -0.02678 -0.280917 -0.139388 0.215438 -1.82908 -0.136098  

8 0.233416 0.240730 0.911708 -0.095287 -0.241667 -1.41470 2.185845 0.587712  

 

Aside from the network architectures, as visible in Figures 

3 to 5, the weights and biases (Tables 5 to 10), and other 

details of the networks, it is imperative to establish the aver-

age contribution of the input variables on the network output 

[60, 66]. This average contribution of input parameters on 

the network output is the contribution factor (CF) or relative 

importance (RI). Thus, the Garson method expanded in 

Equation 10 to determine the RI of the input variables on the 

neural network's output [60]. 

100%

i

m

m i

m

n
ij

iI
j

ij

k

I n
ij

iI
i j

ij

k

Lw
Iw

Lw

RI

Lw
Iw

Lw

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 







                (10) 
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where iIw  is the input layer weights, ijLw  denotes the hid-

den layer weights to the output neuron, in  and mI  represent 

the numbers of inputs and hidden layer‟s neurons. The out-

comes of the RI assessment on the networks‟ input variables 

are in Table 12. 

The results from the RI assessment in Table 12 revealed 

that the bean (choke) size and GLR are the most significant 

parameters in the developed neural networks for oil flow rate 

prediction. The observation aligns with the position of Josh-

ua et al. [26]. Also, it revealed that the dataset scaling (nor-

malization) approach influenced the input variables‟ RI on 

the networks‟ output. This observation is visible in the RI 

ranking of the network input variables in Table 12. The 3-

input-based network had an RI ranking of S>GLR>Pwh for 

the maximum-minimum scaling method and an RI ranking of 

GLR>S>Pwh for the clip scaling approach. The 5-input-based 

network had an RI ranking of S>GLR>T/Tsc>Pwh>BS&W for 

the maximum-minimum normalization approach and 

GLR>S>Pwh>BS&W>T/Tsc for the clip method. Likewise, 

the 6-input-based network resulted in 

T/Tsc>γo>GLR>S>Pwh>γg and T/Tsc>S>Pwh>γg>GLR>γo for 

maximum-minimum and clip methods, respectively. Thus, 

the overall RI ranking of the input variables on the developed 

networks‟ output is S>GLR>Pwh>T/Tsc> γo>BS&W>γg. 

Table 12. Relative importance ranking of the neural-based models’ input variables. 

 Model Scaling method 

Input Variables Relative Importance (%) 

Pwh S GLR T/Tsc BS&W γo γg 

i. 3-input-based 

Max.-min. 17.40 52.80 28.80 NA NA NA NA 

RI ranking 3rd 1st 2nd NA NA NA NA 

Clip 26.01 26.64 47.35 NA NA NA NA 

RI ranking 3rd 2nd 1st NA NA NA NA 

ii. 5-input-based 

Max.-min. 16.68 30.07 23.56 18.00 11.69 NA NA 

RI ranking 4th 1st 2nd 3rd 5th NA NA 

Clip 16.68 19.51 35.06 12.93 15.82 NA NA 

RI ranking 3rd 2nd 1st 5th 4th NA NA 

iii. 6-input-based 

Max.-min. 13.24 13.90 15.62 27.29 NA 17.36 12.59 

RI ranking 5th 4th 3rd 1st NA 2nd 6th 

Clip 16.59 19.02 12.72 23.76 NA 12.20 15.71 

RI ranking 3rd 2nd 5th 1st NA 6th 4th 

*NA = not applicable 

3.2. Simplified Neural Network-Based Models 

for Oil Flow Rate Prediction 

According to Okon et al. [60], numerous researchers have 

presented neural networks in “black box” form. The devel-

oped neural models are not in a simplified mathematical 

form. This drawback limits the ability of ardent readers to 

understand the application of any developed neural network 

model [46]. Okon et al. [62] presented detailed workings of 

the neural network to achieve its prediction (output) from the 

input variables. Considering the 3-input-based network, the 

basic neural network computations steps are as follows [67]: 

1) input variables ( whP , S  and GLR ) from the input neu-

rons multiply with input weights ( 1j , 2j  and 3j ), re-

spectively, and are linked to hidden layer neurons; 

2) at the first hidden layer neuron (i.e., i = 1), the input 

(i.e., 1 2 3whP j Sj GLRj  ) from the input layer com-

bined with the neuron‟s bias ( ib ) and the sum (i.e., 

 1 2 3

1

wh i

i

P j Sj GLRj b



   ) is transformed by the 

sigmoid function (Equation 11), to the output neuron; 

 
 2

2
1

1 i
iz

e





 


                          (11) 
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where i  is  1 2 3

1

wh i

i

P j Sj GLRj b



    

3) the transformed output from the hidden neuron (i.e., 

 iz ) multiplied by the hidden neuron weight ( iLw ) 

and linked to the output neuron; 

4) at the output neuron, the hidden layer output combined 

with its bias ( kb ), thus,  ( )i i kz Lw b   ; 

5) steps (i) to (iv) are repeated for values of i = 2,...5 for 

the neurons and at the output neuron, the sum 

 
5 3

1 1

( )i i k

j i

z Lw b
 

     is transformed using the 

purelin function as the network‟s output. Thus, the pre-

dicted values are  
5 3

1 1

( )i i k

j i

purelin z Lw b
 

    . 

The values for the variables 1j , 2j , 3j , ib , iLw  and kb  

are in Tables 5 and 6, and they could be applied to other 

networks (i.e., 5-input-based and 6-input-based) with appro-

priate adjustments to the network‟s variables. The output 

from the neural network is presented in the normalized form 

and would require de-normalization to transform the network 

predictions to a required format (values). Thus, the simpli-

fied neural network-based models for oil flow rate prediction 

are in Equations 12 and 13, based on maximum-minimum 

and clip scaling approaches; 

 183 14234
MSo o

ANN
q q                        (12) 

 7300 7117
CSo o

ANN
q q                       (13) 

where oq  is the de-normalized oil flow rate,  
MSo

ANN
q and 

 
CSo

ANN
q are the predicted oil flow rates (in normalized 

form) based on the maximum-minimum and the clip scaling 

methods, respectively, from the neural network. Thus, 

 
MSo

ANN
q and  

CSo
ANN

q  are expressed in Equations 14 and 

15; 

           1 2 3 4 51.11095 0.83738 5.13751 2.64974 3.6111 0.15854
MSo

ANN
q z z z z z                     (14) 

           1 2 3 4 50.16789 0.38369 0.28206 2.55715 0.37376 1.18885
CSo

ANN
q z z z z z                   (15) 

Then,  1z  to  5z  in Equations 14 and 15 are expressed as  
 1

1 2

2
1

1
z

e





 


,  
 2

2 2

2
1

1
z

e





 


, 

 
 3

3 2

2
1

1
z

e





 


,  
 4

4 2

2
1

1
z

e





 


 and  
 5

5 2

2
1

1
z

e





 


, where 1  to 5  are the computations at the hidden 

layer neurons. For the 3-input-based network with the maximum-minimum scaling method, 1  to 5  are expanded as Equa-

tions 16 to 20; 

     1 0.53854 1.01116 0.36972 1.97486wh n nn
P S GLR      

                                           (16) 

     2 1.26601 5.76522 2.09991 3.19185wh n nn
P S GLR      

                                           (17) 

     3 0.29896 1.35780 1.96983 2.83930wh n nn
P S GLR     

                                           (18) 

     4 0.24131 2.19125 0.59298 2.06734wh n nn
P S GLR     

                                           (19) 

     5 1.01553 1.34773 1.15601 3.39391wh n nn
P S GLR     

                                           (20) 

Also, the variables 1  to 5  for the 3-input-based network with the clip scaling method are expressed as Equations 21 to 25; 

     1 1.91024 0.11737 0.94065 2.83398wh n nn
P S GLR      

                                           (21) 
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     2 2.18915 0.47989 3.53889 1.41835wh n nn
P S GLR     

                                           (22) 

     3 0.71125 2.47404 3.53962 1.35283wh n nn
P S GLR     

                                           (23) 

     4 1.08605 0.70079 4.30899 4.66605wh n nn
P S GLR      

                                           (24) 

     5 1.62280 2.74743 2.03152 2.32845wh n nn
P S GLR     

                                           (25) 

where  wh n
P ,  

n
S , and  

n
GLR  are the normalized input 

variables (i.e., whP , S , and GLR ), presented as 

 
95

3205

wh
wh n

P
P


 ,  

14

60n

S
S


 , and 

 
29

28568n

GLR
GLR


 , for the maximum-minimum scaling 

method and  
95

2 1
3205

wh
wh n

P
P

 
  

 
,  

14
2 1

60n

S
S

 
  

 
, 

and  
29

2 1
28568n

GLR
GLR

 
  

 
, for the clip scaling method. 

Similarly, the 5-input-based and 6-input-based models‟ 

 
MSo

ANN
q and  

CSo
ANN

q  are adjusted to reflect the addi-

tional input parameters: 
sc

T
T

, &BS W , o  and g . Using 

the appropriate weights and biases presented in Tables 8 and 

9 for 5-input-based models and Tables 10 and 11 for 6-input-

based models,  iz  and i  would be established. The 

normalized additional input variables are expressed as 

0.8

2.30

sc

sc n

T
TT

T


 

 
 

,  
& 0.0005

&
0.9425n

BS W
BS W


 , 

 
0.7339

0.2094

o
o n





  and  

0.5227

0.4172

g

g
n





  for the max-

imum-minimum normalization method and 

0.8

2 1
2.30

sc

sc n

T
TT

T

 
  

       
 

,  
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& 2 1
0.9425n

BS W
BS W

 
  

 

, 

 
0.7339

2 1
0.2094

o
o n




 
  

 
 and  

0.5227
2 1

0.4172

g

g
n




 
   

 

 for 

the clip scaling method. 

3.3. Comparison of the Simplified Models with 

Some Empirical Correlations for Oil Flow 

Rate Estimation 

The predictions of the simplified neural network-based 

models were compared with some empirical correlations for 

oil flow rate ( oq ) estimations. The performance of (i.e., the 

closeness between) the models predicted oq  with the actual 

field data was related using some statistical indices: coeffi-

cient of determination (R
2
), root mean square error (RMSE), 

average relative error (ARE) and average absolute relative 

error (AARE), and regression plot. The statistical indices are 

estimated using Equations 26 to 31: 

 

 

.

.

2

2 1

2

1

1

field pred

field pred

n

o o

i

n

o o

i

q q

R

q q







 






                    (26) 

 .

2

1

1
field pred

n

o o

i

RMSE q q
n



               (27) 

.

1

1 pred field

field

n
o o

oi

q q
ARE

n q


 
 
 
 

                 (28) 

.

1

1 pred field

field

n
o o

oi

q q
AARE

n q



                    (29) 

where 
fieldoq  and 

fieldoq  denote the field oil flow rate and 

average field flow rate, respectively, 
.predoq  and 

.predoq  repre-

sent the predicted oil flow rate and average predicted oil flow 

rate, respectively, from the neural-based models, and n  de-

notes the number of datasets or data points. 

The 3-input-based models‟ (i.e., ANN-MS and ANN-CS) 

predictions and other empirical correlations: Gilbert [14], 

Baxendell [15], Ros [16], Achong [17], Owolabi et al. [20], 

Beiranvand et al. [4], Okon et al. [23] and Joshua et al. [26], 

estimations were collated. The results are in Table 13 and 

Figures 10 and 11. In Table 13, the neural network-based 

models have the lowest statistical indices (i.e., RMSE, ARE 

and AARE) compared to the empirical correlations. The de-

veloped neural network model based on the maximum-

minimum normalization approach (ANN-MS) resulted in an 

R
2
 value of 0.9687, while the model based on the clip scaling 

method resulted in an R
2
 value of 0.9663. The R

2
 values for 

the ANN-MS and ANN-CS models were higher than the 

performance of the empirical correlations, even for the corre-
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lations (Owolabi et al. [20]; Okon et al. [23]; Joshua et al. 

[26]) based on the Niger Delta region. Statistically, these 

high R
2
 values for the neural network-based models implied 

that their predictions would fit closer to the actual field data 

than the estimation of the empirical correlations [60]. Be-

sides the statistical indicators in Table 13, the Taylor dia-

gram of the 3-input-based models and empirical correlations 

is presented in Figure 10. This figure shows the statistical 

errors and agreement of the developed models and the empir-

ical correlations with the field data [68, 69]. Thus, the pre-

dictions of the field data by the 3-input-based models (i.e., 

ANN-MS and ANN-CS) are more noticeable than the empir-

ical correlations in Figure 10. Again, Figure 11 depicts the 

predictions of the neural models and empirical correlations 

with the field oq . The figure indicates that the neural and 

empirical correlations estimated data points aligned along the 

diagonal trend in Figure 11. According to Al-Bulushi et al. 

[64], the diagonal alignment of the neural-based model pre-

dictions and the estimation of the empirical correlations with 

the field oq  shows a good agreement between the predicted 

oq  and the actual field oq  datasets. 

Table 13. Statistical performance of the developed Gilbert-based models with some empirical correlations for oil flow rate estimation. 

 Models 

Statistical Performance 

R2 RMSE ARE AARE 

i. Gilbert (1954) 0.8717 1056.088 -0.1268 0.3177 

ii. Baxendell (1958) 0.9329 759.155 0.2513 0.3734 

iii. Ros (1960) 0.9402 716.155 0.1688 0.3354 

iv. Achong (1961) 0.8939 962.841 0.3927 0.4872 

v. Owolabi et al. (1991) 0.9073 970.250 0.3358 0.5766 

vi. Beiranvand et al. (2012) 0.9386 726.693 -0.0264 0.3002 

vii. Okon et al. (2014) 0.9627 877.850 0.4330 0.5187 

viii. Joshua et al. (2020) 0.9477 669.982 0.0547 0.2998 

ix. ANN-MS 0.9687 517.719 0.1012 0.2468 

x. ANN-CS 0.9663 537.677 0.0673 0.2582 

 
Figure 10. Taylor diagram of the 3-input-based models with some empirical correlations. 
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Figure 11. Comparison of the 3-input-based neural models and empirical correlations predictions; the diagonal line represents 1:1 trend 

line. 
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On the other hand, Table 14 presents the statistical per-

formance (i.e., R
2
, RMSE, ARE and AARE) of the 5-input 

neural-based models and some empirical correlations. The 

results showed that the simplified neural-based models‟ (i.e., 

ANN-MS and ANN-CS) statistical yardsticks were better 

than the empirical correlations by Beiranvand et al. [4], 

Khorzoughi et al. [22], Okon et al. [23] and Ghorbani et al. 

[24]. This assertion is revealed in the R
2
 values obtained for 

the 5-input neural-based models. In Table 14, the ANN-MS 

model had an R
2
 value of 0.9867, while the ANN-CS model 

resulted in an R
2
 value of 0.9720. These R

2
 values implied 

that the 5-input neural-based models would predict the field 

oq  with 98.67% and 97.20% for ANN-MS and ANN-CS 

models, respectively. Also, the RMSE, ARE, and AARE 

values obtained for the neural-based models were lesser than 

the empirical correlations‟ estimations. Furthermore, the 

performance of the neural network-based models and the 

empirical correlations are in Figure 12. From the figure, the 

neural-based models and some correlations: Beiranvand et al. 

[4], Okon et al. [23], and Ghorbani et al. [24] predictions 

cluster along the diagonal trend. The figure reveals that the 

estimated correlation values between Khorzoughi et al. [22] 

did not agree with the actual field oq . The observation is 

visible in the data points (trend) for Khorzoughi et al. [22] 

correlation in Figure 12 and the R
2
 value obtained for the 

correlation in Table 14. 

Table 14. Statistical performance of the developed 5-input-based models with some empirical correlations for oil flow rate estimation. 

 Models 

Statistical Performance 

R2 RMSE ARE AARE 

i. Beiranvand et al. [4] 0.9468 718.010 0.1737 0.3300 

ii. Khorzoughi et al. [22] 0.6560 2229.569 0.4601 0.7499 

iii. Okon et al. [23] 0.9023 1253.268 0.5515 0.6486 

iv. Ghorbani et al [24] 0.9255 926.690 -0.1040 0.3742 

v. ANN-MS 0.9867 383.276 0.1139 0.2367 

vi. ANN-CS 0.9720 491.487 0.1144 0.2642 

 

http://www.sciencepg.com/journal/pse


Petroleum Science and Engineering http://www.sciencepg.com/journal/pse 

 

90 

 
Figure 12. Comparison of the 5-input-based neural models and empirical correlations predictions; the diagonal line represents 1:1 trend 

line. 

Table 15 presents the statistical performance of the 6-

input-based neural network models and some empirical cor-

relations: Choubineh et al. [12] and Joshua et al. [26]. The 

results (i.e., R
2
 values) indicated that the prediction of the 

neural network-based models was closer to the actual field 

oq  than the empirical correlation estimations. Again, the 

error indicators (i.e., RMSE, ARE and AARE values) for the 

neural-based models were lesser than those obtained for the 

empirical correlations. Also, the neural models' predictions 

aligned diagonally more than the empirical correlations‟ es-

timations in Figure 13. The observation implied that the neu-

ral-based models' predictions were in sync with the actual 

field datasets, with 98.08% and 97.91% certainty for the 

ANN-MS and ANN-CS models, respectively. 

Table 15. Statistical performance of the 6-input-based models with some empirical correlations for oil flow rate estimation. 

 Models 

Statistical Performance 

R2 RMSE ARE AARE 

i. Choubineh et al. [12] 0.9443 721.958 0.0892 0.3316 

ii. Joshua et al. [26] 0.9749 1089.123 0.3833 0.4196 

iii. ANN-MS 0.9808 407.186 0.0643 0.2192 

iv. ANN-CS 0.9791 424.931 0.0425 0.2594 

 
Figure 13. Comparison of the 6-input-based neural models and empirical correlations predictions; the diagonal line represents 1:1 trend 

line. 
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3.4. Generalization Performance of the 

Simplified Neural Network-Based Models 

for Oil Flow Rate Predictions 

According to Alexander et al. [70], applying datasets not 

involved in developing the model to assess its generalization 

robustness is the gold standard. In this regard, 63 and 113 

datasets from the Niger Delta and Iran fields, respectively, in 

Okon et al. [23] and Choubineh et al. [12], were used for the 

assessment. Tables 16 and 17 show the statistical description 

of the datasets. The generalization performances of the sim-

plified 3-input-based and 6-input-based neural models were 

tested using these datasets. The models' performance is visi-

ble in statistical indices (i.e., R
2
, RMSE, ARE and AARE) in 

Tables 18 and 19 and regression plots in Figures 14 to 19. 

Table 16. Statistical description of Okon et al. [23] datasets for the models’ generalization performance. 

Parameters Data Max. Min. Range Mean Std. Dev. Kurt. Coef. of Var. (%) 

Wellhead Pressure, 
wh

P  63 2320.0 101.5 2218.6 592.93 445.31 2.957 75.10 

Bean (Choke) Size, S  63 72.0 16.0 56.0 35.46 13.96 0.268 39.38 

Gas-Liquid Ratio, GLR  63 4134.41 93.26 4041.15 889.64 925.15 4.802 103.99 

Table 17. Statistical description of Choubineh et al. [12] datasets for the models’ generalization performance. 

Parameters Data Max. Min. Range Mean Std. Dev. Kurt. Coef. of Var. (%) 

Wellhead Pressure, 
wh

P  113 2940.0 50.0 2890.0 1280.1 348.69 1.275 77.13 

Bean (Choke) Size, S  113 80.0 24.0 56.0 54.51 16.88 0.122 43.89 

Gas-Liquid Ratio, GLR  113 3660.0 107.0 3553.0 858.58 440.25 8.518 206.33 

Oil Gravity, 
o
  113 0.92 0.808 0.112 0.8583 0.0171 -0.047 5.30 

Temperature, T  113 135.0 90.0 45.0 124.12 12.61 0.384 29.81 

Gas Gravity, 
g

  113 1.236 0.6886 0.5474 0.7313 0.0597 -0.805 3.14 

 

Table 18 and Figures 14 to 17 present the 3-input-based 

neural models (i.e., ANN-MS and ANN-CS) generalization 

performance with the Okon et al. [23] and Choubineh et al. 

[12] datasets. For the Okon et al. [23] datasets, the statistical 

indicator showed that the neural-based models predicted oq  

resulted in R
2
 values of 0.9488 for ANN-MS, while the ANN-

CS model had 0.9644. From a statistical standpoint, the R
2
 

values implied that the simplified neural-based models pre-

dicted oq  are 94.88% (for ANN-MS) and 96.44% (for ANN-

CS) related to the Okon et al. [23] datasets. The results further 

depict RMSE, ARE, and AARE values of 251.926, 0.1158, 

and 0.1862 for the ANN-MS model and 205.871, 0.1158, and 

0.1862 for the ANN-CS model. Again, the 3-input-based neu-

ral model predictions from the Choubineh et al. [12] datasets 

resulted in R
2
 values of 0.8848 for the ANN-MS model and 

0.9264 for the ANN-CS model. The errors (i.e., RMSE, ARE, 

and AARE) values obtained for the models were 2754.48, 

0.0746 and 0.2573 for ANN-MS and 2089.93, 0.1656 and 

0.2267 for ANN-CS. From the R
2
 values obtained, the simpli-

fied 3-input-based neural models would predict Choubineh et 

al. [12] oq  datasets with 88.48% and 92.64% certainty for 

ANN-MS and ANN-CS models, respectively. Aside from the 

R
2
 values that depict the predicted oq ‟s closeness with the test 

datasets, the generality robustness of these simplified neural-

based models is visible on the cross-plots in Figures 14 to 17. 

As observed in these figures, the diagonal trend of the data 

points indicates a good agreement between the predicted oq  

and the test datasets [64]. 
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Table 18. Statistical indices of the simplified 3-input-based models’ generalization robustness to predict the oil flow rate. 

 Datasets Source Neural Model 

Statistical Performance 

R2 RMSE ARE AARE 

i. Okon et al. [23] 
ANN-MS 0.9488 251.926 0.1158 0.1862 

ANN-CS 0.9644 205.781 0.0248 0.1275 

ii. Choubineh et al. [12] 

ANN-MS 0.8848 2754.48 0.0746 0.2573 

ANN-CS 0.9264 2089.93 0.1656 0.2267 

 

 
Figure 14. Comparison of 3-input-based model (ANN-MS) predic-

tions with oil flow rate datasets from Okon et al. [23]. 

 
Figure 15. Comparison of 3-input-based model (ANN-CS) predic-

tions with oil flow rate datasets from Okon et al. [23]. 

 
Figure 16. Comparison of 3-input-based model (ANN-MS) predic-

tions with oil flow rate datasets from Choubineh et al. [12]. 

 
Figure 17. Comparison of 3-input-based model (ANN-CS) predic-

tions with oil flow rate datasets from Choubineh et al. [12]. 

On the other hand, the 6-input neural-based models‟ generali-

ty performances are presented in Table 19 and Figures 18 and 

19. The statistical indices obtained for these models were 0.8908, 

2655.50, 0.1484, and 0.2219 for R
2
, RMSE, ARE, and AARE 

for ANN-MS, while ANN-CS had 0.9264, 2089.93, 0.1656 and 

0.2267. The R
2
 values obtained indicated that the 6-input-based 

neural models would predict the Choubineh et al. [12] oq  data 

with 89.08% certainty for ANN-MS and 92.64% for ANN-CS. 

Also, the closeness of the model‟s predictions with the test da-

tasets is visible on the diagonal alignment of the predicted oq  

and test datasets in the cross-plots (Figures 18 and 19). Thus, the 

generalization performance of the simplified neural-based mod-

els is about 90.0% certainty with the test datasets. 

 
Figure 18. Comparison of 6-input-based model (ANN-MS) predic-

tions with oil flow rate datasets from Choubineh et al. [12]. 
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Table 19. Statistical indices of the simplified 6-input-based models’ generalization robustness to predict the oil flow rate. 

 Datasets Source Neural Model 

Statistical Performance 

R2 RMSE ARE AARE 

i. Choubineh et al. [12] 
ANN-MS 0.8908 2655.50 0.1484 0.2219 

ANN-CS 0.9264 2089.93 0.1656 0.2267 

 

 
Figure 19. Comparison of 6-input-based model (ANN-CS) predic-

tions with oil flow rate datasets from Choubineh et al. [12]. 

The generalization performance of Okon et al. [23] and 

Choubineh et al. [12] datasets was extended to some existing 

empirical correlations and compared with the simplified neu-

ral-based models. The results of the assessment are in Tables 

20 and 21. In Table 20, the statistical results (R
2
, RMSE, ARE 

and AARE) for the Okon et al. [23] datasets showed that the 

simplified 3-input-based neural models predicted oq  values 

were closer to the actual test datasets than the estimated oq  

from the empirical correlations. The neural-based models‟ 

predictions for the Choubineh et al. [12] test data agreed with 

the estimated oq  from the empirical correlations as the R-

values obtained for these models were close. On the other 

hand, the simplified 6-input-based neural models‟ generaliza-

tion performance was comparable with the correlations of 

Choubineh et al. [12] and Joshua et al. [26]. This observation 

is visible in the statistical indices in Table 21 obtained for the 

neural-based models and the empirical correlations. 

Table 20. Generalization performances of the simplified 3-input-based models and some correlations with test datasets. 

 Models 

Statistical Performance 

Okon et al. (2015). Datasets Choubineh et al. (2017) Datasets 

R2 RMSE ARE AARE R2 RMSE ARE AARE 

i. Gilbert [14] 0.5099 944.51 -0.4403 0.3349 0.8117 2451.04 0.1957 -0.1924 

ii. Baxendell [15] 0.5062 1120.79 0.0504 0.3254 0.9596 1130.74 -0.0110 0.0904 

iii. Ros [16] 0.5070 1111.48 -0.0093 0.3182 0.9548 1138.66 0.0261 0.0941 

iv. Achong [17] 0.4805 1218.12 0.1445 0.3665 0.9555 1128.76 0.0161 0.0989 

v. Pilehvari [19] 0.4977 2971.07 0.8235 0.8828 0.9394 10379.76 0.9623 0.9623 

vi. Beiranvand et al. [4] 0.4574 1210.70 -0.1398 0.3833 0.9495 1205.77 0.0868 0.1339 

vii. Okon et al. [23] 0.5319 1053.51 0.1658 0.3660 0.9345 1371.86 0.0157 0.1154 

viii. Owolabi et al. [20] 0.5210 1059.91 0.0323 0.3461 0.9302 141620 -0.0023 0.1184 

ix. Joshua et al. [26] 0.4821 1246.46 -0.0756 0.3469 0.9334 1383.10 -0.0010 0.1234 

x. ANN-MS 0.9488 251.926 0.1158 0.1862 0.8848 2754.48 0.0746 0.2573 

xi. ANN-CS 0.9644 205.781 0.0248 0.1275 0.9264 2089.93 0.1656 0.2267 
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Table 21. Generalization performances of the simplified 6-input-based models and some correlations with test datasets. 

 Models 

Statistical Performance 

R2 RMSE ARE AARE 

i. Choubineh et al. [12] 0.9695 1077.45 -0.0089 0.0941 

ii. Joshua et al. [26] 0.8949 1786.34 0.2262 0.2450 

iii. ANN-MS 0.8908 2655.50 0.1484 0.2219 

iv. ANN-CS 0.9264 2089.93 0.1656 0.2267 

 

3.5. Statistical Significance and Acceptability of 

the Developed Models Predictions 

In addition to the earlier-mentioned statistical indicators, 

which are parametric statistical tests to evaluate the perfor-

mance of the developed neural network-based models, the 

Kruskal-Wallis test (i.e., H-test or statH ), a non-parametric 

method alternative to the one-way analysis of variance 

(ANOVA), was evaluated using Equation 30 to test whether 

the models‟ predicted and field test oil flow rate datasets 

have the same mean values. Therefore, the null hypothesis 

(*H0) is whether a significant difference exists between pre-

dicted models and the field oil flow rate mean values. 

 
 

2

1

12
3 1

1

k
i

stat
ii

R
H N

N N n


  
    

    
        (30) 

where statH  is the H-test value, which is equivalent to the 

critical value of Chi-square ( 2 ), N  represents the total 

number of data points in the test, k  denotes the number of 

data groups in the test, iR  is the rank sum of the individual 

group in the test and in  is the number of data points in each 

group. 

Table 22 presents the Kruskal-Wallis test results at a 95% 

significance level for the field test, Okon et al. [23] and 

Choubineh et al. [12] datasets compared with the developed 

models predicted values. Based on the statH  values obtained, 

which are equivalent to the critical values of Chi-square 

( 2 ). Based on the critical values table, at 2 degrees of free-

dom, the corresponding p-values visible in Table 22 for the 

statH  values are less than the p-value of 0.05. Therefore, the 

null hypothesis (*H0) that no significant difference exists 

between the models predicted and field test oil flow rate 

mean values are accepted. Hence, the developed models 

(ANN-MS and ANN-CS) predictions of oil flow rate are 

statistically significant and acceptable. 

Table 22. Kruskal-Wallis test of the models predicted and field test oil flow rate 95% significance level. 

 Datasets source stat
H

 
values p-values Null hypothesis (*H0) 

i. Field test 6.6721 0.0377 Accept 

ii. Okon et al. [23] 6.5562 0.0398 Accept 

iii. Choubineh et al. [12] 7.6463 0.0478 Accept 

 

In summary, the study has put forward simplified 3-input, 

5-input, and 6-input neural-based models based on Gilbert 

[14], Khorzoughi et al. [22], and Choubineh et al. [12] corre-

lations for Niger Delta oilfield flow rate prediction. Extend-

ing the generalization performances of the neural-based 

models to Iran oilfield datasets resulted in an excellent per-

formance that compares with the Choubineh et al. [12] corre-

lation. However, it is expedient to state that the unavailabil-

ity or accessibility of datasets from oilfields across the globe 

for training and development of neural-based models would 

limit their application in other oil-producing regions. Again, 

it was alluded that most available neural network models for 

oil flow rate prediction in Table 1 have complex structures 

(architectures), making their implementation time-

consuming. Moreover, these models' reproducibilities are 

doubtful, as the authors did not report the details of their 
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models (networks) to reproduce them for applications. 

Therefore, the gains of this study showed that: 

1) the neural networks are reproducible as their basic de-

tails and network arrangement are presented in this 

study; 

2) the neural network models are not reported as “black 

boxes” but rather as “white boxes,” meaning the math-

ematical expressions of the networks‟ computations are 

presented, 

3) clip normalized neural-based model generalizes unseen 

datasets more than the maximum-minimum neural-

based model; 

4) the parametric (relative) importance of the neural-based 

models‟ input variables on the output variable - oil flow 

rate is normalization approach sensitive; 

5) the bean (choke) size (S), gas-liquid ratio (GLR), well-

head pressure (Pwh), well-flowing temperature (T) and 

oil gravity (γo) are more substantial in predicting oil 

flow rate ( oq ) than basic sediments and water (BS&W) 

and gas gravity (γg); and 

6) This work should consider the simplified representation 

of the neural-based models and the models‟ details for 

application. 

4. Conclusion 

The available intelligence-based models for oil flow rate 

in the Niger Delta region are not reproducible, as the models‟ 

basic details for their reproducibility are not published or in 

the public domain. In other words, the available models are 

viewed or presented as a black box. Therefore, this study 

showcases the simplified neural-based models based on 3-

input, 5-input and 6-input parameters for predicting oil flow 

rate using 283 datasets from 21 wells in the Niger Delta oil-

fields. The feedforward backpropagation (FFBP) neural net-

works were trained based on maximum-minimum and clip 

normalization methods using the Levenberg-Marquardt 

learning algorithm. With a trial-and-error approach, the ar-

chitectures that give good performance for the 3-input, 5-

input, and 6-input variables network were [3-5-1], [5-6-1], 

and [6-8-1], respectively. The simplified neural-based mod-

els' predictions and their generalization performance were 

compared with some existing correlations to assess the effi-

ciency of the developed models. From the performances of 

the simplified neural-based models, the under-listed conclu-

sions are visible: 

1) the simplified 3-input-based neural models predicted 

that the oil flow rate was close to the field flow rate 

with overall MSE and R values of 9.6185 10
-4 

and 

0.9843 for maximum-minimum normalization approach 

and 5.7986 10
-3 

and 0.9830 for the clip scaling method; 

2) the 5-input-based neural models predicted oil flow rate 

had overall MSE and R values of 5.7790 10
-4 

and 

0.9932 for the maximum-minimum normalization ap-

proach and 3.7243×10
-3 

and 0.9859 for the clip scaling 

method; 

3) also, the 6-input-based neural models had overall MSE 

and R values of 8.7520 10
-4 

and 0.9904 for the maxi-

mum-minimum normalization approach and 

3.8859 10
-3 

and 0.9895 for the clip scaling method; 

4) the relative importance (RI) of the neural-based models‟ 

input variables on oil flow rate is normalization (i.e., 

scaling) approach dependent, and the overall RI ranking 

of the input parameters for oil flow rate prediction is 

S>GLR>Pwh>T/Tsc> γo>BS&W>γg; 

5) when compared with some empirical correlations, the 

neural-based models predicted oil flow rate resulted in 

the highest R
2
 and lowest RMSE, ARE and AARE val-

ues than the existing empirical correlations; 

6) the generalization performance of the simplified neural-

based models, 3-input-based and 6-input-based with the 

test datasets resulted in R
2
, RMSE, ARE, and AAPRE 

of 0.9820, 205.78, 0.0248 and 0.1275, respectively, for 

3-input-based neural model and R
2
 of 0.9264, RMSE of 

2089.93, ARE of 0.1656 and AARE of 0.2267 for the 

6-input-based neural model; and 

7) finally, the generalization performance of the simplified 

neural-based models was outstanding and comparable 

with the test datasets to some existing empirical corre-

lations. 

Abbreviations 

AARE Average Absolute Relative Error 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ANN-CS Clip Scaling Trained ANN 

ANN-MS Maximum-Minimum Scaling trained ANN 

ARE Average Relative Error 

At Tubing Cross-Section Area 

BHP Bottomhole Pressure 

BHT Bottomhole Temperature 

BS&W Basic Sediment & Water 

CF Contribution Factor 

CNN Convolution Neural Network 

DNN Deep Neural Network 

Coef. of Var. Coefficient of Variance 

OHD  Open Hole Size 

FBHP Flowing Bottomhole Pressure 

FFBP Feed-Forward Back-Propagation 

GLR Gas-Liquid Ratio 

GOR Gas-Oil Ratio 

H Well Depth 

H-test Kruskal-Wallis Test 

k Permeability 

Kurt. Kurtosis 

Le Effective Length 

MAPE Mean Absolute Percentage Error 

MISO Multiple-Inputs Single-Output 
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ML Machine Learning 

MLP Multilayer Perceptron 

MSE Mean Square Error 

Ln  Number of Laterals 

flP  Flowline Pressure 

glP  Gas lift Pressure 

RP  Reservoir Pressure 

whP  Wellhead Pressure 

cLq  Critical Liquid flow Rate 

glq  Gas Lift Rate 

Lq  Liquid Flow Rate 

oq  Oil Flow Rate 

ocq  Critical Oil flow Rate 

R Correlation Coefficient 

R
2
 Coefficient of Determination 

RF Random Forest 

RBF Radial Basis Function 

RI Relative Importance 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

S Choke (Bean) Size 

T Temperature 

THP Tubing Head Pressure 

Tsc Temperature at Surface Condition 

WHT Wellhead Temperature 

WCT Water-Cut 
2  Chi-Square 

g  Gas Gravity 

o  Oil Gravity 
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